
Maintainability	
  and	
  Performance	
  for	
  LAMMPS	
  
	
  
Christian	
  Trott	
  (crtrott@sandia.gov),	
  Tzu-­‐Ray	
  Shan,	
  Stan	
  Moore,	
  Aidan	
  Thompson	
  
and	
  Steve	
  Plimpton	
  
Center	
  for	
  Computing	
  Research	
  
Sandia	
  National	
  Laboratories	
  
	
  
Over	
  the	
  last	
  few	
  years,	
  molecular	
  dynamics	
  (MD)	
  simulation	
  codes	
  have	
  been	
  at	
  the	
  
forefront	
  of	
  supporting	
  new	
  hardware	
  architectures.	
  For	
  example,	
  most	
  of	
  the	
  major	
  
older	
  codes,	
  including	
  AMBER,	
  Gromacs,	
  NAMD,	
  and	
  LAMMPS,	
  have	
  provided	
  
significant	
  support	
  for	
  GPUs	
  for	
  several	
  years,	
  and	
  newer	
  codes	
  like	
  HOOMD	
  have	
  
been	
  developed	
  specifically	
  for	
  GPUs.	
  We	
  believe	
  the	
  older	
  codes	
  all	
  approached	
  this	
  
task	
  initially	
  by	
  creating	
  special	
  variants	
  of	
  their	
  most	
  important	
  MD	
  kernels	
  for	
  the	
  
GPU.	
  Some	
  codes	
  support	
  running	
  completely	
  on	
  GPUs,	
  with	
  no	
  regular	
  data	
  
transfers	
  to	
  the	
  CPU	
  other	
  than	
  for	
  MPI	
  communication.	
  Others	
  offload	
  only	
  certain	
  
key	
  computations	
  to	
  the	
  GPU.	
  Many	
  support	
  hybrid	
  execution	
  where,	
  for	
  example,	
  
non-­‐bonded	
  interactions	
  are	
  calculated	
  on	
  the	
  GPU	
  at	
  the	
  same	
  time	
  bonded	
  
interactions	
  and	
  long-­‐range	
  Coulombics	
  are	
  calculated	
  on	
  the	
  CPU.	
  	
  In	
  general,	
  
performance	
  improvements	
  over	
  many-­‐core	
  CPU-­‐only	
  clusters	
  have	
  been	
  quite	
  
good.	
  
	
  
For	
  LAMMPS,	
  this	
  approach	
  of	
  creating	
  variants	
  of	
  key	
  kernels	
  tuned	
  for	
  each	
  
architecture	
  (CPU/MPI-­‐only,	
  OpenMP,	
  GPU,	
  Phi,	
  etc),	
  has	
  become	
  increasingly	
  
difficult	
  to	
  sustain	
  over	
  time	
  as	
  the	
  code	
  has	
  grown	
  and	
  new	
  architectures	
  
proliferate.	
  As	
  a	
  general	
  materials	
  simulation	
  code	
  with	
  models	
  at	
  the	
  atomic	
  to	
  
meso	
  to	
  continuum	
  scales,	
  LAMMPS	
  currently	
  has	
  non-­‐bonded	
  kernels	
  for	
  ~120	
  
different	
  functional	
  forms.	
  There	
  are	
  likewise	
  ~40	
  different	
  functional	
  forms	
  for	
  
bonded	
  interactions	
  (bonds,	
  angles,	
  dihedrals,	
  impropers)	
  and	
  several	
  variants	
  of	
  
long-­‐range	
  Coulombic	
  models.	
  	
  The	
  code	
  also	
  has	
  100+	
  options	
  for	
  add-­‐on	
  
calculations	
  which	
  affect	
  the	
  dynamics	
  such	
  as	
  thermostats,	
  barostats,	
  different	
  time	
  
integration	
  schemes,	
  interactions	
  with	
  boundaries	
  and	
  other	
  objects,	
  external	
  
forces,	
  etc.,	
  as	
  well	
  as	
  several	
  dozen	
  optional	
  diagnostics,	
  which	
  involve	
  loops	
  over	
  
atoms	
  or	
  more	
  complex	
  calculations.	
  	
  
	
  
Overall,	
  we	
  estimate	
  LAMMPS	
  thus	
  contains	
  around	
  500	
  unique	
  kernels,	
  which	
  if	
  not	
  
optimized	
  could	
  become	
  bottlenecks	
  in	
  a	
  particular	
  simulation	
  on	
  specific	
  hardware.	
  	
  
The	
  challenge	
  this	
  creates	
  is	
  reflected	
  in	
  the	
  current	
  GPU	
  capabilities	
  of	
  LAMMPS,	
  
which	
  only	
  support	
  a	
  small	
  fraction	
  of	
  all	
  these	
  LAMMPS	
  features.	
  The	
  problem	
  is	
  
compounded	
  because	
  LAMMPS	
  input	
  scripts	
  allow	
  users	
  to	
  combine	
  these	
  
capabilities	
  in	
  flexible	
  and	
  unpredictable	
  ways.	
  As	
  a	
  consequence,	
  just	
  porting	
  the	
  
most	
  important	
  kernels	
  to	
  a	
  given	
  architecture	
  may	
  result	
  in	
  poor	
  performance	
  for	
  
the	
  majority	
  of	
  simulations	
  users	
  actually	
  run.	
  
	
  
To	
  address	
  this	
  issue	
  a	
  significant	
  portion	
  of	
  new	
  code	
  development	
  for	
  LAMMPS	
  is	
  
now	
  moving	
  in	
  a	
  different	
  direction	
  by	
  using	
  Kokkos.	
  	
  Kokkos	
  is	
  a	
  programming	
  
model	
  recently	
  developed	
  at	
  Sandia	
  National	
  Laboratories	
  to	
  enable	
  performance	
  

SAND2015-8901C



portability	
  across	
  multiple	
  hardware	
  architectures	
  for	
  a	
  single	
  source-­‐code	
  base	
  
[cite	
  Kokkos,	
  cite	
  LAMMPS	
  Kokkos	
  paper].	
  Kokkos	
  is	
  openly	
  available	
  at	
  
github.com/kokkos/kokkos.	
  We	
  note	
  that	
  Kokkos	
  is	
  not	
  LAMMPS-­‐specific.	
  Rather	
  it	
  
is	
  a	
  general	
  tool	
  now	
  in	
  use	
  by	
  many	
  groups	
  for	
  a	
  variety	
  of	
  scientific	
  applications.	
  
Within	
  Sandia,	
  it	
  is	
  being	
  integrated	
  into	
  several	
  production-­‐level	
  engineering	
  codes	
  
as	
  well	
  as	
  the	
  Trilinos	
  linear	
  and	
  non-­‐linear	
  solver	
  library	
  [cite]	
  as	
  the	
  path	
  forward	
  
to	
  hopefully	
  insulate	
  them	
  from	
  the	
  changing	
  HPC	
  hardware	
  landscape.	
  

In	
  brief	
  summary,	
  Kokkos	
  is	
  based	
  on	
  6	
  abstraction	
  concepts:	
  	
  

(1)	
  	
  Users	
  express	
  parallel	
  computations	
  with	
  parallel	
  patterns;	
  e.g.,	
  for-­‐each,	
  
reduce,	
  scan,	
  and	
  directed	
  acyclic	
  graphs	
  (DAGs)	
  of	
  tasks.	
  	
  

(2)	
  	
  Parallel	
  computations	
  occur	
  within	
  execution	
  spaces	
  of	
  a	
  heterogeneous	
  
architecture;	
  e.g.,	
  latency-­‐optimized	
  CPU	
  cores	
  and	
  throughput	
  optimized	
  
GPU	
  cores.	
  	
  

(3)	
  	
  Parallel	
  computations	
  are	
  scheduled	
  according	
  to	
  execution	
  policies;	
  e.g.,	
  
statically	
  scheduled	
  range	
  [0..N)	
  and	
  dynamically	
  scheduled	
  thread	
  teams.	
  	
  

(4)	
  	
  Data	
  are	
  allocated	
  within	
  memory	
  spaces	
  of	
  a	
  heterogeneous	
  
architecture;	
  	
  e.g.,	
  in	
  CPU	
  main	
  memory	
  and	
  GPU	
  memory.	
  	
  

(5)	
  	
  Data	
  are	
  allocated	
  through	
  multidimensional	
  arrays	
  with	
  polymorphic	
  
	
  layout	
  that	
  specifies	
  how	
  an	
  array’s	
  multi-­‐index	
  domain	
  space	
  is	
  mapped	
  	
  to	
  
an	
  allocation	
  within	
  a	
  memory	
  space.	
  	
  

(6)	
  	
  Arrays	
  may	
  be	
  annotated	
  with	
  access	
  intent	
  traits	
  such	
  as	
  ”random	
  
	
  access”	
  or	
  ”atomic	
  access.”	
  Kokkos	
  can	
  use	
  these	
  traits	
  to	
  map	
  array	
  entry	
  
access	
  to	
  architecture-­‐specific	
  mechanisms	
  such	
  as	
  GPU	
  texture	
  cache	
  or	
  
atomic	
  instructions.	
  	
  

The	
  key	
  idea	
  is	
  that	
  writing	
  code	
  that	
  uses	
  these	
  abstraction	
  concepts	
  allows	
  one	
  to	
  
create	
  performance-­‐portable	
  applications.	
  The	
  details	
  are	
  beyond	
  the	
  scope	
  of	
  this	
  
short	
  paper,	
  but	
  extensive	
  documentation	
  to	
  help	
  get	
  started	
  with	
  Kokkos	
  is	
  
available,	
  including	
  tutorials	
  of	
  different	
  lengths	
  at	
  github.com/kokkos/kokkos-­‐
tutorials,	
  a	
  programming	
  guide,	
  a	
  variety	
  of	
  miniApps,	
  and	
  code	
  examples.	
  	
  
	
  
In	
  LAMMPS,	
  Kokkos	
  variants	
  of	
  various	
  kernels	
  are	
  for	
  now	
  available	
  as	
  a	
  KOKKOS	
  
“package”.	
  	
  It	
  currently	
  includes	
  ~30	
  non-­‐bonded	
  interaction	
  types,	
  7	
  bonded	
  
interaction	
  types	
  and	
  a	
  handful	
  of	
  the	
  above-­‐noted	
  add-­‐ons	
  and	
  diagnostics.	
  The	
  
infrastructure	
  within	
  LAMMPS	
  to	
  provide	
  Kokkos-­‐support	
  is	
  mostly	
  implemented,	
  
so	
  that	
  moving	
  forward	
  is	
  now	
  more	
  a	
  matter	
  of	
  breadth	
  of	
  coverage	
  across	
  
LAMMPS	
  kernels	
  rather	
  than	
  changes	
  to	
  the	
  LAMMPS	
  core.	
  	
  	
  The	
  same	
  source	
  code	
  
in	
  all	
  of	
  these	
  Kokkos-­‐enabled	
  kernels	
  can	
  be	
  run	
  either	
  on	
  CPUs	
  (MPI-­‐only,	
  
OpenMP),	
  GPUs,	
  or	
  Intel	
  Phis,	
  with	
  MPI	
  providing	
  inter-­‐node	
  parallelism.	
  The	
  
KOKKOS	
  package	
  also	
  supports	
  various	
  execution	
  modes	
  including	
  complete	
  offload,	
  



partial	
  offload	
  and	
  true	
  hybrid	
  execution,	
  which	
  LAMMPS	
  leverages	
  for	
  different	
  
node	
  architectures.	
  It	
  also	
  allows	
  users	
  to	
  choose	
  the	
  optimal	
  mode	
  for	
  a	
  specific	
  
simulation.	
  	
  
	
  
A	
  particular	
  challenge	
  for	
  migrating	
  an	
  existing	
  large	
  application	
  like	
  LAMMPS	
  to	
  
Kokkos	
  is	
  to	
  handle	
  changed	
  data	
  structures.	
  For	
  LAMMPS	
  we	
  designed	
  a	
  “dual-­‐
view”	
  strategy	
  whereby	
  Kokkos	
  is	
  responsible	
  for	
  allocating	
  the	
  main	
  data	
  
structures.	
  	
  LAMMPS	
  first	
  allocates	
  one	
  structure	
  identical	
  to	
  the	
  legacy	
  data	
  
structure.	
  	
  Then,	
  if	
  beneficial	
  for	
  the	
  accelerator	
  hardware	
  (GPU,	
  Phi),	
  a	
  second	
  
structure	
  is	
  allocated	
  with	
  a	
  different	
  layout	
  (e.g.	
  row-­‐order	
  vs.	
  column-­‐order	
  2d	
  
arrays).	
  	
  This	
  allows	
  legacy	
  code	
  modules	
  to	
  remain	
  functional	
  by	
  using	
  the	
  first	
  
layout,	
  while	
  Kokkos-­‐optimized	
  LAMMPS	
  modules	
  use	
  the	
  second	
  layout	
  without	
  
knowing	
  details	
  of	
  the	
  layout	
  itself	
  (abstraction	
  #5	
  above).	
  	
  Invisibly	
  to	
  the	
  LAMMPS	
  
developer,	
  the	
  Kokkos	
  library	
  handles	
  the	
  movement	
  and	
  rearrangement	
  of	
  data	
  
between	
  the	
  dual	
  layouts..	
  
	
  
We	
  also	
  strive	
  to	
  keep	
  interoperability	
  between	
  the	
  KOKKOS	
  package,	
  the	
  base	
  
physics	
  modules	
  and	
  the	
  other	
  hardware	
  specific	
  modules	
  functional.	
  This	
  means	
  a	
  
user	
  does	
  not	
  have	
  to	
  wait	
  until	
  all	
  desired	
  functionality	
  is	
  available	
  in	
  the	
  KOKKOS	
  
package,	
  but	
  can	
  mix	
  and	
  match.	
  Longer	
  term	
  this	
  will	
  allow	
  us	
  to	
  have	
  a	
  baseline	
  
threaded	
  performance	
  portable	
  code	
  through	
  the	
  use	
  of	
  Kokkos,	
  while	
  hardware	
  
specific	
  optimizations	
  of	
  particular	
  important	
  kernels	
  can	
  be	
  done	
  in	
  the	
  hardware-­‐
specific	
  programming	
  models	
  for	
  each	
  architecture.	
  	
  
	
  
One	
  significant	
  challenge	
  for	
  the	
  code	
  migration	
  effort	
  is	
  funding	
  of	
  baseline	
  porting.	
  
Most	
  grants	
  used	
  to	
  develop	
  code	
  for	
  LAMMPS	
  are	
  tied	
  to	
  providing	
  new	
  
functionality.	
  It	
  is	
  significantly	
  harder	
  to	
  obtain	
  funding	
  for	
  porting	
  of	
  existing	
  
features	
  to	
  a	
  new	
  programming	
  model,	
  even	
  if	
  this	
  allows	
  support	
  for	
  a	
  new	
  
hardware	
  architecture.	
  	
  
	
  
Performance	
  results	
  are	
  so	
  far	
  very	
  favorable,	
  with	
  the	
  Kokkos	
  variants	
  of	
  kernels	
  
being	
  roughly	
  on	
  par	
  with	
  the	
  hardware-­‐specific	
  variants.	
  An	
  example	
  is	
  shown	
  
below	
  where	
  a	
  strong	
  scaling	
  run	
  of	
  a	
  standard	
  Lennard	
  Jones	
  system	
  is	
  shown	
  for	
  1	
  
to	
  32	
  nodes.	
  The	
  Xeon	
  is	
  a	
  dual	
  socket	
  Sandy	
  Bridge	
  node	
  with	
  16	
  cores	
  per	
  node,	
  
the	
  Xeon	
  Phi	
  is	
  a	
  57	
  core	
  variant,	
  where	
  each	
  Xeon	
  Phi	
  device	
  is	
  counted	
  as	
  a	
  node	
  
(we	
  run	
  in	
  native	
  mode),	
  and	
  the	
  Kepler	
  system	
  uses	
  K20x	
  GPUs	
  where	
  each	
  GPU	
  is	
  
counted	
  as	
  its	
  own	
  node.	
  The	
  aggregate	
  compute	
  time	
  is	
  equivalent	
  to	
  the	
  total	
  
node-­‐hours	
  per	
  run	
  and	
  is	
  computed	
  as	
  wall	
  clock	
  time	
  multiplied	
  by	
  the	
  number	
  of	
  
nodes.	
  Therefore	
  the	
  ideal	
  result	
  would	
  be	
  constant	
  height	
  bars	
  for	
  all	
  node	
  counts,	
  
while	
  increasing	
  bar	
  height	
  indicates	
  suboptimal	
  strong	
  scaling.	
  We	
  compared	
  the	
  
KOKKOS	
  package	
  on	
  all	
  three	
  architectures	
  with	
  the	
  OpenMP	
  and	
  the	
  USER-­‐CUDA	
  
packages	
  in	
  LAMMPS.	
  	
  
	
  

	
  



	
  
As	
  can	
  be	
  seen,	
  the	
  KOKKOS	
  package	
  
consistently	
  outperforms	
  the	
  other	
  
packages	
  on	
  the	
  next	
  generation	
  
architectures	
  for	
  this	
  benchmark,	
  while	
  
only	
  sacrificing	
  a	
  small	
  fraction	
  of	
  
performance	
  on	
  classical	
  CPUs.	
  	
  
	
  
Another	
  demonstration	
  of	
  the	
  
performance	
  achievable	
  was	
  recently	
  
given	
  by	
  the	
  development	
  of	
  a	
  Kokkos	
  
variant	
  of	
  the	
  Reax	
  Force	
  Field,	
  which	
  is	
  
significantly	
  more	
  complex	
  than	
  the	
  

standard	
  Lennard	
  Jones	
  model.	
  We	
  did	
  investigations	
  both	
  on	
  a	
  BlueGene	
  Q	
  system	
  
with	
  512	
  nodes,	
  where	
  performance	
  was	
  compared	
  to	
  MPI	
  only	
  runs	
  and	
  an	
  
alternative	
  implementation	
  using	
  raw	
  OpenMP,	
  as	
  well	
  as	
  on	
  a	
  standard	
  Cray	
  XC30	
  
system	
  with	
  dual	
  Intel	
  Ivy	
  Bridge	
  CPUs	
  and	
  a	
  system	
  with	
  NVIDIA	
  K80	
  GPUs.	
  Again	
  
the	
  performance	
  achieved	
  with	
  the	
  Kokkos	
  variant	
  is	
  on	
  par	
  or	
  better	
  than	
  the	
  
alternative	
  implementations.	
  
	
  

	
  
We	
  believe	
  that	
  the	
  strategy	
  we	
  have	
  taken	
  will	
  allow	
  us	
  to	
  keep	
  a	
  maintainable	
  
code	
  base	
  while	
  delivering	
  consistent	
  good	
  performance	
  across	
  all	
  relevant	
  
hardware	
  architectures.	
  But	
  we	
  expect	
  to	
  see	
  a	
  divergence	
  of	
  approaches	
  for	
  
performance	
  portability	
  between	
  different	
  codes	
  in	
  the	
  field	
  based	
  on	
  the	
  number	
  of	
  
unique	
  kernels.	
  While	
  applications	
  with	
  hundreds	
  of	
  kernels	
  will	
  likely	
  have	
  to	
  
choose	
  an	
  abstraction	
  layer	
  such	
  as	
  Kokkos	
  or	
  a	
  portable	
  programming	
  model	
  such	
  
as	
  OpenMP	
  4.x	
  to	
  keep	
  maintainability,	
  others	
  might	
  be	
  better	
  off	
  following	
  the	
  
existing	
  strategy	
  of	
  replicating	
  kernels	
  in	
  various	
  architecture-­‐specific	
  programming	
  
models	
  which	
  allows	
  them	
  to	
  tailor	
  kernels	
  to	
  a	
  higher	
  degree	
  and	
  achieve	
  better	
  
performance.	
  	
  	
  
	
  
Sandia	
  National	
  Laboratories	
  is	
  a	
  multi-­‐program	
  laboratory	
  managed	
  and	
  operated	
  by	
  Sandia	
  
Corporation,	
  a	
  wholly	
  owned	
  subsidiary	
  of	
  Lockheed	
  Martin	
  Corporation,	
  for	
  the	
  U.S.	
  Department	
  of	
  
Energy’s	
  National	
  Nuclear	
  Security	
  Administration	
  under	
  contract	
  DE-­‐AC04-­‐94AL85000.	
  


