
Time Series Discord Detection in Medical Data
using a Parallel Relational Database

Diane Myung-kyung Woodbridge∗ Andrew T. Wilson∗ Mark D. Rintoul∗ Richard H. Goldstein†

∗Sandia National Laboratories, Albuquerque, New Mexico
†RGI Informatics, Boston, MA

{dwoodbr, atwilso, mdrinto}@sandia.gov
rgoldstein@rgi-informatics.com

Abstract—Recent advances in sensor technology have made
continuous real-time health monitoring available in both hospital
and non-hospital settings. Since data collected from high fre-
quency medical sensors includes a huge amount of data, storing
and processing continuous medical data is an emerging big data
area. Especially detecting anomaly in real time is important
for patients’ emergency detection and prevention. A time series
discord indicates a subsequence that has the maximum difference
to the rest of the time series subsequences, meaning that it has
abnormal or unusual data trends. In this study, we implemented
two versions of time series discord detection algorithms on a
high performance parallel database management system (DBMS)
and applied them to 240 Hz waveform data collected from 9,723
patients. The initial brute force version of the discord detection
algorithm takes each possible subsequence and calculates a
distance to the nearest non-self match to find the biggest discords
in time series. For the heuristic version of the algorithm, a
combination of an array and a trie structure was applied to order
time series data for enhancing time efficiency. The study results
showed efficient data loading, decoding and discord searches in
a large amount of data, benefiting from the time series discord
detection algorithm and the architectural characteristics of the
parallel DBMS including data compression, data pipe-lining, and
task scheduling.

I. INTRODUCTION

Recent advances in sensor technology have made contin-
uous real-time patient monitoring systems available. Health
care providers can monitor vital signs, activities and moods
of patients who are hospitalized or even discharged using
light weight wearable sensors. Many sensors have capability of
monitoring signals continuously in order to detect any health-
related issues. These high frequency medical sensors include
pulse oximeter, sphygmomanometer, accelerometer, pressure
sensors, gyroscope, etc.

Loading high frequency data requires data summarization
before delivering data to a database system (DBMS), when
a single node-based DBMS is not tolerant in the multi-user
setting [1]. However, coarsely summarized data can miss
important patterns of data and prohibit possible analytics on
the original data. This can potentially affect system reliability
and efficiency. Especially in health monitoring systems, it is
sometimes necessary to load and analyze high frequency raw
data with very low false negative rates.

A parallel DBMS enhances speed of data processing and
I/O by using multiple processors and disks in parallel. The
previous work [2] showed that IBM PureData for Analytics, a
parallel DBMS powerd by Netezza [3] performed well in both
single and multi user settings for processing large amount of
medical data. As the previous study focused on scalability of
the system for executing queries rather than data analytics,
developing and applying an algorithm to analyze time series
anomaly was considered as a next step.

A time series discord indicates a subsequence that has the
maximum distance to its neighbor in the given time series
data, which means abnormal or unusual data trends. Finding
time-series discords is a promising new technology in health
monitoring for early detection and prevention of life threat-
ening situations. In this study, we implemented two versions
of symbolic aggregate approximation (SAX) algorithm [4] and
validated the performance of the searches. Keogh claims that
the brute-force SAX algorithm compares all possible pairs
yielding quadratic time complexity which is not suitable for
most large real-world datasets, while the heuristic algorithm
applies heuristics to reorder the search sequences and skip
unnecessary comparisons [4].

Since the previous study showed a good scalability and
time efficiency of IBM PureData for Analytics, a single-rack
hardware-plus software system, we utilized the same DBMS
to develop the SAX algorithms in this study. As SAX-based
algorithms are known to work well on time-series discords
detection in medical data [4][5], this study focuses on the
performance of the algorithm on the high performance parallel
DBMS.

The rest of the paper is organized as follows. In Section II,
we compare distributed DBMS especially focusing on Hadoop
MapReduce with parallel DBMS based on existing literature.
The system specification of IBM PureData for Analytics is
described in Section III. Two versions of SAX algorithms
and their experiment results are described in Section IV and
Section V accordingly. In Section VI, we conclude the study
and provide suggestions for future studies.

II. BACKGROUND

Utilizing distributed data storage and processing of big
data on computer clusters became popular. One of the most

SAND2015-9042C

widely used distributed data storage and processing models
is Hadoop MapReduce. In this model, Apache Hadoop [6]
acts as a distributed storage, divides big data into smaller
pieces and distributes to the nodes in the clustered file system,
while MapReduce [7] performs data processing algorithms and
scheduling algorithms on the cluster.

While many studies investigated and proved the efficiency
of distributed systems for medical data processing including
medical images and vital signs [8][9], that of parallel databases
has not been researched enough. This can be related to the cost
issues of parallel databases. While MapReduce systems are
mostly open source and free, parallel DBMSs are expensive.
Moreover, installing a parallel DBMS takes longer time and
sometimes requires expert support from its vendor. Therefore,
quick and dirty research experiments might not be suitable
for analyzing medical data using a parallel DBMS unless one
already has a system which is not feasible in most academic
research settings.

Stonebaker compared Hadoop MapReduce with parallel
DBMSs including DBMS-X and Vertica [10]. The study
showed that parallel DBMSs work better at efficient querying
of large amount of data and provide higher level programming
languages to users. Additionally, parallel DBMSs outperform
in sequential searches, GROUP BY and JOIN queries. DBMS-
X and Vertica that the author used performed 36 and 21 times
respectively faster than 100-node clusters of Hadoop MapRe-
duce. The author explained that this is because of the common
architectural characteristics of parallel DBMSs including data
compression, data pipe-lining, and task scheduling.

In this study, we utilized IBM PureData for Analytics, a
high performance parallel database system that Sandia Na-
tional Laboratories owns to detect abnormal data trends in real
time.

III. SYSTEM

IBM PureData for Analytics performs high speed data ana-
lytics using its parallel processing units called S-Blades which
include arrays of multi-core CPUs, multi-engine Field Pro-
grammable Gate Arrays (FPGAs) and Random-access memory
(RAM) and its software. The commonly accessed data is lo-
cated in RAM instead of on a disk, and FPGA keeps data only
required for high performance processing of analytics. The
remaining data is processed on a CPU. The system software
optimizes query plan to minimize disk I/O and data movement.
Additionally, the software determines schedules to balance
workloads and executes them simultaneously (Figure 1). The
system that we utilized for this study has 3TB of uncompressed
disk capacity and built-in compression that typically results
in 80-120TB of effective storage for user data. The system
is separated into a storage pool containing 96 disks and a
processing pool comprising 12 processing blades (Table I).

In IBM PureData, an external table is an external file that
the system treats it as a database table but the actual data
exists outside of the database. The nzload command creates
an external table definition, loads data from a file in the local or
a remote client and performs all insertion jobs within a single
transaction. While nzload is running, records are sent to the
CPUs with the current transaction ID. When an CPU receives
the records, it allocates resources and writes the data to the

Fig. 1: IBM PureData System Architecture [3]

Component Specifications
Front End (x2) 2x 4-core Intel Xeon,

2.4 GHz 24 GB memory
Blade (x12) 2x 4-core Intel Xeon,

2.4 GHz 24 GB memory,
4 FPGAs with 2 stream engines apiece

Disk (x96) 1 TB SAS, 7200 RPM
Redundancy provided by database

Internal Network Gigabit Ethernet

TABLE I: IBM PureData Hardware Specifications

databases or the table on the disk. When the data loading job
is completed, nzload drops the external table. This works a lot
faster than using a series of INSERT queries for loading data
from an external file.

IBM PureData for Analytics provides features that users
can define own functions in addition to most of the common
Structured Query Language (SQL) functions. A user-defined
table function (UDTF) can be declared in C++ and is a way
for a user to define a new data analytics action which are not
available with the built-in SQL functions. A UDTF can return
zero or more rows of data which are qualified.

A stored procedure provides an ability to encapsulate jobs
of data processing, data transaction and application branching
behavior such as IF-ELSE-THEN. IBM PureData supports
stored procedures using Postgres’ PL/pgSQL. As an applica-
tion developed using a stored procedure resides on the database
host, the application works fast by avoiding the network time
and is easy to maintain.

In this study, we utilized nzload for loading data from
external files, and UDTFs and stored procedures for data
decoding and time series discord detection. While a stored

PPPPPPβi
α 3 4 5

β1 -0.43 -0.67 -0.84
β2 0.43 0 -0.25
β3 0.67 0.25
β4 0.84

TABLE II: breakpoints lookup table. Breakpoints B =
β1, ..., βα−1 that βi to βi+1 is 1

α under N(0, 1).

procedure must be invoked using the CALL, EXECUTE or
SELECT commands, an UDTF should be invoked in a FROM
clause in a SELECT statement. The implemented UDTFs and
stored procedures benefited from data pipe-lining and task
scheduling provided by the DBMS for an efficient search.

IV. ALGORITHM

In this study, we applied i) the brute-force version of the
SAX algorithm and ii) heuristically ordered time series using
SAX (HOT SAX) to detect time series discords [11] [12]. Both
algorithms apply piece-wise aggregate approximation (PAA) to
time series data of length n and reduce the length to f (f < n).
When original time series is C = c1, ...cn, PAA data (C) is
calculated by Equation (1).

Ci =
f

n

n
f i∑

j=n
f (i−1)+1

cj (1)

Converting original data into PAA reduces the data from n
dimensions to f dimensions by dividing data into data frame
size of f . The best value for the f parameter is not universal,
and depends on the data.

SAX represents PAA data to symbols with alphabet size a
and of length f . Assuming that the given time series have high
Gaussian distribution, PAA data can be converted to standard
normal distribution z which follows N(0, 1).

z =
x− µ
σ

(2)

Then, the algorithm discretizes values using breakpoints in
standard normal cumulative distribution table (Table II) which
returns a equal-sized areas. The well-known best value for the
a parameter is either 3 or 4 [11][17].

Given two time series data represented in PAA, Q and
C, their symbolic representations are given as Q̂ and Ĉ. The
minimum distance between two symbolic representations can
be calculated using Equation (3). The distance function in
Table III calculates distance between two alphabet symbols.

MINDIST (Q̂, Ĉ) =

√
n

f

√√√√ f∑
i=1

(distance(q̂i, ĉi))2 (3)

In this study, we applied a brute force way of detecting
discords with O(n2) complexity and a heuristic way with O(n)

a b c d
a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

TABLE III: distance lookup table for a = 4.

complexity. Both functions are developed in IBM PureData for
Analytics using UDTFs.

A. Brute Force Discord Detection

The brute force algorithm looks for time series discords in
a naive way. It takes each possible subsequence and calculates
a distance to the nearest non-self match which is a subsequence
that is not overlapped with the candidate subsequence (Algo-
rithm 1). The brute force algorithm applies nested loops. The
outerloop of the algorithm considers each possible candidate
subsequence and the innerloop linearly scans to find the
candidate’s nearest non-self match. Since Algorithm 1 goes
through all possible subsequence pairs to find the nearest non-
self match, it takes O(n2) complexity. This is not suitable for
most large datasets, the algorithm requires improvements in
time efficiency.

Data: Symbolic representation of time series data (T),
sliding window size (w)

Result: worst discord distance,
worst discord location

worst discord distance = 0;
worst discord location = NaN ;
for i = 1... | T | −w + 1 do

nearest neighbor distance = infinity;
for j = 1... | T | −w + 1 do

if | i− j |≥ w then
if nearest neighbor distance >
Distance(ti...ti+w−1, tj ...tj+w−1) then

nearest neighbor distance =
Distance(ti...ti+w−1, tj ...tj+w−1);

end
end

end
if nearest neighbor distance >
worst discord distance then

worst discord distance =
nearest neighbor distance;
worst discord location = i ;

end
end

Algorithm 1: Brute Force Discord Detection

B. Heuristic Discord Detection

In order to improve the speed of Algorithm 1, we need
to order the outer and inner loop effectively. For the inner
loop, if we find any subsequence that is same or similar to
the current candidate, this would make terminating the loop
early as the current candidate could not be a discord. For the
outer loop, ordering rare subsequenes first would assign a large

Fig. 2: A combination of an array and a trie structure for
improving outer and inner loop sequences.

value to worst discord distance and help inner loop to be
terminated early. This heuristic is applied only once for the
outer loop. However, the heuristic for the inner loop should be
invoked for every iteration of the outer loop for considering
the current candidate subsequence.

In order to design aforementioned outer and inner loop,
a combination of an array and a trie structure is applied
(Figure 2). The array structure has two fields to store i) a
subsequence of the symbolized data and ii) its frequency in
the given time series data. After discretizing data, representing
signals as symbols and extracting subsequence by applying a
sliding window, we stored each subsequence with a length
of w in the array. This step is done sequentially in order to
represent an index of the array represents the location of the
subsequence.

A trie is an ordered tree data which is commonly used for
storing and searching strings and a root is an empty string and
all descendants of a node share a common prefix. In the trie
structure, we stored each strings and extended the structure so
that a leaf node includes a list of locations of the word. In
this manner, an index of the array and a leaf node in the trie
structure can have a connection. By counting the size of a list
in the trie structure, a frequency of each word in the array
can be updated. For instance, in Figure 2, we can find that
the word, aab occurred at index 3, 77 and n-w+1 by looking
up the trie, and can update the frequency of 3 into the array
structure. Also, if we are interested in a particular location
such as n-w-1, we can go to the array and find that the word
is ccc and it also occurred at index 33 by tracking down the
trie structure.

Both array and trie structures can be created in time and
space linear in length of a time series data [13][14]. The outer
loop is sorted to have the least common words by searching in
the array structure, while the inner loop is sorted to have a same
or similar word that the outer loop is indicating by looking up
the trie. Based on the developed structure, we can find words
with the smallest frequency by scanning the rightmost column
of the array and assign them to the outer loop first. Then we
order the items in the inner loop in the order of the elements

in the liked list at the terminal nodes of the trie (Algorithm 2).
In the inner loop, using the array and trie structure, the rest of
the subsequences are visited randomly after visiting candidate
subsequence chosen from the outer loop.

Data: Symbolic representation of time series data (T),
sliding window size (w), outer loop orders,
inner loop orders

Result: worst discord distance,
worst discord location

worst discord distance = 0;
worst discord location = NaN ;
for i in T ordered by outer loop orders do

nearest neighbor distance = infinity;
for j in T ordered by inner loop orders do

if | i− j |≥ w then
if Distance(ti...ti+w−1, tj ...tj+w−1) <
worst discord distance then

Break;
end
if nearest neighbor distance >
Distance(ti...ti+w−1, tj ...tj+w−1) then

nearest neighbor distance =
Distance(ti...ti+w−1, tj ...tj+w−1);

end
end

end
if nearest neighbor distance >
worst discord distance then

worst discord distance =
nearest neighbor distance;
worst discord location = i;

end
end

Algorithm 2: Heuristic Discord Detection

V. EXPERIMENT RESULTS

A. Data

We received data of 9,723 patients collected from hospital
settings. Patient information were de-identified based on health
insurance portability and accountability act (HIPPA) regula-
tions. The total size of data is 413 GB including patient infor-
mation, vital signs, waveform data and data record information
(Figure 3). Vital signs were monitored every 2 seconds and
the total number of monitored vital sign types is 83. Each vital
sign file includes average of 12.71 types. Examples of recorded
vital signs are heart rate, electromyography (EMG), positive
end expiratory pressure and central venous pressure. Waveform
data were collected every 1/240 seconds. The total number of
monitored channels is 35 and each file includes average of
5.32 channels. Monitored waveform data types include oxy-
gen saturation (SpO2), carbon dioxide concentration (CO2),
intracranial pressure, central venous pressure and others. Both
vital signs and waveform data files include missing data, but
we did not apply any missing data imputation techniques for
this study [15].

B. Data Transformation and Data Loading

Since storing waveform data in double is not efficient, data
was compressed in 16-bit binary code which represents the

Fig. 3: Input data description.

Fig. 4: Converted Wave Data Format.

length of the data and binary coded waveform data values
(Figure 4).

We encoded total of 441,928 16-bit binary codes which
includes 212,125,440 numeric values from 8971 XML files
using a Python script. Data was inserted into tables using
nzload command, a high performance data loading command
provided by the system described in Section III.

In this study, we developed user defined table functions to
decode encoded values into the original format.

C. Experiment Results

We loaded data into tables listed in Figure 3 using nzload.
Loading 78 KB vital sign data and encoded 16 digit binary
values from 8971 files only took 0.1 and 1.08 seconds respec-
tively (Table IV). This experiment result shows that loading
big data files using nzload is efficient.

Execution time for decoding 16 digit binary codes within a
given time period is described in Table V. This job was done
using a UDTF which provided extensive abilities to define a
function required for data analytics but not available in built-in
SQL functions.

For an optimal case where time series discords exist, we
utilized Channel I data of a patient. The original data does
not include time series discords during the 60 second time
frame. Therefore, we synthesized the data to have 2 time
series discords in a symbolized PAA, in order to compare the
performance of two different SAX algorithms. In this case,
we set f , a and w as 5, 3 and 5 respectively. The brute-force
algorithm (Algorithm 1) was executed with the time complex-
ity of O(n2), while the heuristic algorithm (Algorithm 2) was
completed the job within one clock cycle, where the number of
clock cycles per second is 100 for the IBM PureData system

File Size Execution Time (sec)
Vital 78 KB 0.1

Waveform 847 MB 1.08

TABLE IV: nzload Execution Time.

Input Data Duration (sec) Execution Time (sec)
600 0.097

1800 0.166
3000 0.202
4200 0.243
5400 0.304
6600 0.330

TABLE V: Execution Time for Decoding 16 Digit Binary
SpO2 Data using UDTF.

�
�

�

�

�

�

�

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Input Data Time Interval (sec)

E
la

ps
ed

 T
im

e
(s

ec
)

Heuristic
Brute Force

Fig. 5: Execution Time of Brute Force and Heuristic Algo-
rithms with Time Series Discords in Data.

that we utilized (Figure 5). Compared to [16] where the author
utilized Core2Duo 2.2 GHz 1GB RAM PC, this seems as a
huge time efficiency improvement. However, as we did not
used same data as the author utilized, further investigation is
required.

However, if there is no anomaly existing, Algorithm 2 was
also executed with the time complexity of O(n2), since an
early termination in the inner loop was not available (Figure 6).
In this case, we used SpO2 data and set f , a and w as 5, 3
and 5 respectively.

In order to verify the effect of different bin (f) and window
(w) sizes, we applied the heuristic algorithm with different bin
and window sizes (Figure 7 and Figure 8). We utilized data
from the same patient data used for Figure 6. The experiment
results show that a case with a smaller bin size and a larger
window size works faster.

For comparing time efficiency with different alphabet sizes
(a), we utilized the same SpO2 data set as above. Compared to
when a = 4, the heuristic search was completed earlier when
a was set to 3 (Figure 9). In this case, we only evaluated when
a is either 3 or 4, based on the studies [11][17] which indicate
that the best value for a is generally 3 or 4.

� �

�

�

�

�

�

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Input Data Time Interval (sec)

E
la

ps
ed

 T
im

e
(s

ec
)

Fig. 6: Heuristic Algorithm Execution Time without Time
Series Discords in Data.

�

�
�

� � � � � � � � � � �

5 10 15 20 25

0
5

10
15

Bin Size (f)

E
la

ps
ed

 T
im

e
(s

ec
)

Fig. 7: Heuristic Algorithm Execution Time with Different Bin
Sizes (f) (a = 3, w = 5).

VI. CONCLUSION

In this study, we utilized a parallel relational database,
IBM PureData for Analytics to detect time series discords in
medical data. We applied two versions of symbolic aggregate
approximation algorithms to data collected from patients. The
experiment results showed efficient data loading, decoding
and time series discord detection using the high performance
parallel database. Additionally, the heuristic version of the time
series discord detection algorithm works with O(n) when a
discord exists in time series data. However, if there is no
discord in data, the algorithm works in O(n2). The experiment
results indicate that how to tune the window size (w), alphabet
size (a) and bin size (f) parameters determines the efficiency

� � � � � � � � � � � � � � �
�

�

�

�

�

�

�

�

0 10 20 30 40 50

0
20

0
40

0
60

0

Window Size

E
la

ps
ed

 T
im

e
(s

ec
)

Fig. 8: Heuristic Algorithm Execution Time with Different
Window Sizes (w) (f = 5. a = 3).

�

�

�

�

�

�

10 20 30 40 50 60

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Input Data Time Interval (sec)

E
la

ps
ed

 T
im

e
(s

ec
)

a = 3
a = 4

Fig. 9: Heuristic Algorithm Execution Time with Different
Alphabet Sizes (a) (f = 5. w = 5).

of the algorithm especially for the case without a discord.

It must be worth to investigate other algorithms working
better in a case where an anomaly does not exist in data.
Especially in the biomedical domain, algorithms should work
in real time regardless of existence of an anomaly. Addition-
ally, instead of using a single time series data only, techniques
which consider multiple data types contributing to a time series
discord should be investigated [18].

MapReduce on distributed systems works well for semi-
structured data set without a schema and complex data ana-
lytics requiring multiple passes over data [10]. Since Hadoop
MapReduce and parallel DBMS have different strengths for
complex data analytics with different formats of data, compar-

ing and utilizing both systems to get the best results should be
considered as a future work.

ACKNOWLEDGMENT

We are grateful to Bill Goldman and Christopher Beggio
at Sandia National Labs for their heroic efforts in arranging
for the care and feeding of the Netezza systems. Without their
persistence in navigating a procedural maze this project might
not have happened at all.

REFERENCES

[1] M.-k. Suh, C.-A. Chen, J. Woodbridge, M. K. Tu, J. I. Kim, A. Na-
hapetian, L. S. Evangelista, and M. Sarrafzadeh, “A remote patient
monitoring system for congestive heart failure,” Journal of medical
systems, vol. 35, no. 5, pp. 1165–1179, 2011.

[2] A. T. Wilson and M. D. Rintoul, “Evaluating parallel relational
databases for medical data analysis.” Sandia National Laboratories,
Tech. Rep., 2012.

[3] P. Francisco, “The netezza data appliance architecture: a platform for
high performance data warehousing and analytics,” IBM Redbooks,
2011.

[4] E. Keogh, J. Lin, S.-H. Lee, and H. Van Herle, “Finding the most un-
usual time series subsequence: algorithms and applications,” Knowledge
and Information Systems, vol. 11, no. 1, pp. 1–27, 2007.

[5] M. C. Chuah and F. Fu, “Ecg anomaly detection via time series
analysis,” in Frontiers of High Performance Computing and Networking
ISPA 2007 Workshops. Springer, 2007, pp. 123–135.

[6] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.
[7] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on

large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–
113, 2008.

[8] Q. Yao, Y. Tian, P.-F. Li, L.-L. Tian, Y.-M. Qian, and J.-S. Li, “Design
and development of a medical big data processing system based on
hadoop,” Journal of medical systems, vol. 39, no. 3, pp. 1–11, 2015.

[9] F. Wang, V. Ercegovac, T. Syeda-Mahmood, A. Holder, E. Shekita,
D. Beymer, and L. H. Xu, “Large-scale multimodal mining for health-
care with mapreduce,” in Proceedings of the 1st ACM International
Health Informatics Symposium. ACM, 2010, pp. 479–483.

[10] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin, “Mapreduce and parallel dbmss: friends or
foes?” Communications of the ACM, vol. 53, no. 1, pp. 64–71, 2010.

[11] E. Keogh, J. Lin, and A. Fu, “Hot sax: Efficiently finding the most un-
usual time series subsequence,” in Data mining, fifth IEEE international
conference on. IEEE, 2005, pp. 8–pp.

[12] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of
time series, with implications for streaming algorithms,” in Proceedings
of the 8th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery. ACM, 2003, pp. 2–11.

[13] J. L. Bentley and R. Sedgewick, “Fast algorithms for sorting and
searching strings,” in SODA, vol. 97, 1997, pp. 360–369.

[14] K. Sadakane, “Compressed text databases with efficient query al-
gorithms based on the compressed suffix array,” in Algorithms and
Computation. Springer, 2000, pp. 410–421.

[15] M.-k. Suh, J. Woodbridge, M. Lan, A. Bui, L. S. Evangelista, and
M. Sarrafzadeh, “Missing data imputation for remote chf patient
monitoring systems,” in Engineering in Medicine and Biology Society,
EMBC, 2011 Annual International Conference of the IEEE. IEEE,
2011, pp. 3184–3187.

[16] M. T. Son and D. T. Anh, “Some novel heuristics for finding the
most unusual time series subsequences,” in Advances in Intelligent
Information and Database Systems. Springer, 2010, pp. 229–240.

[17] S. Rombo and G. Terracina, “Discovering representative models in large
time series databases,” in Flexible Query Answering Systems. Springer,
2004, pp. 84–97.

[18] X. Li and J. Han, “Mining approximate top-k subspace anomalies
in multi-dimensional time-series data,” in Proceedings of the 33rd
international conference on Very large data bases. VLDB Endowment,
2007, pp. 447–458.

