

Study of the strength of molybdenum under high pressure using magnetically applied pressure-shear (MAPS) loading*

Jow Ding¹, C. Scott Alexander², & Jim Asay³

¹Washington State University

² Sandia National Lab

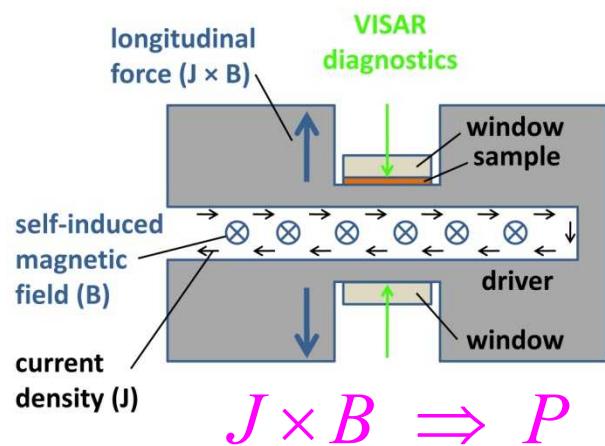
³ Consultant

*** Work sponsored by Sandia National Labs**

Presented at the 19th APS Topical Conference

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Uniaxial Compression By Magnetically Generated One-Dimensional Ramp Wave Loading



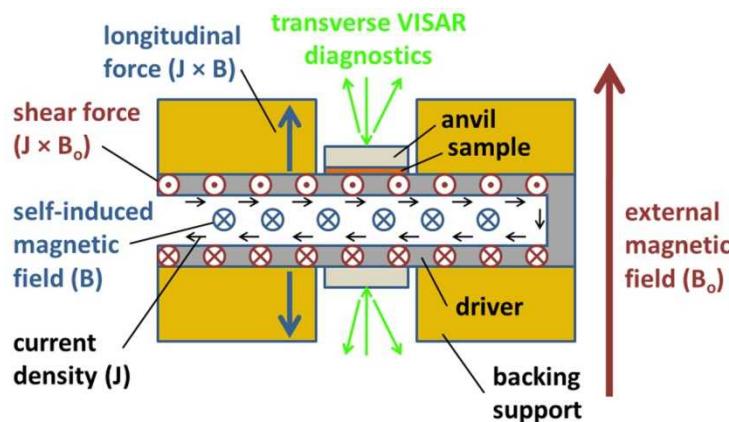
Drive Panel: pure aluminum

Driver has negligible strength, which is adequate for generating a pure pressure wave.

For ramp wave experiments:

- Understanding and accurate prediction of the driver response is a critical for development and analysis of the experiments.
- Aluminum driver: Strength is not an issue; Can be adequately modeled as a hydrodynamic material.

Magnetically Applied Pressure Shear (MAPS) Experiments (Two-Dimensional Ramp Wave Loading)



$$J \times B \Rightarrow P$$

$$J \times B_0 \Rightarrow S$$

Drive Panel: molybdenum

Driver must have substantial strength in order to apply the necessary shear traction to the test sample.

Need to:

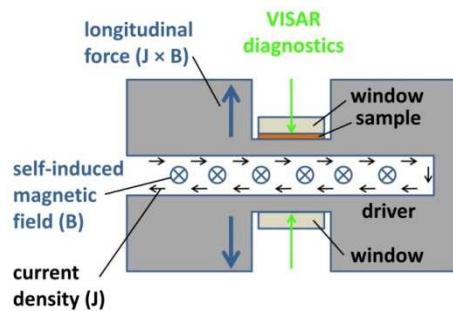
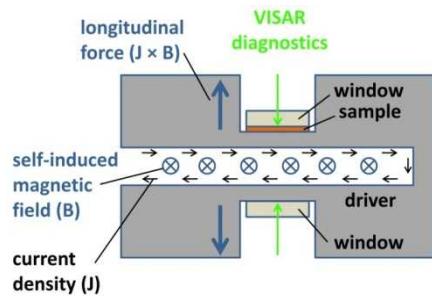
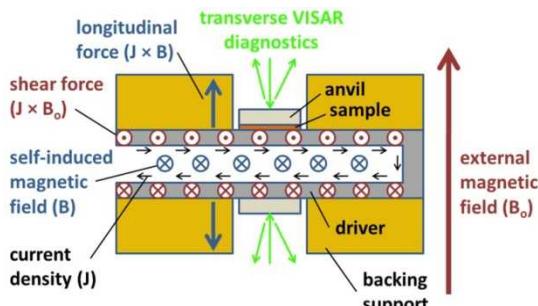
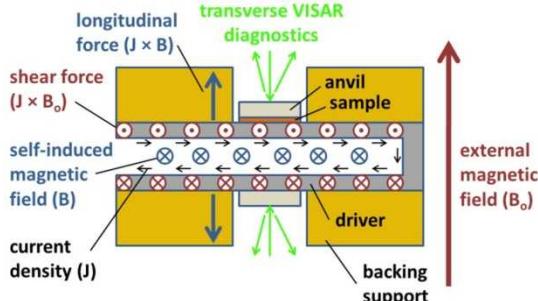
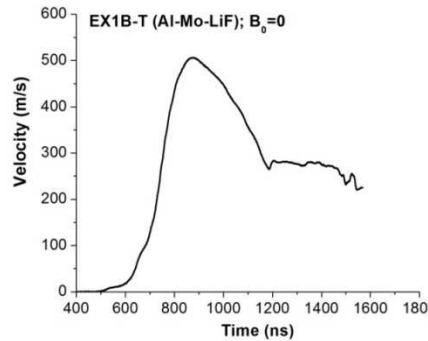
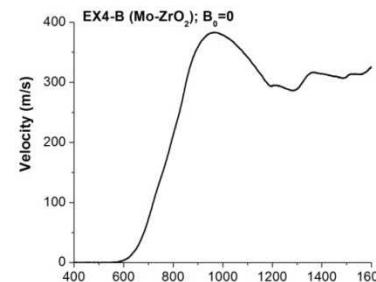
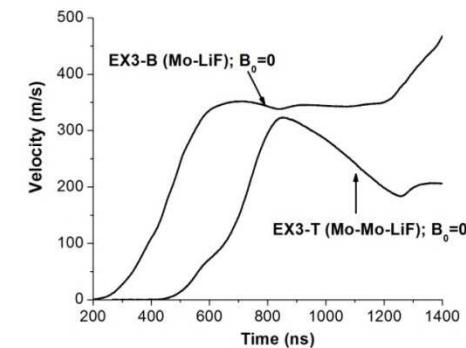
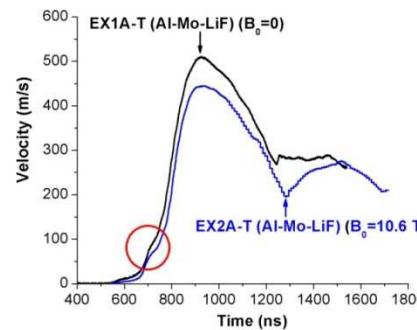
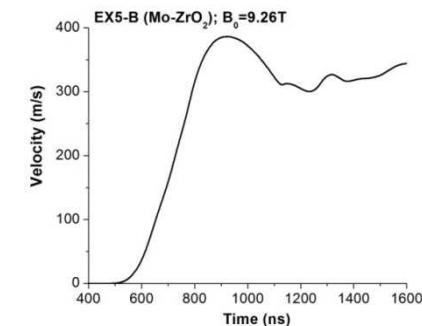
- Understand the inelastic behavior of molybdenum under high-strain-rate, high-pressure, and mixed-mode compression-shear loading.
- Develop a working model for simulating the response of molybdenum driver under such loading.

Main Purposes

To demonstrate:

- **Uniaxial compression data are not discriminative enough to distinguish different types of inelastic material behavior.**
- **MAPS experiments provides valuable insights on the inelastic material behavior under complex, high pressure, high strain rate loadings.**

Overview of the Longitudinal Data



Mechanical Strength Model

$$\dot{\sigma}_{ij}^e = 2G\dot{\varepsilon}_{ij}^e$$

$$\dot{\varepsilon}_{ij}^p = \dot{\varepsilon}^p (\sigma_{ij}^e / |\sigma_{ij}^e|) \quad \text{and} \quad \dot{\varepsilon}^p = A[\bar{\sigma} - Y]^n$$
$$\left(\dot{\varepsilon}^p = \left(\frac{2}{3} \dot{\varepsilon}_{ij}^p \dot{\varepsilon}_{ij}^p \right)^{1/2}, \quad \bar{\sigma} = |\sigma_{ij}^e| = \left(\frac{3}{2} \sigma_{ij}^e \sigma_{ij}^e \right)^{1/2}, \quad Y \quad \text{:threshold stress} \right)$$

Modified Steinberg, Cochran, and Guinan model

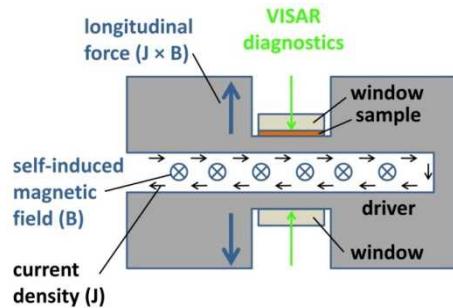
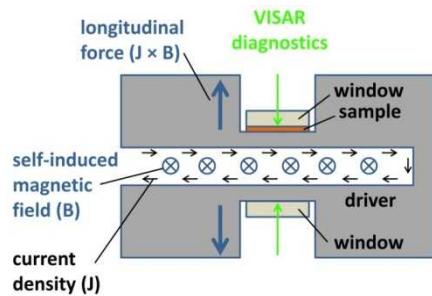
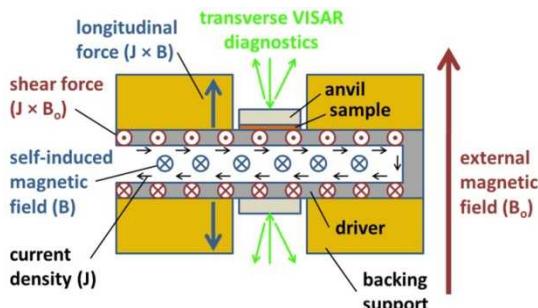
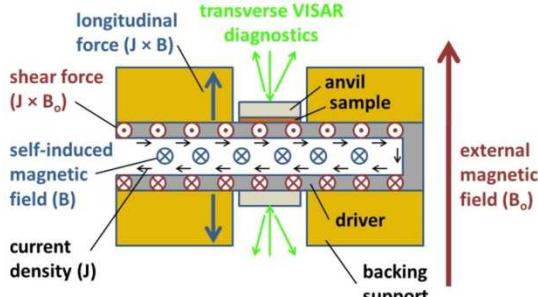
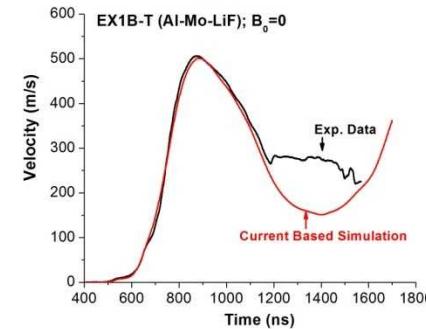
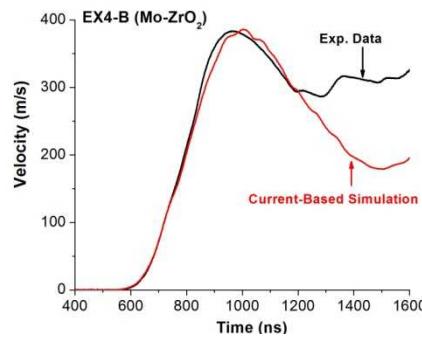
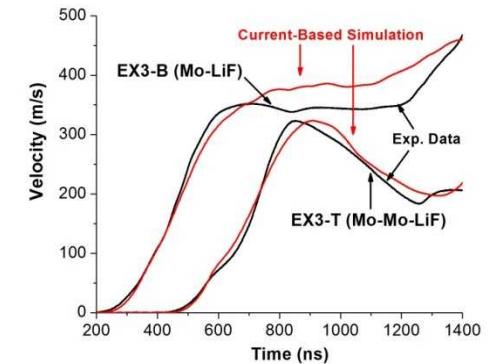
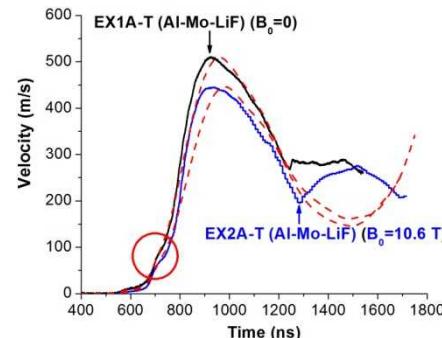
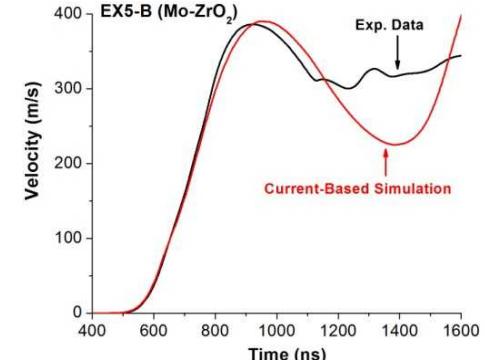
$$G = G_0 \left[1 + \left(\frac{G'}{G_0} \right) \frac{P}{\eta^{1/3}} \right] \left[1 - \left(\frac{\theta - \theta_{\text{room}}}{\theta_{\text{melt}} - \theta_{\text{room}}} \right)^m \right]$$

$$Y = Y_0 \left[1 + \beta (\bar{\varepsilon}^p + \bar{\varepsilon}_i^p) \right]^q \left[1 + \left(\frac{G'}{G_0} \right) \frac{P}{\eta^{1/3}} \right] \left[1 - \left(\frac{\theta - \theta_{\text{room}}}{\theta_{\text{melt}} - \theta_{\text{room}}} \right)^m \right]$$

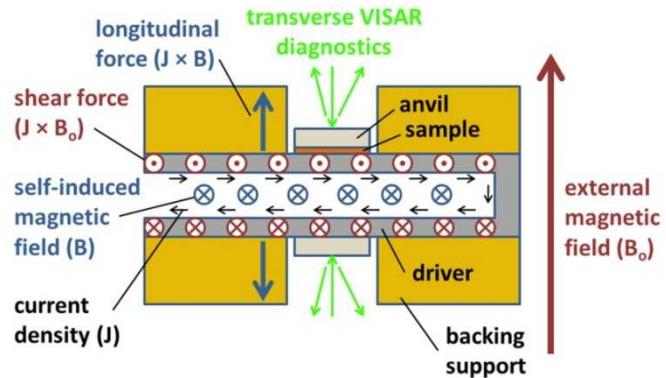
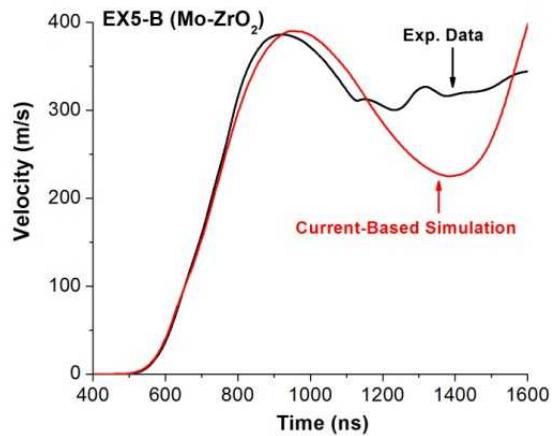
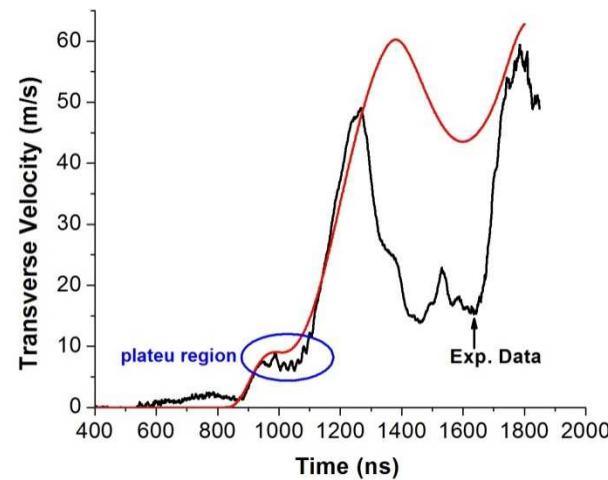
Magnetic annealing can be incorporated through a static recovery function

An isotropic hardening/softening model

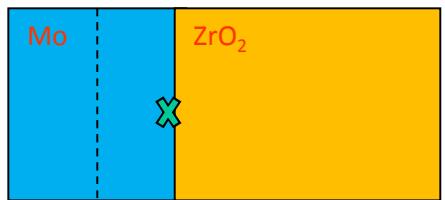
Comparison of the Longitudinal Data With Simulation



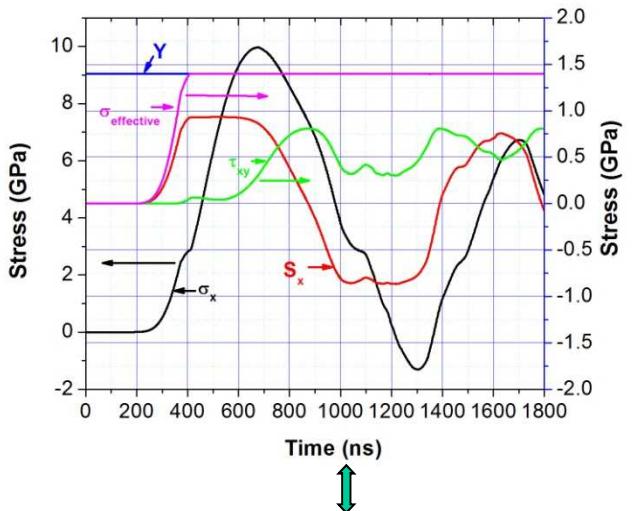
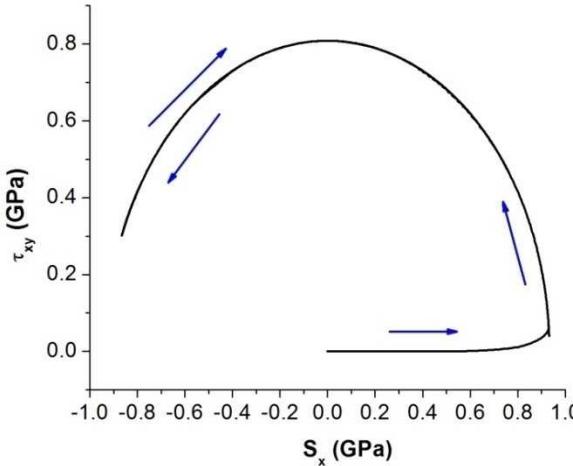
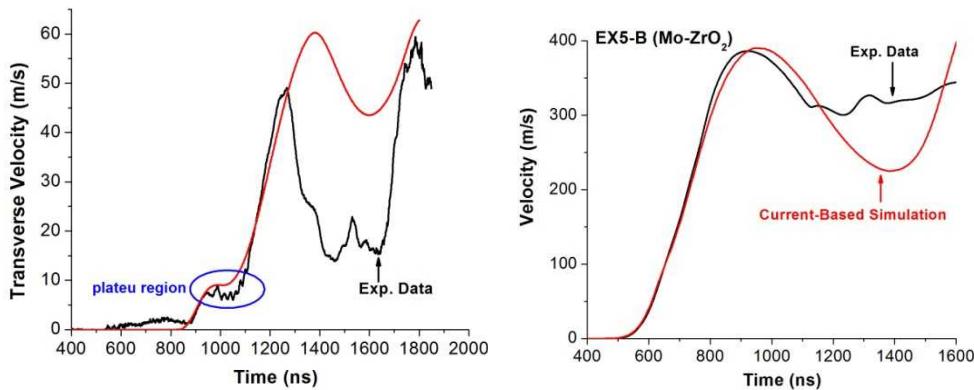
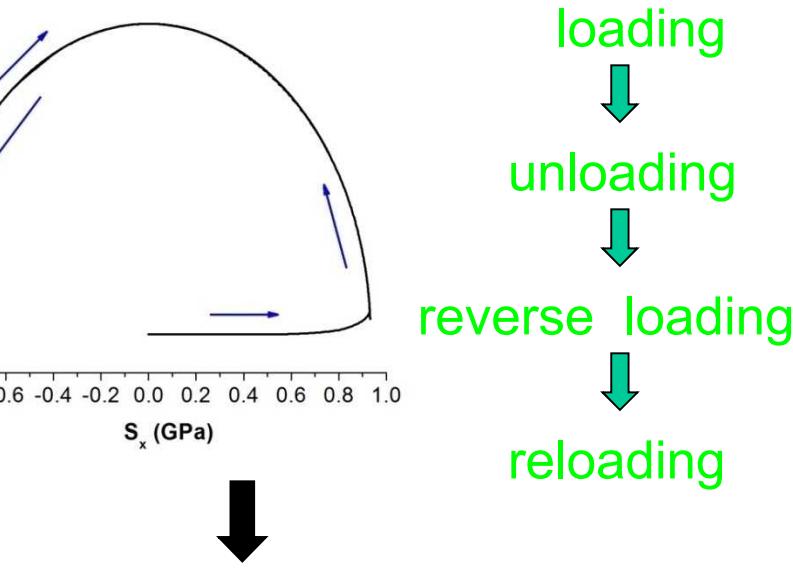
Comparison of the Compression-Shear Data With Simulation



Loading Path Based on Rate-Independent Elastic Perfect Plastic Analysis & Implication of the Plateau Region

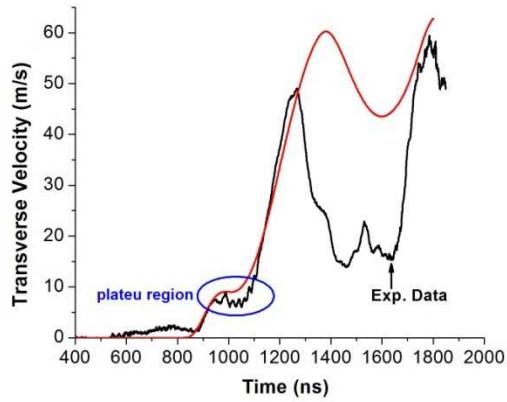


$$\sigma' = \begin{bmatrix} \frac{2}{3}(\sigma_x - \sigma_y) & \tau_{xy} & 0 \\ \tau_{xy} & -\frac{1}{3}(\sigma_x - \sigma_y) & 0 \\ 0 & 0 & -\frac{1}{3}(\sigma_x - \sigma_y) \end{bmatrix} = \begin{bmatrix} S_x & \tau_{xy} & 0 \\ \tau_{xy} & -\frac{1}{2}S_x & 0 \\ 0 & 0 & -\frac{1}{2}S_x \end{bmatrix}$$

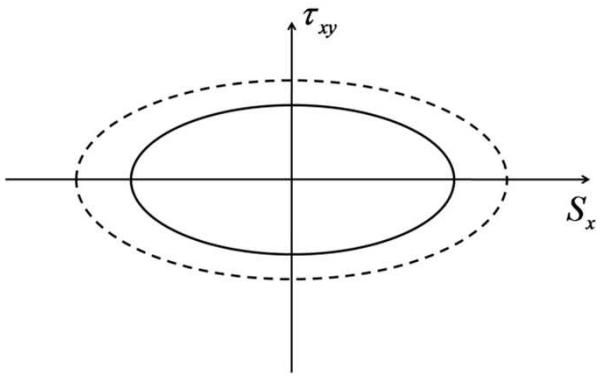


Peak transverse response is a direct measurement of material strength

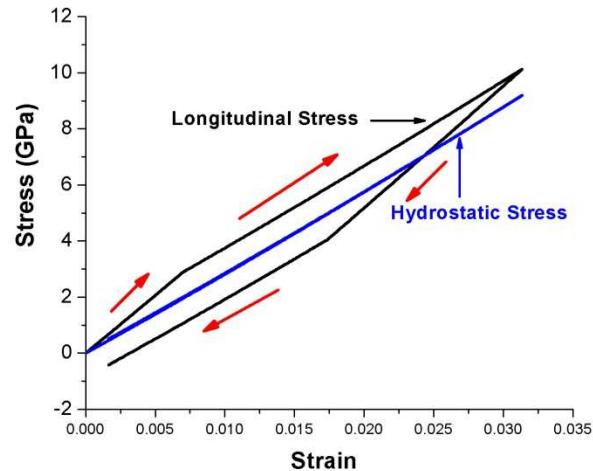
Implication of the Later Part of the Transverse Data



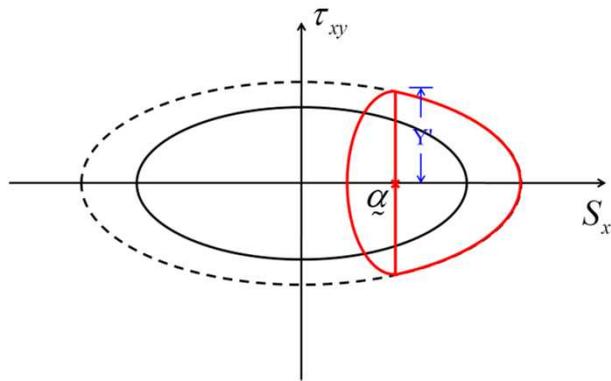
Isotropic hardening/softening



Simulated stress-strain relation



Viscoplasticity Model With Tension-Compression Asymmetry (one possible explanation)



Translation and distortion of the potential surface

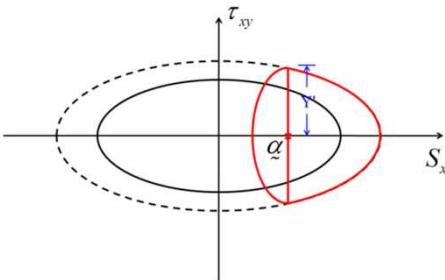
Right side:

$$\sqrt{\frac{1}{2}(S_x^2 + S_y^2 + S_z^2 + 2\tau_{xy}^2)} = Y'$$

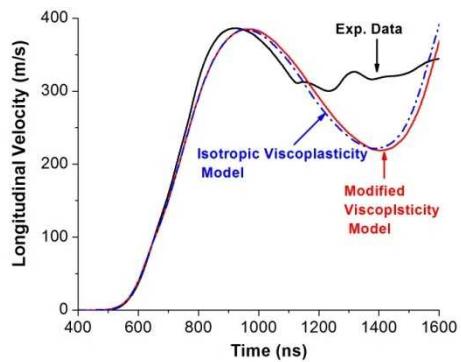
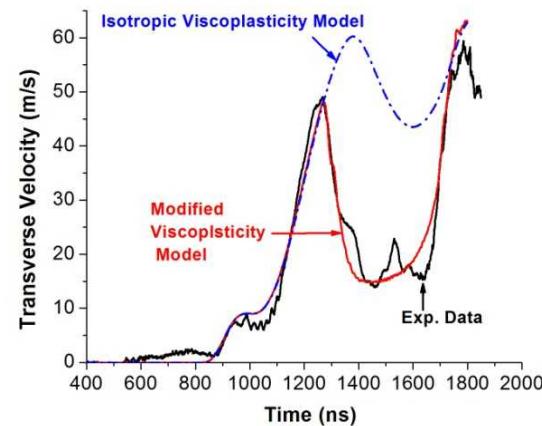
Left side:

$$\sqrt{\frac{1}{2}[(H(S_x - \alpha_x))^2 + (H(S_y - \alpha_y))^2 + (H(S_z - \alpha_z))^2 + 2\tau_{xy}^2]} = Y'$$

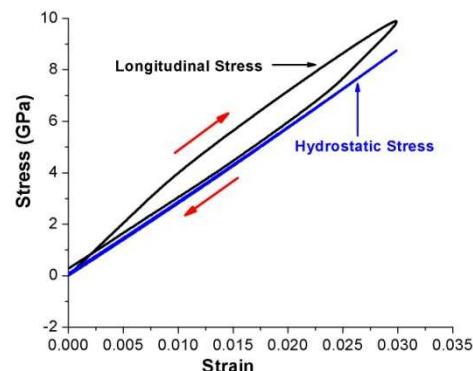
Viscoplasticity Model With Tension-Compression Asymmetry (one possible explanation)



Simulated velocity profiles



Simulated stress-strain relation



Conclusions

- **MAPS experiment is challenging in terms of both the technique and theoretical understanding. Further study is still needed and in progress.**
- **Uniaxial compression data are not discriminative enough to distinguish different types of inelastic material behavior.**
- **MAPS experiments provides valuable insights on the inelastic material behavior under complex, high pressure, high strain rate loadings.**