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Uniaxial Compression By Magnetically Generated 
One-Dimensional Ramp Wave Loading

  J B P 

Driver has negligible strength, which
is adequate for generating a pure 
pressure wave.   

Drive Panel: pure aluminum

For ramp wave experiments: 

•Understanding and accurate prediction of the driver response is a 
critical for development and analysis of the experiments.

• Aluminum driver: Strength is not an issue; Can be adequately 
modeled as a hydrodynamic material. 



Magnetically Applied Pressure Shear (MAPS) Experiments 
(Two-Dimensional Ramp Wave Loading)
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Drive Panel: molybdenum

0   SJ B 

Driver must have substantial strength in order to apply the 
necessary shear traction to the test sample.   

Need to:
•Understand the inelastic behavior of molybdenum under 
high-strain-rate, high-pressure, and mixed-mode 
compression-shear loading.

• Develop a working model for simulating the response of 
molybdenum driver under such loading. 



Main Purposes

To demonstrate:

•Uniaxial compression data are not discriminative enough 
to distinguish different types of inelastic material 
behavior.

• MAPS experiments provides valuable insights on the 
inelastic material behavior under complex, high pressure, 
high strain rate loadings. 



Overview of the Longitudinal Data



Mechanical Strength Model
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Modified Steinberg, Cochran, and Guinan model

An isotropic hardening/softening model

Magnetic annealing can be incorporated through a static recovery function 



Comparison of the Longitudinal Data With Simulation



Comparison of the Compression-Shear Data With Simulation



Loading Path Based on Rate-Independent Elastic Perfect Plastic 
Analysis & Implication of the Plateau Region
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Peak transverse response is 
a direct measurement of 
material strength



Implication of the Later Part of the Transverse Data

Isotropic hardening/softening Simulated stress-strain relation



Viscoplasticity Model With Tension-Compression Asymmetry
(one possible explanation)
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Translation and distortion of the 
potential surface



Viscoplasticity Model With Tension-Compression Asymmetry
(one possible explanation)

Simulated velocity profiles

Simulated stress-strain relation



Conclusions 

• MAPS experiment is challenging in terms of both the 
technique and theoretical understanding. Further study is 
still needed and in progress. 

• Uniaxial compression data are not discriminative enough 
to distinguish different types of inelastic material 
behavior.

• MAPS experiments provides valuable insights on the 
inelastic material behavior under complex, high pressure, 
high strain rate loadings. 


