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Uniaxial Compression By Magnetically Generated
One-Dimensional Ramp Wave Loading
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For ramp wave experiments:

‘Understanding and accurate prediction of the driver response is a
critical for development and analysis of the experiments.

« Aluminum driver: Strength is not an issue; Can be adequately
modeled as a hydrodynamic material.



Magnetically Applied Pressure Shear (MAPS) Experiments
(Two-Dimensional Ramp Wave Loading)
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Drive Panel: molybdenum
Driver must have substantial strength in order to apply the
necessary shear traction to the test sample.

Need to:
‘Understand the inelastic behavior of molybdenum under

high-strain-rate, high-pressure, and mixed-mode
compression-shear loading.

* Develop a working model for simulating the response of
molybdenum driver under such loading.



Main Purposes

To demonstrate:

*Uniaxial compression data are not discriminative enough
to distinguish different types of inelastic material
behavior.

* MAPS experiments provides valuable insights on the
inelastic material behavior under complex, high pressure,
high strain rate loadings.
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Overview of the Longitudinal Data
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Mechanical Strength Model
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Modified Steinberg, Cochran, and Guinan model
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Magnetic annealing can be incorporated through a static recovery function

An isotropic hardening/softening model



Comparison of the Longitudinal Data With Simulation
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Comparison of the Compression-Shear Data With Simulation
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Transverse Velocity (m/s)
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Loading Path Based on Rate-Independent Elastic Perfect Plastic
Analysis & Implication of the Plateau Region
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a direct measurement of
material strength
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Implication of the Later Part of the Transverse Data
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Isotropic hardening/softening Simulated stress-strain relation
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Viscoplasticity Model With Tension-Compression Asymmetry
(one possible explanation)

/m Translation and distortion of the
\M s, potential surface
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Right side: \/E(Sf+5y2+522+2f§y) =Y
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Viscoplasticity Model With Tension-Compression Asymmetry
(one possible explanation)

Simulated velocity profiles

Isotropic Viscoplasticity Model
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Conclusions

* MAPS experiment is challenging in terms of both the
technique and theoretical understanding. Further study is
still needed and in progress.

* Uniaxial compression data are not discriminative enough
to distinguish different types of inelastic material
behavior.

* MAPS experiments provides valuable insights on the
inelastic material behavior under complex, high pressure,
high strain rate loadings.



