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  Coupling	
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§  Blending-­‐based	
  scheme	
  derived	
  from	
  a	
  single	
  model	
  
§  Nonlocal	
  length	
  scale	
  taken	
  to	
  zero	
  in	
  one	
  porHon	
  of	
  the	
  domain,	
  

recovering	
  local	
  model	
  
§  ResulHng	
  scheme	
  contains	
  term	
  specific	
  to	
  peridynamics,	
  miHgates	
  ghost	
  

forces	
  

BLENDING-BASED COUPLING 

§  Model	
  coupling	
  can	
  be	
  cast	
  as	
  an	
  opHmizaHon	
  problem	
  
§  Objec&ve	
  func&on:	
  	
  Difference	
  between	
  soluHons	
  in	
  overlap	
  region	
  
§  Constraints:	
  	
  Governing	
  equaHons	
  of	
  the	
  individual	
  models	
  

OPTIMIZATION-BASED COUPLING 
Collaborators 

Marta D’Elia 

Mauro Perego 

Pavel Bochev 

§  Reducing	
  the	
  peridynamic	
  horizon	
  in	
  the	
  vicinity	
  of	
  a	
  local-­‐nonlocal	
  interface	
  
improves	
  model	
  compaHbility	
  

§  Standard	
  peridynamic	
  models	
  do	
  not	
  support	
  a	
  variable	
  horizon	
  
§  The	
  peridynamic	
  parHal	
  stress	
  formulaHon	
  does	
  support	
  a	
  variable	
  horizon	
  

and	
  can	
  be	
  uHlized	
  for	
  local-­‐nonlocal	
  coupling	
  

VARIABLE LENGTH SCALE IN A PERIDYNAMIC MEDIUM 



Local-­‐Nonlocal	
  Coupling	
  for	
  Integrated	
  Fracture	
  Modeling	
  

§  IntegraHon	
  with	
  exisHng	
  FEM	
  codes	
  provides	
  a	
  delivery	
  
mechanism,	
  integraHon	
  with	
  established	
  analyst	
  workflow	
  

§  “Best	
  of	
  both	
  worlds”	
  through	
  combined	
  classical	
  FEM	
  and	
  
peridynamic	
  simulaHons	
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WE SEEK INTEGRATION WITH CLASSICAL FINITE-ELEMENT APPROACHES 

PERIDYNAMICS OFFERS PROMISE FOR MODELING PERVASIVE MATERIAL FAILURE   

§  PotenHal	
  to	
  enable	
  rigorous	
  simulaHon	
  of	
  failure	
  and	
  fracture	
  
§  Directly	
  applicable	
  to	
  Sandia’s	
  naHonal	
  security	
  mission	
  

Vision 
Apply peridynamics in 
regions susceptible to 

material failure 

Blast	
  loading	
  at	
  surface	
  

Earth:	
  
Capture	
  wave	
  propagaHon	
  

with	
  classical	
  FEM	
  

Buried	
  concrete	
  structure:	
  
Capture	
  damage	
  with	
  

peridynamics	
  

David	
  J.	
  Li>lewood,	
  Stewart	
  A.	
  Silling,	
  John	
  A.	
  Mitchell,	
  Pablo	
  D.	
  Seleson,	
  Stephen	
  D.	
  Bond,	
  Michael	
  L.	
  Parks,	
  Daniel	
  Z.	
  Turner,	
  Damon	
  J.	
  Burne>,	
  Jakob	
  OsHen,	
  
and	
  Max	
  Gunzburger.	
  	
  Strong	
  Local-­‐Nonlocal	
  Coupling	
  for	
  Integrated	
  Fracture	
  Modeling.	
  	
  Technical	
  report	
  SAND2015-­‐7998.	
  	
  Sandia	
  NaHonal	
  Laboratories,	
  
Albuquerque,	
  NM	
  and	
  Livermore,	
  CA,	
  2015.	
  

SimulaHon	
  of	
  bri>le	
  
failure	
  



Peridynamic	
  Theory	
  of	
  Solid	
  Mechanics	
  

§  Peridynamics	
  is	
  a	
  nonlocal	
  extension	
  of	
  conHnuum	
  mechanics	
  
§  Remains	
  valid	
  in	
  presence	
  of	
  disconHnuiHes,	
  including	
  cracks	
  
§  Balance	
  of	
  linear	
  momentum	
  is	
  based	
  on	
  an	
  integral	
  equaHon	
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Peridynamics	
  is	
  a	
  mathemaHcal	
  theory	
  that	
  unifies	
  the	
  mechanics	
  of	
  
conHnuous	
  media,	
  cracks,	
  and	
  discrete	
  parHcles	
  

§  Peridynamic	
  bonds	
  connect	
  any	
  two	
  material	
  points	
  that	
  interact	
  directly	
  
§  Peridynamic	
  forces	
  are	
  determined	
  by	
  force	
  states	
  acHng	
  on	
  bonds	
  
§  A	
  peridynamic	
  body	
  may	
  be	
  discreHzed	
  by	
  a	
  finite	
  number	
  of	
  elements	
  

S.A.	
  Silling.	
  	
  ReformulaHon	
  of	
  elasHcity	
  theory	
  for	
  disconHnuiHes	
  and	
  long-­‐range	
  forces.	
  	
  Journal	
  of	
  the	
  Mechanics	
  and	
  Physics	
  of	
  Solids,	
  48:175-­‐209,	
  2000.	
  

S.A.	
  Silling	
  and	
  E.	
  Askari.	
  	
  A	
  meshfree	
  method	
  based	
  on	
  the	
  peridynamic	
  model	
  of	
  solid	
  mechanics.	
  	
  Computers	
  and	
  Structures,	
  83:1526-­‐1535,	
  2005.	
  

Silling,	
  S.A.	
  and	
  Lehoucq,	
  R.	
  B.	
  	
  Peridynamic	
  Theory	
  of	
  Solid	
  Mechanics.	
  	
  Advances	
  in	
  Applied	
  Mechanics	
  44:73-­‐168,	
  2010.	
  



Local-­‐Nonlocal	
  Coupling	
  

§  Variable	
  length	
  scale	
  in	
  a	
  peridynamic	
  medium	
  
§  Blending-­‐based	
  model	
  coupling	
  
§  OpHmizaHon-­‐based	
  coupling	
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OUTLINE 



Variable	
  Nonlocal	
  Length	
  Scale	
  

§  Limited	
  support:	
  	
  peridynamic	
  models	
  can	
  support	
  a	
  linearly	
  varying	
  horizon	
  
§  Ghost	
  forces	
  are	
  proporHonal	
  to	
  the	
  second	
  deriva&ve	
  of	
  the	
  horizon	
  
§  DifficulHes	
  persist	
  at	
  transiHon	
  from	
  a	
  constant	
  horizon	
  to	
  a	
  varying	
  horizon	
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STANDARD PERIDYNAMIC MODELS DO NOT SUPPORT A VARIABLE LENGTH SCALE 

§  Seek	
  a	
  formulaHon	
  that	
  miHgates	
  difficulHes	
  associated	
  with	
  a	
  variable	
  horizon	
  
§  PotenHal	
  to	
  greatly	
  reduce	
  model	
  disparity	
  at	
  local-­‐nonlocal	
  interface	
  

PATH FORWARD 

Reduce	
  peridynamic	
  horizon	
  
at	
  local-­‐nonlocal	
  interface	
  to	
  
improves	
  model	
  compaHbility	
  

[Courtesy	
  Stewart	
  Silling]	
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Lehoucq,	
  R.B.,	
  and	
  Silling,	
  S.A.	
  	
  Force	
  flux	
  and	
  the	
  peridynamic	
  stress	
  tensor,	
  Journal	
  of	
  the	
  Mechanics	
  and	
  Physics	
  of	
  Solids,	
  56:1566-­‐1577,	
  2008.	
  

Silling,	
  S.,	
  Li>lewood,	
  D.,	
  and	
  Seleson,	
  P.	
  	
  Variable	
  horizon	
  in	
  a	
  peridynamic	
  medium.	
  	
  Accepted	
  for	
  publica&on.	
  

where	
  

Peridynamic	
  ParHal	
  Stress	
  FormulaHon	
  
PERIDYNAMIC STRESS TENSOR 

PERIDYNAMIC STRESS TENSOR 

Under	
  the	
  assumpHon	
  of	
  a	
  uniform	
  displacement	
  field	
  

The	
  peridynamic	
  stress	
  tensor	
  is	
  greatly	
  simplified	
  
The	
  result	
  is	
  the	
  peridynamic	
  par&al	
  stress	
  

AlternaHve	
  expression	
  for	
  peridynamic	
  internal	
  force,	
  Hs	
  to	
  local	
  theory	
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Peridynamic	
  ParHal	
  Stress	
  FormulaHon	
  

§  GOOD:	
  	
  Supports	
  variable	
  horizon	
  
§  Guaranteed	
  to	
  pass	
  the	
  linear	
  patch	
  test	
  (even	
  with	
  a	
  varying	
  horizon)	
  
§  Provides	
  a	
  natural	
  transiHon	
  between	
  the	
  full	
  peridynamic	
  formulaHon	
  and	
  a	
  classical	
  

stress-­‐strain	
  formulaHon	
  (hybrid	
  approach)	
  

§  BAD:	
  	
  Is	
  exact	
  only	
  for	
  uniform	
  displacement	
  field	
  
§  ParHal	
  stress	
  formulaHon	
  is	
  not	
  a	
  good	
  candidate	
  for	
  modeling	
  material	
  failure	
  
§  Saving	
  grace:	
  	
  we	
  will	
  apply	
  the	
  parHal	
  stress	
  only	
  at	
  local-­‐nonlocal	
  coupling	
  

interfaces,	
  which	
  are	
  placed	
  in	
  relaHvely	
  smooth	
  regions	
  

S.A.	
  Silling,	
  D.J.	
  Li>lewood,	
  and	
  P.D.	
  Seleson.	
  	
  Variable	
  Horizon	
  in	
  a	
  Peridynamic	
  Medium.	
  	
  SAND	
  Report	
  2014-­‐19088.	
  	
  Sandia	
  NaHonal	
  Laboratories,	
  
Albuquerque,	
  NM	
  and	
  Livermore,	
  CA,	
  2014.	
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  Tests	
  for	
  ParHal	
  Stress	
  FormulaHon	
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§  Examine	
  response	
  under	
  linear	
  and	
  quadraHc	
  
displacement	
  fields	
  

§  InvesHgate	
  standard	
  formulaHon	
  with	
  both	
  constant	
  and	
  
varying	
  peridynamic	
  horizon	
  

§  InvesHgate	
  parHal	
  stress	
  formulaHon	
  with	
  both	
  constant	
  
and	
  varying	
  peridynamic	
  horizon	
  

SUBJECT RECTANGULAR BAR TO PRESCRIBED DISPLACEMENT FIELDS 

Density 7.8 g/cm3 

Young’s Modulus 200.0 GPa 

Poisson’s Ratio 0.0 

Stability Coefficient 0.0 

ElasHc	
  Correspondence	
  
Material	
  Model	
  

Varying Horizon	
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Patch	
  Test:	
  	
  Prescribed	
  QuadraHc	
  Displacement	
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Variable	
  horizon	
  

Prescribe	
  quadraHc	
  
displacement	
  field	
  

Test	
  set-­‐up	
  

Test	
  Results:	
  	
  AcceleraHon	
  over	
  the	
  length	
  of	
  the	
  bar	
  
Standard	
  material	
  model	
   ParHal-­‐stress	
  formulaHon	
  

Can	
  the	
  standard	
  model	
  and	
  the	
  
parHal-­‐stress	
  model	
  recover	
  the	
  
expected	
  constant	
  acceleraHon?	
  

Only	
  the	
  par1al	
  stress	
  
formulaHon	
  produce	
  the	
  
expected	
  result	
  when	
  the	
  

horizon	
  is	
  varying	
  

Spurious	
  “ghost	
  forces”	
  
present	
  in	
  standard	
  

formulaHon	
  



A	
  Prototype	
  of	
  the	
  ParHal	
  Stress	
  FormulaHon	
  has	
  been	
  
Implemented	
  in	
  Coupled	
  Albany-­‐Peridigm	
  Code	
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§  Sonware	
  infrastructure	
  in	
  place	
  for	
  strongly	
  coupled	
  simulaHons	
  
§  Meshfree	
  peridynamic	
  models,	
  peridynamic	
  parHal	
  stress,	
  and	
  

classical	
  conHnuum	
  mechanics	
  (FEM)	
  within	
  single	
  executable	
  
§  ParHal	
  stress	
  uHlized	
  for	
  transiHon	
  between	
  classical	
  conHnuum	
  

mechanics	
  (local	
  model)	
  and	
  peridynamics	
  (nonlocal	
  model)	
  

Meshfree 
peridynamics 

Classical continuum mechanics Classical continuum mechanics 

Peridynamic partial 
stress 

Peridynamic partial 
stress 

-0.008

-0.006

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

-8 -6 -4 -2  0  2  4  6  8

D
isp

la
ce

m
en

t (
m

)

Position (m)

Tensile Bar Coupled CCM-PS-PD-PS-CCM



Local-­‐Nonlocal	
  Coupling	
  

§  Variable	
  length	
  scale	
  in	
  a	
  peridynamic	
  medium	
  
§  Blending-­‐based	
  model	
  coupling	
  
§  OpHmizaHon-­‐based	
  coupling	
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OUTLINE 



Blending-­‐Based	
  Approach	
  for	
  Local-­‐Nonlocal	
  Coupling	
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Star&ng	
  point:	
  	
  Bond-­‐based	
  peridynamic	
  equaHon	
  of	
  moHon	
  (start	
  with	
  a	
  single	
  model)	
  

APPROACH IS INFORMED BY LINK BETWEEN PERIDYNAMICS AND CLASSICAL LOCAL MODELS   

Under	
  the	
  assumpHon	
  of	
  conHnuity	
  and	
  smoothness,	
  a	
  peridynamic	
  model	
  reduces	
  
to	
  a	
  corresponding	
  local	
  model	
  in	
  the	
  limit	
  of	
  vanishing	
  horizon	
  	
  

S.A.	
  Silling	
  and	
  R.B.	
  Lehoucq.	
  	
  Convergence	
  of	
  Peridynamics	
  to	
  Classical	
  ElasHcity	
  Theory.	
  	
  Journal	
  of	
  Elas&city,	
  93(1),	
  pp.	
  13-­‐37,	
  2008.	
  

P.	
  Seleson,	
  Y.D.	
  Ha,	
  and	
  S.	
  Beneddine.	
  	
  Concurrent	
  coupling	
  of	
  bond-­‐based	
  peridynamics	
  and	
  the	
  navier	
  equaHon	
  of	
  classical	
  elasHcity	
  by	
  blending.	
  	
  
Interna&onal	
  Journal	
  for	
  Mul&scale	
  Computa&onal	
  Engineering,	
  13(2),	
  pp.	
  91-­‐113,	
  2015.	
  

Step	
  1:	
  Introduce	
  blending	
  func&on	
  and	
  split	
  the	
  governing	
  equaHon	
  into	
  two	
  terms	
  



Blending-­‐Based	
  Approach	
  for	
  Local-­‐Nonlocal	
  Coupling	
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Step	
  2:	
  Linearize	
  the	
  right-­‐hand	
  term	
  

Step	
  4:	
  Rearrange	
  and	
  neglect	
  error	
  term	
  

Step	
  3:	
  Gradient	
  expansion	
  (Taylor	
  expansion	
  approach)	
  

Middle term is unique to local-
nonlocal blending approach, 

eliminates ghost force 

S.	
  Badia,	
  M.	
  Parks,	
  P.	
  Bochev,	
  M.	
  Gunzburger,	
  and	
  R.	
  Lehoucq.	
  	
  On	
  atomisHc-­‐to-­‐conHnuum	
  coupling	
  by	
  blending.	
  	
  Mul&scale	
  Modeling	
  and	
  Simula&on,	
  7:381-­‐406,	
  2008.	
  

P.	
  Seleson,	
  Y.D.	
  Ha,	
  and	
  S.	
  Beneddine.	
  	
  Concurrent	
  coupling	
  of	
  bond-­‐based	
  peridynamics	
  and	
  the	
  navier	
  equaHon	
  of	
  classical	
  elasHcity	
  by	
  blending.	
  	
  Interna&onal	
  Journal	
  for	
  
Mul&scale	
  Computa&onal	
  Engineering,	
  13(2),	
  pp.	
  91-­‐113,	
  2015.	
  



Blending-­‐Based	
  Approach	
  for	
  Local-­‐Nonlocal	
  Coupling	
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DEMONSTRATION SIMULATION:  PLATE WITH CRACK 

§  Negligible	
  difference	
  between	
  full	
  peridynamic	
  model	
  and	
  coupled	
  model	
  
§  Classical	
  local	
  model	
  agrees	
  with	
  peridynamic	
  model	
  far	
  from	
  crack	
  
§  ComputaHonal	
  Hme	
  drasHcally	
  reduced	
  for	
  blended	
  model	
  

P.	
  Seleson,	
  Y.D.	
  Ha,	
  and	
  S.	
  Beneddine.	
  	
  Concurrent	
  coupling	
  of	
  bond-­‐based	
  peridynamics	
  and	
  the	
  navier	
  equaHon	
  of	
  classical	
  elasHcity	
  by	
  blending.	
  	
  
Interna&onal	
  Journal	
  for	
  Mul&scale	
  Computa&onal	
  Engineering,	
  13(2),	
  pp.	
  91-­‐113,	
  2015.	
  



Local-­‐Nonlocal	
  Coupling	
  

§  Variable	
  length	
  scale	
  in	
  a	
  peridynamic	
  medium	
  
§  Blending-­‐based	
  model	
  coupling	
  
§  OpHmizaHon-­‐based	
  coupling	
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OUTLINE 



OpHmizaHon-­‐Based	
  Local-­‐Nonlocal	
  Coupling	
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§  Model	
  coupling	
  can	
  be	
  cast	
  as	
  an	
  opHmizaHon	
  problem	
  
§  Objec&ve	
  func&on:	
  	
  Difference	
  between	
  soluHons	
  in	
  overlap	
  region	
  
§  Constraints:	
  	
  Governing	
  equaHons	
  of	
  the	
  individual	
  models	
  

ONGOING EFFORT OF D’ELIA, PEREGO, AND BOCHEV  

§  Appropriate	
  for	
  staHc	
  and	
  quasi-­‐staHc	
  problems	
  involving	
  disparate	
  models	
  
§  Rigorous	
  mathemaHcal	
  foundaHon	
  
§  Can	
  be	
  applied	
  as	
  a	
  “black	
  box”	
  to	
  couple	
  dissimilar	
  computaHonal	
  domains	
  
§  ComputaHonal	
  expense	
  is	
  a	
  concern,	
  miHgaHon	
  strategies	
  being	
  invesHgated	
  

APPLICATION OF OPTIMIZATION-BASED COUPLING TO COMPUTATIONAL SOLID MECHANICS 

D’Elia,	
  M.,	
  Perego,	
  M.,	
  Bochev,	
  P.,	
  and	
  Li>lewood,	
  D.	
  	
  A	
  coupling	
  strategy	
  for	
  nonlocal	
  and	
  local	
  diffusion	
  models	
  with	
  mixed	
  volume	
  constraints	
  and	
  boundary	
  
condiHons.	
  	
  Accepted	
  for	
  publica&on.	
  



OpHmizaHon	
  Based	
  Coupling	
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Nonlocal Local 

Virtual 
controls 

Minimize	
  the	
  mismatch	
  between	
  the	
  nonlocal	
  and	
  local	
  models	
  
subject	
  to	
  the	
  two	
  models	
  acHng	
  independently	
  in	
  ΩN	
  and	
  ΩL	
  	
  

MathemaHcal	
  analysis	
  has	
  established	
  existence,	
  uniqueness	
  
of	
  soluHon	
  to	
  coupled	
  problem	
  

[Courtesy	
  of	
  D’Elia,	
  Perego,	
  and	
  Bochev]	
  



OpHmizaHon-­‐Based	
  Coupling:	
  	
  Path	
  Forward	
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Utilize agile components approach for development of computational algorithms 
•  Provide access to adjoints, sensitivites, etc., for adjoint-based fast optimization 
•  Enable effective transitioning of research ideas into production software 

Research & proof-
of-principle 

Programmatically 
exercised software  

[Courtesy	
  of	
  D’Elia,	
  Perego,	
  and	
  Bochev]	
  



Linear	
  Patch	
  Test	
  SimulaHon	
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D’Elia,	
  M.,	
  Perego,	
  M.,	
  Bochev,	
  P.,	
  Li>lewood,	
  D.	
  	
  A	
  coupling	
  strategy	
  for	
  nonlocal	
  and	
  local	
  diffusion	
  models	
  with	
  mixed	
  volume	
  constraints	
  and	
  
boundary	
  condiHons.	
  	
  Accepted	
  for	
  publica&on.	
  

	
  

§  Boundary	
  condiHons	
  applied	
  to	
  ends	
  of	
  bar	
  
§  Linear	
  soluHon	
  imposed	
  over	
  volumetric	
  region	
  of	
  nonlocal	
  model	
  
§  Standard	
  local	
  boundary	
  condiHons	
  applied	
  to	
  local	
  model	
  

§  OpHmizaHon-­‐based	
  approach	
  successfully	
  couples	
  local	
  and	
  nonlocal	
  models	
  

RECOVERY OF LINEAR SOLUTION USING COUPLED LOCAL-NONLOCAL MODEL 

Problem	
  Set-­‐up	
   Coupled	
  soluHon	
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§  Boundary	
  condiHons	
  applied	
  to	
  local	
  model	
  only	
  
§  Avoids	
  difficulHes	
  in	
  applying	
  volume	
  constraints	
  to	
  nonlocal	
  model	
  

§  OpHmizaHon-­‐based	
  approach	
  successfully	
  couples	
  local	
  and	
  nonlocal	
  models	
  
§  Nonlocal	
  model	
  provides	
  soluHon	
  in	
  vicinity	
  of	
  crack	
  

LOCAL BOUNDARY CONDITIONS APPLIED TO PRE-CRACKED BAR 
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  Set-­‐up	
   Coupled	
  soluHon	
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Peridynamic	
  ParHal	
  Stress:	
  
Wave	
  PropagaHon	
  through	
  Region	
  of	
  Varying	
  Horizon	
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1	
  Silling,	
  S.,	
  and	
  Seleson,	
  P.,	
  Variable	
  Length	
  Scale	
  in	
  a	
  Peridynamic	
  Body,	
  SIAM	
  Conference	
  on	
  MathemaHcal	
  Aspects	
  of	
  Materials	
  Science,	
  Philadelphia,	
  PA,	
  June	
  
12,	
  2013.	
  

Standard	
  peridynamic	
  model	
  
Numerical	
  arHfacts	
  present	
  at	
  transiHon	
  from	
  

large	
  horizon	
  to	
  small	
  horizon	
  

ParHal-­‐stress	
  approach	
  
Greatly	
  reduces	
  arHfacts,	
  enables	
  smooth	
  
transiHon	
  between	
  large	
  and	
  small	
  horizons	
  

small 
horizon 

large 
horizon 

small 
horizon 

large 
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USE OF A VARIABLE HORIZON IMPACTS PERFORMANCE IN SEVERAL WAYS 

§  Use	
  of	
  a	
  variable	
  horizon	
  can	
  reduce	
  neighborhood	
  size	
  
§  Less	
  computaHonal	
  cost	
  per	
  internal	
  force	
  evaluaHon	
  
§  Reduces	
  number	
  of	
  unknowns	
  in	
  sHffness	
  matrix	
  for	
  implicit	
  Hme	
  integraHon	
  

§  Use	
  of	
  a	
  variable	
  horizon	
  can	
  reduce	
  the	
  criHcal	
  Hme	
  step	
  
§  CriHcal	
  Hme	
  step	
  is	
  strongly	
  dependent	
  on	
  the	
  horizon	
  1,	
  2	
  
§  Smaller	
  Hme	
  step	
  results	
  in	
  more	
  total	
  steps	
  to	
  soluHon	
  for	
  explicit	
  transient	
  dynamic	
  simulaHons	
  
§  Important	
  note:	
  	
  the	
  criHcal	
  Hme	
  step	
  for	
  analyses	
  combining	
  peridynamics	
  and	
  classical	
  finite	
  

analysis	
  is	
  generally	
  determine	
  by	
  the	
  classical	
  finite	
  elements	
  	
  

Constant	
  Horizon	
   2.03e-­‐5	
  sec.	
  

Varying	
  Horizon	
   7.15e-­‐6	
  sec.	
  

Stable	
  Time	
  Step	
  1,	
  2	
  
(explicit	
  transient	
  dynamics)	
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  Thomas,	
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  CriHcal	
  Time	
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  Models.	
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  the	
  MathemaHcal	
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  Philadelphia,	
  Pennsylvania,	
  June	
  9-­‐12,	
  2013.	
  

Constant	
  Horizon	
   92.6	
  million	
  

Varying	
  Horizon	
   46.5	
  million	
  

Total	
  Number	
  of	
  Bonds	
  
(equal	
  to	
  number	
  of	
  nonzeros	
  in	
  sHffness	
  matrix)	
  


