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Materials Properties are Needed to Model Complex 
Phenomena through Equations of State.

Pressure, density, temperature, phase….
• Materials science
• Planetary collision science
• Geoscience
• Inertial confinement fusion
Information to build equations of state typically 
includes

• Low temperature experiments diamond anvil cell 
<  a few kK

• High temperature plasma physics where 
degeneracies are negligible 
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A Difficult Region of Phase Space to Access 
is the Warm Dense Matter Region.

• Highly compressed matter with 
electron densities of 1021-1026

electrons / cm3

• Temperature on the order of 
several eVs, 10s of kK

• Electron degeneracy significant
• Bound-free electron correlations 

significant
• Accessible to experiment and 

theory - Warm dense matter 
near-solid (2-4x) density

• Mbars of pressure
• The plasmon energy, ωP ~1-4 

eV Super ionic water
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The Z-Machine can Probe this Region.

• The world’s most powerful pulsed power machine

• Accelerates aluminum flyer plates to 40 km/sec.

• Delivers 27 MegaAmps in 95 nanoseconds. 

• Achieves Pressures greater than 10 Mbar (1 TPa).

• Recent work on Xenon reached a state 840 GPa and 149kK

• Compare to diamond Anvil cell – up to 300 GPa and several kK

Indirectly but Accurately Measures Pressures and Densities
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First Principles Probes

Molecular dynamics (MD) simulations 
give thermo-physical properties

• First principles approach to simulations of 
total energies, pressures, and other 
physical quantities

• Unbiased as to elemental species
• First-principles simulations using DFT

– VASP – plane-wave code with PAW core-functions
– Great care in convergence

• A. E. Mattsson et. al. Modelling and Simulation in 
Material Science and Engineering 13, R1 (2005)

– Importance of exchange-correlation functional
• A. E. Mattsson et al. JCP 128, 084714 (2008)
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DFT, DFT-MD, and TDDFT
Density functional theory (DFT): 

--Electron degeneracy/correlation treated exactly . 

--Many-body Schrodinger equation from R3N → R3. 

--Ground state or equilibrium thermal state. 

Density functional theory molecular dynamics (DFT-MD):

--DFT electronic state → forces on ions. 

--Typically within Born-Oppenheimer approximation. 

Time-dependent density functional theory (TDDFT): 

--Exact treatment of electron dynamics. 

--Excited states.

--Ehrenfest-TDDFT → forces including excited electronic states. 

--Electrons and ions do not have to be in equilibrium. 

We have implemented Ehrenfest-TDDFT in an existing projector-
augmented wave (PAW) code. 

(Plane wave basis with a soft cutoff) 

‘Most accurate’ treatment of electron-ion interaction

Approximations 
in DFT are not 
material 
specific.
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Validation of the DFT-MD Simulations

• Compare simulation results to Z-data

• Convenient –especially in the warm dense matter regime –
connection through the Hugoniot

• Example successes Xe and Ethane

• Note the dissociation of the latter • Conservation of mass, energy, and 
momentum lead to the Rankine-Hugoniot 
condition for the initial (1) and final state 
(2).

• E - internal energy

• P - pressure

• v – specific volume

• High accuracy measurement and/ or 
calculations of thermo-physical properties 
can be compared to validate 
understanding.

2 E2  E1   P2  P1  1  2 

Us

Up

12
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We Measure Shock Velocities in Materials with Sub-
Percent Accuracy

Precision Accuracy and

Reproducibility

VISAR main diagnostics

Flyer velocity, time of impact

Arrival at interfaces and breakout

Shock velocity in samples

Monte-Carlo error analysis

Accuracy of shock standards

Correlation among parameters

Error propagation

VISAR trace from a  
xenon experiment with 
18.5 km/s impact velocity
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Experiments on Sandia’s Z Machine Obtained High-
Precision Data for Xenon to 840 GPa/ 14 g/cm3

Neither LEOS 540 nor SESAME 
5190 captures the behavior of 
xenon above 100 GPa

Demonstrated the need for 
validating EOS tables to enable 
high-fidelity simulations

Developed a new multi-phase 
wide-range EOS table: 5191 in 
the LANL database

AM05 GGA developed by Ann 
Mattsson (SNL) is highly 
accurate for WDM.

Seth Root et al Phys. Rev. Lett. 
105, 085501 (2010) 

DAC
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Hydrocodes, Materials, and Mixtures

• High-fidelity hydrodynamics 
simulations to solve solid 
dynamics problems

• Require high fidelity equation of 
state (EOS) models to describe 
the response of materials to 
external stimuli e.g. P[ρ,T]

• Materials can mix.

• Dynamic mixing can occur for 
example through Rayleigh Taylor 
instabilities.

• For practical reasons, a rule must 
be used to combine EOS models 
of pure materials to EOS of 
mixtures.

Tom Haill
Al Liner impacting on foam

Material

1

Material

2

A cell in a hydro simulations 
with two materials “mixed cell”
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Classical Mixing Rules for Binary Mixtures 
Developed for Nineteenth Century Engineering 
Problems

• Ideal (Ideal gas law astrophysics)  

• Volume (Dalton’s law 1801 related to cell approaches)

• Pressure (Amagat’s 1880 law of partial volumes  some hydro-codes)

• Relates total pressure of the mixture to equation of state models of the pure 
states

P  PL x,T PH 1 x ,T 

PMIX  PL
L,T   PH

H ,T , x
L

 (1 x)
H

 1


,

fL
L  L, fH

H  H

P  x PL ,T  1 x PH ,T 

x 
L

L H


L


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Xe-Ethane (C2H6) Mix Hugoniot Reference State

• T=163.5 K

• Rho=1.5 and 1.7 gcc

• P=16.8 psi

• Molar mix ratios 42% and 50% 

• Mass mix 5 Xe:18 Ethane (159 
atoms per simulation) x=0.5

• Molar mix 13 Xe:13 Ethane (117 
atoms per simulation) x=0.19

• Plane-wave energy cut off 900 
eV

• Time steps 0.8-0.04 fs

• 8000 time steps

• Mean value point

• AM05 exchange-correlation 
results shown

x 
Ethane mass

Xenon and Ethane mass
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Xe-Ethane Mix Hugoniot



14

Decomposition Along the 
Hugoniot
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Mixing Ratio for Binary Mixtures

x 
Deuterium mass

Xenonand Deuterium mass

Mix Ratio # of Xe Atoms / 
Cell

# of D Atoms / Cell

0.0 32 0

0.3 3 84

0.5 2 132

0.67 1 132

1.0 0 200

Note: Deuterium mass / Xenon mass ≈ 0.015
According to the ideal gas law: P is proportional to n the number density
To achieve similar pressures the mass densities are related  ρXe ≈ 100 ρD

High Z- low Z mixture used in gas puff experiments
Difficult to mix experimentally
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Constant Pressure Calculations 
Implementation at First Principles Simulations
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Xe-D with fixed pressure: DFT/AM05, SESAME 
5365 for D

Magyar and Mattsson, Phys. Plasmas 20, 032701 (2013)
Notes: Ideal mixing rule is clearly flawed especially for small x.
Volume mixing predicts lower pressures than DFT-MD.

Pressure: blue 
short-dashed
Ideal: red long-
dashed
DFT: solid 
black
Volume: black 
medium-
dashed
ρXe= 15.9 g/cc

• T = 10 
kK 

Ideal

Volume

Pressur
e

DFT



18

Stopping Powers for
Inertial Confinement Fusion and Warm Dense Matter
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Stopping Power

S E   dEProjectile / dx

x  dE
0

E0


1

S E 
Common Materials Monte Carlo Data Tabulated: 
www.srim.org

Penetration 
Depth :
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Developments Required for TDDFT of WDM

• Extended system for dense disordered materials

• Real-time evolution to allow non-harmonic nuclear motion to couple

• Extended system optical or small q response

• Finite temperature theory

• Coupled-electron-ion motion

• Electron-ion energy transfer
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Approaches to Stopping in Real-Time Electron 
Dynamics Simulations

1. Total energy – Constant velocity projectile, increasing total energy 
of system

2. Forces on nuclei – Direct solution of forces of projectile

3. Perturbative – Relationship to dielectric response of system

J. M. Pruneda, D. Sánchez-Portal, A. Arnau, J. I. 
Juaristi, and E. Artacho, Electronic stopping power in 
LiF from first principles, Phys. Rev. Lett. 99, 235501 
(2007).

J.M. Pruneda et al.  Nuclear Instruments 
and Methods in Physics Research B 267 
(2009) 590–593

R. Hatcher, M. Beck, A. 
Tackett, and S.T. Pantelides, 
Phys. Rev. Lett. 100, 103201 
(2008).

http://dx.doi.org/10.1103/PhysRevLett.99.235501
http://dx.doi.org/10.1103/PhysRevLett.99.235501
http://dx.doi.org/10.1103/PhysRevLett.99.235501
http://dx.doi.org/10.1103/PhysRevLett.99.235501
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Electron-Dynamics through TDDFT

Time-dependent KS Scheme Builds Upon the 
Highly Successful Ground-state Theory

n r, t   i r, t 
2

i

occ.


In the spirit of KS DFT, we postulate that a non-interacting system with a judiciously 
chosen potential can reproduce the time dependent density.

Non-linear and complex
telectron<<tnuclei for long simulations 50000 time steps typical > 5000 in DFT-MD

i r, 0  i
T r  d3r i r, t  j r, t  ij
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Elevated-Temperature Time-Dependent Density 
Functional Theory (ET-TDDFT)

• Mermin formulation 
• Ground-state exchange-correlation Functionals (local density 

and gradient approximations)
• Chemical bonds
• Thermostats
• Molecular dynamics of the nuclei

wN ,i  f  N ,i N  

n(r, t)  Tr n̂(r) ̂(t)   wi (t) i (r, t)norbs


2

n r, t   wi i r, t 
2

i

occ.

 , fi 1
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Electron-Ion Equilibration

Hot ions and  cold electrons or Hot 
electrons and cold ions

Often modeled in terms of a 2 temperature 
model

Tequilibration = 0.33 -10 ps

Runge-Gross Leaves the Question of Weights 
Open

• Different representations of TDDFT ensemble 
densities

• NVT thermal density but NVE propagation?!

̂Exact  Wi,  i

i

  i

̂Mer min  wi, i(wi, )
i

 i (wi, )
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Trouble with Von Neumann and Mermin States 

• Assume for example non-interacting Fermions.

• Try to connect 2 different Mermin states trough unitary propagation 
alone.

• Some mechanism to change occupations is required.

̂1  wi
(1) i

i

 i ̂2  wi
(2) i

i

 i

̂2  wi
(1)U(T ) i

i

 i U(T )

U(t)  wi
(2 )

wi
(1)
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Time-integration and Stability

• Highly nonlinear equations 

• Sources of trouble: 

• Iterative solve at each step 

• Hartree/XC ← n(r, t) ← |ψm(r, t)|2

• Accumulation of floating-point error 

• Validation: Does Mermin state stay 
in Mermin state? 

• Crank-Nicolson proves robust : 
Exact unitary propagation 

• Orbitals orthogonal for 50k+ steps

• Hartree energy conserved ±
10μeV! 

S(t) i
2 Hsmooth (t  

2 ) n,smooth (t )

 S(t) i
2 Hsmooth(t  

2 ) n,smooth(t)
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Parallel Scalability

• Ehrenfest TDDFT: ‘more 
parallel’ than DFT-MD. 

• Primary cost/step is 
iterative linear solve 

• No orthogonalization

• Hierarchical parallelism 

• The catch: time step in 
attoseconds

• Of course, we also 
capture influence of 
electronic excited states. . 
. 
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Coupled Electrons and Moving Nuclei

• Separate model for coupled electron ion dynamics
• No uncoupled electron dynamics Born-Oppenheimer 
• Electron-dynamics in Ehrenfest
• Certain processes not described by even Ehrenfest such as 

photochemistry, discrete electron relaxation

H RI     H RI    i d
dt 

FI   
I
V RI  

Vs.
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Born-Oppenheimer vs. Ehrenfest

Born-Oppenheimer Ehrenfest

29
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Stopping Power Calculations Extended 
to WDM

André Schleife, Yosuke Kanai, and Alfredo A. Correa

• Low energy v<0.1 a.u. 
ground-state or thermal 
electrons / adiabatic 
regime

• High energy v>>0.1 a.u. 
electron dynamics

• Intermediate regime: 
combined electron-
nuclear dynamics, 
electron capture and 
ionization
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Plasmons are Formed in the Wake.
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Stopping in Deuterium
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D in D at four-fold compressed
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X-Ray Thomson Scattering, a New Diagnostic,  in 
Warm Dense Matter

• Diagnosing Warm Dense Matter

• X-Ray Thomson scattering can test EOS 
by providing a measure of bulk 
temperature, density, and ionization state 
(not surface limited)

• Used (or soon to be used) at several 
facilities:

• Z-Machine, Omega, DESY , Tsinghua, and 
many more
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Temperature Diagnostic 
X-Ray Thompson 
Scattering

• Based on 
fundamental principle 
of detailed balance

• Temperature 
diagnostic for warm 
dense matter

• Structural information 
about a material

• Works at low k based 
on models (Chihara) 
that use unphysical 
ion structure factors  
from classical plasma 
simulations with 
effective quantum 
potentials

S tot (k,) Exp  / kBT S tot (k,)
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Scattered signal at 40°

Beryllium data from Glenzer, et al., Phys. Rev. Lett. 98 (2007)

The Chihara models that “work” at low k use 
unphysical ion structure factors  from classical 
plasma simulations w effective “quantum potentials”.

Core-valence separation; frequency domains of 
validity

Be

X-Ray Thomson scattering has delivered 
temperature measurements and questions

S(k,)  f k q k  Sii k    ZCSee k,  Scv k, 
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Most Direct Simulation through the 
Dynamic Structure Factor

• Time-domain quantum mechanics simulations allows a direct 
calculation of the structure factor S(k,ω) that

-Includes quantum degeneracy 
-Correlations

-Electrons and nuclei out of thermal equilibrium

-Non Fermi-Dirac distributions 

-Collective excitations 

See
tot (k,) 

1

N ion

e
tot (k,)

2d

d d
 T S tot (k,)
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Movie: 
X-Ray Thomson Scattering Calculation

Be 150 kK 5.5 gcc
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vpert. r, t   v0 eiqr f t 

Blue +0.5 / Ref -0.5 in density

 k,  / v0 f     k,k,  S k,    1


Im[ q,q, ]
1 e


kT

Compressed and heated Be 
mass density 5.5 g/cm3 and Te = 13eV 
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Summary and Future Work

• DFT based MD simulations to model shock 
compression of mixtures under WDM conditions

• Experimental validation through shots on the Z-
machine 

• New tools for TDDFT of WDM: 
– Ehrenfest-TDDFT for coupled electron-ion 

motion in bulk systems 
– Stable, accurate, and scalable PAW 

implementation 
– XRTS/DSF is primary goal

• Immediately: dielectric function of interesting 
WDM systems (SEQUOIA). 

• Near term: direct calculation of dynamic structure 
factor. 

• Challenge: Identify surface hopping model that 
gets non-adiabatic electron-ion energy transfer 
‘right’. 
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Direct Simulation Monte Carlo

What is DSMC?

• Probabilistic (Monte Carlo) 
scattering for finite Knudsen 
number fluid flows (Prof. Graeme 
Bird)

Why do we need DSMC?

• Estimation of the Space Shuttle 
re-entry aerodynamics to the 
modeling of micro-electro-
mechanical systems (MEMS)

At Sandia, SPARTA code 

http://sparta.sandia.gov
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Parameters Needed for DSMC

• The mean-free path is related to the cross-section.

• Viscosity can be calculated and compared to experiment with input of 
the cross section.

• Cross-section varies with material and temperature.

• The viscosity depends on the material and temperature, not on the 
density.

 
4mkBT

9 2











1
2

  1
2n
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Cross-Sections Related to Scattering Angles

We need to model:

• Scatter and scattered particles

• Impact parameters

• Measures of charge transfer

• Statistics

• Exchange-correlation, external 
fields and changing potential 
landscapes 

Χc=θ and Χ1=ψ
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Important Scales

v  2kBT/ m

 V is determined by thermal velocities at 
T=2,000K

 Mean thermal velocity at 300K, 394 m/sec

 Approximately  0.01 Å/fs

 X displacement >  Ar-Ar van der Waals Bond 
length 

 Impact b recursive halving of initial x 
displacement

Ar-Ar bond length 3.7 Å
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Basic Set-Up of Calculation

• Octopus 4.1.2 
(http://www.tddft.org/programs/octopus) on 
8 cores on UNO

• Time step conserves energy of stationary 
state

• Time-dependent propagation 
Approximated Enforced Time-Reversal 
Symmetry 

• Total time greater than bounce time

• Ehrenfest coupling

• PBE GGA for XC – No van der Waals

• Ar Pseudo potential

• Spin-polarized

45

Uno Dell SNL-NM 201 3344 2.7 GHz Intel Sandy 
Bridge:2S:8C/4S:8C RHEL 6 GigE 64 / 128 71 TF 29,293,440
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Distance of Initial Separation

Ar-Ar bond length 3.7 A
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Typical X-Y Scattering Trajectories, θ (b,v)



48

Scattering Theory

d

d


b

sin

db

d

48

Thermal average of cross-sections

  2 d
b

sin

db

d0

180



  1
2n

Relates trajectories that we can calculate to the mean-free path used in 
simulations.



49

Table of Scattering Angles, b(θ,v)

Note 1 a0 eV / ħ = 0.804 A/fs
I have run larger impact parameters but I am still testing the reliability of these runs. 

Quite linear in calculated 
region

Must curve to +∞ as angle 
goes to 0

b(θ)/sin θ requires careful 
consideration as θ -> 0.

b    RHard Sphere cos


2










49
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Summary
TDDFT for DSMC

• TDDFT describes coupled electron-ion dynamics 
of scattering events without materials specific 
parameters.

• The approach is general and can be applied to 
charged species, other elements, and molecules.

• Technical challenges related to simulation cell 
size and computer power can be overcome at 
present.

• Accuracy is therefore limited by the choice of 
functional and pseudo-potential used.  Future 
work will investigate their roles.

• Scattering angle versus impact parameter and 
velocity are extracted for time-dependent runs.

• Cross sections can be obtained in postposing.

• We have developed a general set of tools 
(python scripts) to create, to manage, to run, and 
to post process these simulations.
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