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Why Antineutrinos?

 Antineutrinos are produced after 
any fission event
• Approximately 6 antineutrino for each 

fissioning U or Pu atom

• Energy of antineutrinos are dependent 
on source atom (i.e. information on fissile 
content can be extracted)

 Antineutrinos are highly penetrating 
and detectable at very long ranges
• Antineutrinos are detected from 

astrophysical sources

 The antineutrino signal is 
effectively impossible to shield, 
disguise, or falsify

 Provides a unique capability for 
detection or monitoring that is non-
intrusive, remote and unambiguous
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Antineutrino Sources

 Reactors

• Reactor power directly relates to size/cost of detectors (smaller reactor = larger 
detector)

 Range of power covers 2-3 orders of magnitude

• Operational history can verify declarations and/or look for anomalous intervals 
where fuel could be exchanged

• Fuel composition can be determined to verify fuel loading, fuel cycle, 
plutonium content, etc.

 Explosions

• Short/intense burst of antineutrinos can be easier to see vs. continuous 
backgrounds

• Signal is very weak compared to continuous reactors (1kt ≈ 50 MW-days)

• Antineutrino existence is unambiguous signature of criticality

 Sub-critical items

• Low activity implies only gross information and requires large detectors

• Ex: monitoring a spent fuel pond, one could see an entire core being 
discharged, but not individual fuel elements (245 tons 238Pu ≈ 1 Wth)
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Handheld Neutrino Detectors?

David Reyna

For a perfect 100 cm3 detector 
at 1 meter from a 3 GW reactor:

~ 2 x 10-2 interactions/second

At a more realistic 20 meters:

~ 5 x 10-5 interactions/second

Theoretical cross-sections such as coherent elastic scattering could only add 
~3 orders of magnitude.  Much higher is ruled out by supernova dynamics.

Highly Unlikely!
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Reactor Power Monitoring using only 

Large power changes are readily observed with no 
physical connection to the plant

 Timescale

1 – 3 Hours: 

Sudden changes in 
operational status (on/off)

1 Day:

Large power changes

7 Days:

Relative thermal power 
measurement (2 – 3%)
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Provides Information on Fuel Composition

Standard Refueling is Clearly Visible

Sensitive to undeclared removal of 70 kg 239Pu



Lawrence Livermore National Laboratory

Information Content

 Exclusion Zone (i.e. Existence):  

• Sensitivity to small signals over long times

• Of order 1-10 events per day change?

• Trigger condition could be on order of 30-90 days, allowing 
S:B of 1:3 or 1:4

 Verify Declarations (i.e. operational history):

• Sensitivity to daily changes in operations (on/off)

• Of order 10-100 events/day change

• Trigger condition needs to be on order of 1 day, allowing S:B 
of  up to 1:4 but probably closer to 1:2 or 1:1

 Fissile Characterization (i.e. reactor fuel composition)

• Sensitive to neutrino spectrum within “reasonable” time

• Requires an integral of ~10k events within 1-30 days

• Requires good characterization of backgrounds and probably  
S:B of better than 10:1
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The Known World
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Applications Space

 Cooperative

• Part of treaty negotiations – could be seen as direct 
monitoring and verification or just as a confidence building 
measure

• Access to the facility is available -> short baseline is an 
option

• Additional information can be obtained by using 
complementary technologies

 Unilateral

• Need for clandestine monitoring/detection implies long 
standoff (> 50km)

• Minimal information available due to low detectable rates

David Reyna
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Central Conclusions of the Study

 Non-cooperative applications require long-standoff that 
presents a significant challenge

 Cooperative reactor applications have credibility but it is 
a disruptive technology that requires a new paradigm for 
safeguards

• No likely end-user requests until current system fails

• Needs multilateral demonstration of new safeguards 
paradigm to be fully understood and accepted

 Cooperative applications to weapons tests (SCE or Low-
Yield) is worth further investigation

11David Reyna
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Cooperative Reactor

 Cooperative = close

 Potentially part of a re-vamped NPT

• provides independent operational history and could eliminate 
need for inspectors

 Potential application to new treaty negotiations

• Information on fuel composition could be relevant to 
identification of types of core composition (LEU/HEU)

 Implementation requires a change in paradigm

• Not currently part of the established toolbox means that 
there is not much willingness to re-design how safeguards 
are applied

• Not considered an option for new scenarios either

• Will likely only come up if there is an un-solvable problem

 unlikely given current experience

David Reyna
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Specific Near-Field (Cooperative) 
Applications

 Monitoring of reactors under future safeguards

• Inventory tracking for future reactor cycles (Th, MOX,others.)

• Confidence Building Measures or Continuity of Knowledge 
for reactors under future safeguards implementations

 Applications to special-case bi/tri-lateral agreements

• US/Russia Plutonium Management and Disposition

• Potential Fissile Material Cutoff Treaty

 US National Capability

• Transportable post reactor meltdown criticality monitor

• Challenge to CTBT based On-Site Inspections at the NTS

David Reyna
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Antineutrino detector at Arak

 Major concern is the ability to produce plutonium

• Reconfiguration to LEU would reduce quality of Pu

 Science engagement could be seen as a key advantage 

 Direct inventory measurement and continuity of knowledge 
are unique features

 However, Iranians don’t want anything “different” from 
existing implementations of IAEA-SG

• Demonstrates need for fully developed capability and 
policy engagement for future situations
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Could provide direct information 
on total Pu produced over 
lifetime of reactor
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Plutonium Management and 
Disposition Agreement (PMDA)

 PMDA requires verification that the burnup of the irradiated WGPu
MOX assemblies meet specific standards

 Verification of integrated fuel burnup can be achieved with high-
confidence by antineutrino monitoring

• Antineutrinos provide direct evidence of core fissions

• Spectra could provide even more information

 IAEA insisted on implementation with existing technologies 

• led to an absence of independent verification
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Fissile Material Cutoff Treaty (FMCT)

 Use of HEU for naval reactor cores is presumed to be un-
verifiable

• Can monitor the removal of HEU from a safeguarded 
stockpile, but military sensitivity precludes further inspection 
once the core is assembled and installed

 Antineutrino spectral measurements could provide clear 
evidence of HEU vs. LEU cores in-situ from outside of the 
vessel

• 50-100 ton detector could provide sufficient information 
within 12-24 hours of operation

• Only need one or two in the world for verification

 FMCT is always 20 years away because of “unsolvable” 
issues

• Could we provide a visionary of a path forward?
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Reactor Meltdown

 Loss of reactor instrumentation creates uncertainty in post 
accident response

• Chernobyl was known to remain critical while Fukushima was 
unknown for several weeks

 Current disaster response relies on detecting secondary 
emissions, such as iodine, which can be difficult to detect in a 
high-radiation environment and are highly scenario dependent. 

 A single transportable detector system could be brought in within 
24 hours and provide sensitivity down to ~1MWth (possibly lower)
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Fukushima post Tsunami
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Cooperative Nuclear Test Monitoring

 Can be used as a threshold to verify that no yield above some value has 
been achieved

• Antineutrinos are the unambiguous signature of a nuclear device

• Monitoring could be performed in close proximity to tests, providing as 
low as kg scale thresholds

 Other technologies do apply but have issues

• Existing capabilities have more ambiguity:
 Seismic gives “explosive” yield, not nuclear

 Radio-isotopes are also the result of medical isotope production

• Neutrons would provide “too much” information

18

Single Cavern Monitoring Tunnel Complex Monitoring
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What Would It Take?

 Implementation requires a change in paradigm

• Not currently part of the established toolbox means that 
there is not much willingness to re-design how safeguards 
are applied

 Requires fully proven technology

• More than just proof-of-principle, requires a fully packaged 
detector and a demonstration that doesn’t require a visionary 
leap

David Reyna
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SNL Near-Field Monitoring

 Demonstrated capability for short and long term relative 
monitoring of power, operational status, and fissile 
content in reactors 

 Exploring potentially broader applications space

• Antineutrinos provide a capability to detect and monitor any 
man-made nuclear fission process

 Post disaster (reactor meltdown) characterization

 Unilateral Monitoring

 Treaty verification (CTBT, FMCT, PMDA)

 Very encouraged by performance of Segmented 
Scintillator prototype

• This technology is focused on reducing the overall footprint 
and enabling a transportable detector that can be deployed in 
high-background or unshielded locations

• Demonstrated rejection of backgrounds of 5 orders of 
magnitude even without an external shield

 Data from unshielded deployment at SONGS 
showing rejection of backgrounds as successive 
selections are applied

 Patent application filed based on recent 
improvements

David Reyna
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Future Directions

 Relevant R&D 
• Segmented detectors for improved background rejection and 

robust aboveground operation
 Small scale Lab studies to confirm background modeling

 Reactor deployment to confirm performance 

 ACRR deployment to confirm NuDet performance or reactor 
meltdown monitoring

 Relevant Policy Engagement Needed
• Work with academics to further develop policy and 

applications studies

• Expand contacts with OGAs such as Center for 
Nonproliferation Studies

• Work with international community to create collaborative 
deployment example of “over-the-horizon” safeguards 
paradigm

 Requires fully proven technology: more than just proof-of-
principle, requires a fully packaged detector and a 
demonstration that doesn’t require a visionary leap

David Reyna
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BACKUP SLIDES
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Unilateral Reactor

 Unilateral = long standoff (> 50km)

• Existing reactor backgrounds complicated matters

 What’s the goal?

• Detection of unknown reactor = major failure of IC

• Monitoring of reactor operation has major competition

 Also limitations due to existing reactor backgrounds

 Antineutrino monitoring does offer some unique benefits, but since a 
detector is not mobile, it has to be applied to a single source.

David Reyna



Lawrence Livermore National Laboratory

Unilateral Nuclear Test Detection

 High instantaneous rate does not equal high counts

• 1 kton = 50 MWdays at a reactor

• At ~100km it would require a 100kton detector to have a 99% 
probability of detecting at least 1 event from a 1 kton test

 Most applications need greater standoff and sensitivity to 
lower yields

• At these sizes (> 10 ktons) detectors are not mobile

David Reyna

Practical limits make this unreasonable
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Simulations Show Possibilities for 
Aboveground Deployments 

David Reyna
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Simulation of aboveground 
performance 25m from 
SONGS reactor

 Simulations suggest major 
improvements are possible

• Expect efficiency for 
antineutrino detection to 
improve as more segments are 
used

• Expect background rejection to 
improve as more segments are 
used

 Next step would be to validate 
these results with laboratory 
tests

Simulated backgrounds for 4-segment detector were 
roughly consistent with 2010 SONGS measurements
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Science vs. Safeguards

 Need to develop an understanding for what circumstances 
warrant bringing in Basic Science collaborations for SG 
applications

 Potentially engages local scientific community

 Provides access for technical assets

 Can provide long-term continuous operation

 However, scientific community wants “cutting edge” research

 Desires for multiple PhD topics may lead to a lack of consistency 
for a single monitoring goal

 Tend to exhaust a field/facility within 5-10 years leading to a 
severe reduction in support

 Existence proofs of long-term stability suggest limited support

 In waning years, participation reduces to only a few active 
professors

 Funding from Office of Science tends to be reduced to levels that 
don’t encourage new students/faculty to engage
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