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Symposium EE6: Research Frontiers on Liquid-Solid Interfaces in Electrochemical Energy Storage and Conversion Systems

In batteries, fuel cells, water splitting/oxygen reduction, and other electrochemical energy storage and conversion systems, effectiveness and stability of the
solid-liquid interface is directly correlated to the performance and lifetime of an electrochemical device. A mechanistic understanding of the interfacial reactions
and processes occurring at the solid and liquid interface is needed to provide the scientific underpinning for the design of next-generation electrochemical
energy storage and conversion devices. This requires technique development for characterization of local structures and non-equilibrium dynamics at
interfaces at high spatial resolution (down to nm scale), time resolution (millisecond or lower) and high chemical sensitivity (spanning from light element H, Li, O
to heavy metals). Moreover, the direct comparison of experimental results with modeling of the interfacial chemistry under realistic conditions is a key to the
basic understanding of complex interfaces.

The goal of this symposium is to create a forum for fundamental understanding about the charge transfer, ionic transport and heterogeneous reactions at these
interfaces and the effect of nano-scale, crystal orientations and other various factors on these phenomena. Similarities and differences between batteries, fuel
cells, and other electrochemical systems will be highlighted. Abstracts are particularly encouraged on the development of new sample environment and model
electrodes of defined orientations and surface structures that allow the imaging of fundamental phenomena and processes occurring at liquid/solid interfaces in
operando and permit direct correlation with atomistic modeling.

Topics will include:

* In-situ/operando and other advanced characterization techniques for probing liquid-solid interfaces with high spatial, time resolution and/or chemical
sensitivity

* New computational techniques for modeling liquid-solid interfaces

* Fundamental investigation of electrode/electrolyte interfaces in batteries, fuel cells and other electrochemical systems

* Discovery and control of interfacial phenomena, such as ion (de) solvation, transport across liquid-solid interfaces/interphases, and electrodeposition
in batteries and other electrochemical systems

* New design of organic/inorganic electrolytes, ionic liquids and liquid-solid interfaces for batteries, fuel cells and other electrochemical systems

Joint sessions are being considered with EES - Next-Generation Electrical Energy Storage Chemistries.



NEES2 focus: (nano)structures, mechanisms, smart

interfaces, degradation, ionics, solid electrolyte

DFT computed
Formation Energies
Diffusion Barriers
Equation of states

Oxide coating can be lithiated and change its transport
and mechanical properties (Kim and Qi, JES 2014)
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Nanostructures
A Beaded-String Silicon Anode

5* Yue Qi,™

Chuan-Fu Sun,™* Khim Karki,** Zheng Jia,>* Hongwei Liao," Yin Zhang,"* Teng Li, *
['/—\

John Cumings,™* Gary W. Rubloff,” and YuHuang Wang™*
VOL.7 = NO.3 = 2717-2724 = 2013 ACSNJAN)
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Mechanisms, smart interfaces, degradation, solid electrolyte

Directing Matter and Energy: Grand Challenge: How Do We Control
Five Challenges for Science and the Imagination Materials Processes at the Level of Electrons?

Li* transfer (and
degradaton) at
any of 4 interfaces

Li* transfer (and
degradaton) at
any of 4 interfaces

el eﬁgroiy

1+
Li* rate? Leung, JPCC (2013)
204 Runl 0.2V (vs. Li/Li") ‘\j
22 O « experiments: interfacial charge
- . AE=595K mol’ transfer rate as function of temp.,
S ] R Y electrolyte, engineered electrode
= Rm2 @ surface ... Reasons
L2 28 ¥ .
i Solvated Li-Ion Transfer at Interface Between Graphite : :
- ®. ., . and Electrolyte  JECS 151:A1120 (2004) 1. thin fllm' SEI
e | AE=53.1KkJ mol'! ) ._ : Takeshi Abe,** Hideo Fukuda, Yasutoshi Irivama, and Zempachi Ogumi** 2 . VOltage (6{0) nt rOI
h ™. 3. electrolyte reacts
34 e atomic modeling — not there yet ==
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(A) Atomic layer deposition (ALD) /7 ( '

M '
} o 4
modified electrode surfaces i
slowere
challenges (B) Controlling voltage
1. thin film, SEI
2. voltage control (C) Electrolyte stability
3.

electrolyte reacts (from liquid to solid)\

Main themes

modeling of solid-liquid and solid-solid interfaces

fundamental computational electrochemistry
(e.g., Marcus Theory, potential of zero charge)

unify different branches of computational electrochemistry



1. Atomic layer deposition (experiments)

conform films with well-contolled uniform thickness, chemistry

Next-Generation Lithium Metal Anode
Engineering via Atomic Layer
Deposition

Alexander C. Kozen,™* Chuan-Fu Lin,"* Alexander J. Pearse,"* Marshall A. Schroeder,™* Xiaogang Han,"
Liangbing Hu," Sang-Bok Lee,® Gary W. Rubloff,"* and Malachi Noked *-"-*5
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See also Peter Bruce,

Ultrathin Direct Atomic Layer Deposition on

Composite Electrodes for Highly Durable and

Safe Li-lon Batteries

By Yoon Seok Jung, Andrew S. Cavanagh, Leah A. Riley, Sun-Ho Kang,

Anne C. Dillon, Markus D. Groner, Steven M. George, and Se-Hee Lee*
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Modeling e transfer to EC from LiC, through ALD film to EC molecule

A: reorganization (free) energy

Marcus theory, (non-adiabatic) e- transfer _ ,
V,g: tunneling matrix element

27| Vag|? (AG, + )\)? AG,: include overpotential
kot = _ o
"\ avanrkgT| T [ NG T }
I bent EC-
energy 4 / A
i E
Er
>
flat EC reaction coordinate °

«control charge on EC] W(r) = V[l - ILfi(r)],
i) = 1—tanh(re(|r—r|>

*Vpg involves (@,) and (o, W(r.)®s) EC :+0.2|e|

use cDFT from photovoltaics EC: -0.6|e|
Wu & van Voorhis, JCP 125:164105 (2006)




Predictions consistent with microgravimetric expt.

Leung, Qi, Zavadil, Yung, Cavanagh, Dillon, Lee, George, JACS (2010) y setto O eV, no over potentia|
Citation here P 2T . |j 1 (Q’G“"'>+ A)°
et — Aagl T/ —I€XP| —
Tl AE vadaikgT . AnkgT overall
cDFT predictions: 1012 /s 109 ~6 x 103%/s

(could be overestimated)

Zavadil: some decomposition products; less as oxide thickness increases
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(Yue Qi — WKB estimate of effects of thicker oxide)

Spawned our later work on SEI kinetic phase diagram, Miller/Borodin et al. ....




2. What is “voltage”? (at atomic lengthscale)

Expt.: whatever the potentiostat says! DFT theorist: voltage “=" Fermi level
(c.f. Kevin Zavadil’s nano-electrochemistry) + electric double layer (EDL)
double layer effect
o Diffuse Layer A
’ o ......::.::_: L : i (%
- cz + i
’ *‘ Electrode : ' \I @‘\\ Solvated cation
L " + i\§ Specifically adsorbed anion
N .
\:IP Oxl-ziP
potentiostat directly controls electrons 365F
(fast); Li* motion follows, slowly. o X
true, instantaneous “voltage” is U, S-BSS-V
3.63F -
% 3625
"E a62k iR drop iR drop iR drop
§ 3615F
Galvanostatic Intermittent Titration Technique = :sz; LA
The GITT procedure consists of a series of current pulses, agh v \'\ﬁ ]
each followed by a relaxation time, in which no current passes 35051 \ AE 3
through the cell. The current is positive during charge and '359 5 i
negative during discharge. ' ! ! ‘ ] ; :
0 500 1000 1500 2000 2500

Time (s) |
(Metrohm website)



V., widely-accepted in supercapacitors, catalysis, photovoltaics

e.qg., Dissecting graphene capacitance in electrochemical cell --- A Joint DFT calculation

Sheng Sun#®, Yue Qi¢, Tong-Yi Zhang?*| Electrochimica Acta 163 (2015) 296-302

(B)
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—p/|e| i Cq
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LIB: Two voltage definitions: electronic vs.

fuel cell, PV, supercapactiors:
electronic, interfaciaI,AEDL + fermi level

Electrode )
" Solvated cation

fen

e p—

true instantaneous voltage (“potentiostat”)

“voltage” is

9

(a)

“lonic” voltage

Battery modeling: voltage is bulk-like, ionic

V. ERR(x) — pf
& Metal zF
O Lithium
® o )/, is underfined!

ZxC

implicitly assume an
interface that supports

Viz Vﬁ

and system is at equilbrium

Vi =
Li content slowly V. s
responds to )/, z

Vi <

Ve
Ve
V

at equilibrium

. . . b
more Li enters electrode if possible*, lowers )/;

some Li leaves electrode if possible, raises V?:



Our voltage-calibrated interface AIMD simulations of FEC reduction
shows it is critical to control V, via surface electronic charge
potential of zero charge of LiC, is not at 0.1 V vs. LIi*/Li(s)!
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V, issue also relevant to so

AN(Li||  of -1] -2| -3] 4
S
i 5613.87/4.03(4.03] 4.05] 4.1
/ v, ||3.53]3.58]3.26|3.55| NA

to “oxidize” Li,CO;,
remove (e, Li*)

* |Au*|V | surface
dipole -> raise 7,

id electrolyte interfaces

Li,CO; basal plane

10 20 30
z(A)

I i
10 20 30

z(A)

z(A)

102030

z(A)

10 20 30

on Au(111) under
UHV conditions

where is voltage drop?
cn lead to new SEI concept



3. Electrolyte stability, decomposition mechanisms

Three possible definitions of instability

1. Thermodynamic EC +Li
which phase is most stable? —
(ignores kinetics)

©

Li,O (s) + C (s) + H, (gas)

2. Intrinsic electrochemical
kinetics of e” transfer
(break only weak bonds?)

wme | (a)
s ol
Myl T M
[ L
HOAD 4 A Fyy— ]
|
Eeductant Elertnyie Oxidam

3. Interfacial
explicitly depends
on kinetics
canviolate 1 & 2




DMSO-Li,0, Interface in the Rechargeable Li—O, Battery Cathode:
Theoretical and Experimental Perspectives on Stability

Marshall A. S'chroeder Nitin Kumar Vi Alexander J. Pearse,” Chanyuan Liu," ¢

Gary W. Rubloff,” Kevin Leung.

and Malachi Noked**
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ACS Appl. Mater. Interfaces, 2015, 7 (21), 11402-11411
DOI: 10.1021/acsami.5b01969

More details in: Thursday, October 15, 2015: 09:00
101-A (Phoenix Convention Center)




EC Reduction and Decomposition Pathways on Vetallic Li

Branching of
Decomposition
Pathways

Song, Bharath, Reutt-Robey, JPCC 118:19017 (2014)

organolithium product : Inorganic lithium proauct= 2 : 1



EC Reduction and Decomposition Pathways on Vietallic Li

« Lithium(s)
d=29eV
+ g ———> _——_——————— c(ooo1)
Li(g) HOPG@110 K
d=4.6eV
le- pathway to form lithium ethylene dicarbonate (LEDC)
0
M _ . o LiO__O O
2 Qo 2¢ + 2Li > b+ TO( RoJ\ou
. heat A
2e- pathway to form Li,CO, — =
0
_ 4 _ O heat
O\_/O +2e 4 2t — = } LiO—C-0OLi — Thermally Stable

2e- pathway to form lithium ethylene glycol (LEG)
0O

O)]\O + 2e” + 2Ljf —— CO T + LiOCH2—CH2OLi
\ / Kang et al J. Phys. Chem. B 2006, 110, 7708-7719
Kevin Private Communication

heat




AIMD modeling: ethylene glycol, CO forms via 2 e- pathway

LiC4 anode electrolyte LiC4 anode

7 ps AIMD trajectory

\N g7
VvVS. 3
A% v

Leung, ,Budzien., PCCP 12:6583 (2010)

4 e LT LT T LT T I T == e decomposition
Li* O GO _ CHy  CHi0p* CO _ OC,HOCO* | mummp™ HNr

Experimentally, CO, C,H, in 1:3 ratio, but the CO-route routinely ignored
*Onuki et al., JECS 155:A794 (2008)

In this early work the voltage is not well controlled, but only rates, not mechanisms, are affected



A direct view of battery interfaces using in-situ TEM

Andrew Leenheer, Tom Harris, and Katherine Jungjohann
Sandia-fabricated TEM liquid cell

Leenheer et al., J. Microelectromech. Syst. 2015. DOI 10.1109/JMEMS.

Electrodes on electron-
transparent membrane;
fill with EC/DMC/LiPFG.

Example application: Li dendrite initiation
Brightfield scanning transmission electron microscopy:
Electrolyte

10 mA/cm?

Cycle 2

Dendrites formed at high current density and later cycle #.

Operando Li plating and stripping

SEI causes a unique dissolution progression:
Li dissolves from isolated defects in SEI.

Electron beam as a probe: create, decompose SEI

Plating Plating, latept

Electron beam exposure in
the electrolyte accelerates
breakdown, forms SEl.

‘"l Beam scan
f in SEI

Li stripped,
SEI remain_s ;

~ | SEl remains after Li stripping.

Beam scanned in SEl reveals
light-contrast Li: SEI consisted
of Li-containing compounds.

Leenheer et al., ACS Nano. 2015. DOI 10.1021/acsnano.5b00876



Decomposition of FEC/Li*

fluorethylene carbonate (FEC) a much discussed additive for Si-anode

AE*=0.26 eV
(no apparent

. Barrier without ® eliminates LiF
dielectric)
‘ & o AE*=0.12eV
o (™
AE=0.00 eV AE=0.07 eV \ °
\AE*=O.87 eV

o
see also Borodin et al. Nanotech. v{g%‘
 elimination of LiF from FEC-/Li* is highly exothermic AE=-0.55 eV

o
26, 354003 (2015)

« Both 1- and 2-e- processes releases F-, leaving LiF (s) jz:,

 exibit no C-F bond remaining in SEI
AE=-1.83 eV

, What Makes Fluoroethylene Carbonate Different? _
confirmed by:

Ilya A. Shkrob,*" James F. Wishart,” and Daniel P. Abrahan 1 ews chem ¢ 25, 115 Tissa-1as6s



Conclusions + Qutlook

* Some accomplishments and challenges
* Computational elecrochemistry needs lots of development (this afternoon)

e LIB interfaces: both electrons and Li+ can move, not pristine electrodes

Directing Matter and Energy: Grand Challenge: How Do We Control
Five Challenges for Science and the Imagination Materials Processes at the Level of Electrons?

Li* transfer (and
degradaton) at
any of 4 interfaces

Li* transfer (and
degradaton) at
any of 4 interfaces
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Predictions of anode SEI formation: 2 regimes

No SEI coating thin SEI layer (intermediate SEI growth?)

-prediction of two fast mechanisms “first “DFT” e- tunneling rate estimate

-adiabatic (fast electron motion) *non-adiabatic (slow electron tunneling)

are barrierless
Leung, Qi, Zavadil, Dillon et al., JACS 133:14741 (2011)

Integrate large scale AIMD simulation predictions of 2-e reactions
into original cluster-based frame work used by Perla Balbuena et al.
for 1-e- reactions [\Nan:amura, Ue, Balbuena, JACS 123:11708 (2001)]
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“Anode potential” at basal plane/electrolyte interfaces

Li*

EC electrolyte‘

O V vs LiC, (y-axis) is ~0.1 V vs Li*/Li(s)

Net —ve surface charge (o) exists on basal
plane during Li* intercalation

Small cell size -> ¢ changes during
integration ( ac.- [ «(“>). take

dh

halfway point for o value.

voltage vs. Li (EC):LiC, (volt)

:I | | TTTrrrrri I FTrrrrirrd | I'TTrrrrri | ITTTTTrrrd | L ,IZ
1.2 potential of zero charge .7
- (for Li frozen in LiC)) 3
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- il X R
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C . . s 7 AN 3
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Tr e > m
t AV .
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- 7 ]
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- 77 .
04F 7 . E
F 7 rapid EC decomposition 3
06— at this potential -
-(:)-Sé_llll||||||||||||||||||||||||||||||||||||||||||||||||||_E
-0.01 -0.008 -0.006 -0.004 -0.002 0

7
1‘ C (e/A")
i+ - : 1‘
4Li 2L 1L oLt
(| ]
|

in electrolyte

Basal plane work: Leung & Tenney, JPCC 117:24224 (2013)
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EC- and FEC- form “polaronic” state; e- does not
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In the literature
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Figure 1.

HOMO

Elecorolyte

Relative energies of the slsctrolpte window F“é-

axidan

and the

elecrode electrochemiml potentials gy and p- with no deactrods’
elecrolyis reaction: (2] bguod dectralyte with solid elegrodes; [b) solid

Goodenough & Park,
JACS 135:1167 (2013)

This is wrong!

27




