

A Data-Driven Approach to PDE-Constrain Uncertainty

SAND2015-11107C

Drew Kouri

Optimization and Uncertainty Quantification
Sandia National Laboratories, Albuquerque, New Mexico
dpkouri@sandia.gov

January 6, 2016

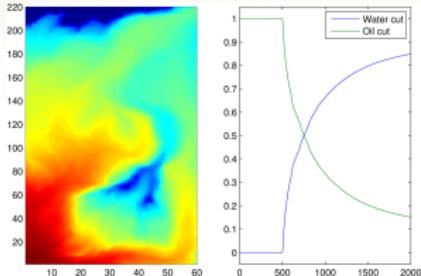
Joint Mathematics Meeting, Washington State Convention Center, Seattle, WA.

Funding support: ASC.

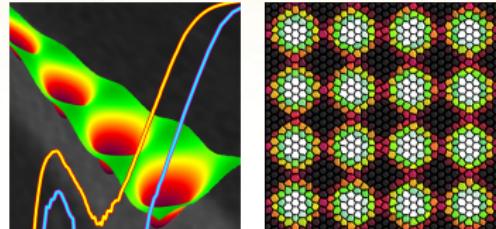
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Motivation

Reservoir Optimization



Superconductor Vortex Pinning



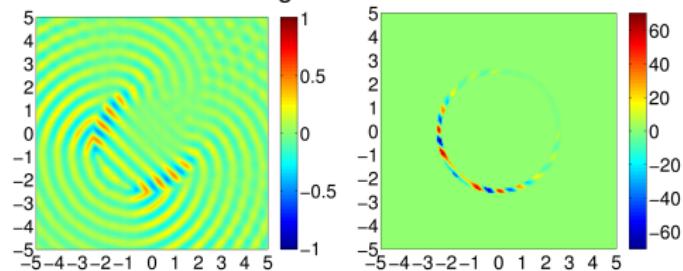
Courtesy Argonne National Laboratory

$$v = -\mathbf{K}\lambda(s)\nabla p, \quad \nabla \cdot v = q$$
$$\phi \partial_t s + \nabla \cdot (f(s)v) = \hat{q}$$

$$\gamma(\partial_t + i\mu)\psi = \epsilon\psi - |\psi|^2\psi + (\nabla - i\mathbf{A})^2\psi$$

$$\mathbf{J} = \text{Im}(\bar{\psi}(\nabla - i\mathbf{A})\psi) - (\partial_t \mathbf{A} + \nabla \mu), \quad \nabla \cdot \mathbf{J} = 0$$

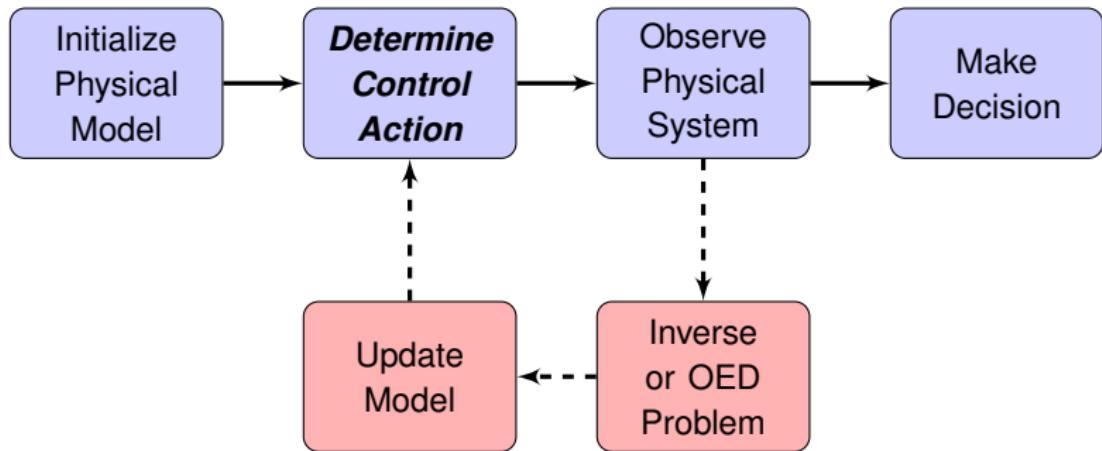
Direct Field Acoustic Testing



$$-\Delta u - \kappa^2(1 + \sigma\epsilon)^2 u = z$$

Optimization Problem Formulation

Goal: Control uncertainty rather than quantify uncertainty.



**We implement the control prior to observing the state.
Control is deterministic.**

Optimization of PDEs with Uncertain Inputs

Optimal Control: Given $\alpha > 0$, $\Omega_o \subseteq \Omega$, $\Omega_c \subseteq \Omega$, and $w \in L^2(\Omega_o)$.

$$\min_{z \in \mathcal{Z}} J(z) \equiv \frac{1}{2} \mathcal{R} \left[\int_{\Omega_o} ((U(z))(\xi, x) - w(x))^2 dx \right] + \frac{\alpha}{2} \int_{\Omega_c} z^2(x) dx$$

where $U(z) = u : \Xi \rightarrow H^1(\Omega)$ solves the **weak form** of

$$\begin{aligned} -\nabla \cdot (\epsilon(\xi) \nabla u(\xi)) + N(u(\xi), \xi) &= \chi_{\Omega_c} z, & \text{in } \Omega, \text{ a.s.} \\ u(\xi) &= g(\xi), & \text{on } \partial\Omega, \text{ a.s.} \end{aligned}$$

Topology Optimization: Given $0 < V_0 < 1$ and $\Omega \subset \mathbb{R}^d$, $d = 1, 2, 3$.

$$\min_{z \in \mathcal{Z}} J(z) \equiv \mathcal{R} \left[\int_{\Omega} F(\xi, x) \cdot (U(z))(\xi, x) dx \right] \quad \text{s.t.} \quad 0 \leq z \leq 1, \quad \int_{\Omega} z(x) dx \leq V_0 |\Omega|$$

where $U(z) = u : \Xi \rightarrow H^1(\Omega)^d$ solves the **weak form** of

$$\begin{aligned} -\nabla \cdot (\mathbf{E}(z) : \epsilon(u(\xi))) &= F(\xi), & \text{in } \Omega, \text{ a.s.} \\ \epsilon(u(\xi)) &= \frac{1}{2} (\nabla u(\xi) + \nabla u(\xi)^\top), & \text{in } \Omega, \text{ a.s.} \\ u(\xi) &= g(\xi), & \text{on } \partial\Omega, \text{ a.s.} \end{aligned}$$

General PDE-Optimization under Uncertainty

(Ω, \mathcal{F}, P) is a complete probability space and $\xi : \Omega \rightarrow \Xi$ is a random variable.
Consider

$$\min_{z \in \mathcal{Z}_{\text{ad}}} J(z) = \mathcal{R}(f((U(z))(\xi), z, \xi))$$

where $U(z) = u \in L_p^p(\Omega; \mathcal{U})$ solves the **weak form** PDE

$$e(u, z, \xi) = 0 \quad \text{and} \quad \mathcal{Z}_{\text{ad}} \subseteq \mathcal{Z}.$$

Assumptions:

- \mathcal{U} is a reflexive Banach space and \mathcal{Z} is a Hilbert spaces.
- For each $z \in \mathcal{Z}_{\text{ad}}$ and $\xi \in \Xi$, $e(u, z, \xi) = 0$ is well posed, i.e.,
 - $\exists! U(z) = u \in L_p^p(\Xi; \mathcal{U})$ such that $e(U(z), z, \xi) = 0$;
 - $\exists c > 0$ independent of z and $\xi \in \Xi$ such that $\|U(z)\|_{\mathcal{U}} \leq c(\|z\|_{\mathcal{Z}} + 1)$.
- e is a.s. sequentially weakly continuous.
- f is a.s. sequentially weakly lsc and $\xi \mapsto f((U(z))(\xi), z, \xi) \in L_{p \circ \xi^{-1}}^q(\Xi)$.
- \mathcal{Z}_{ad} is convex, closed and bounded – or –
 $\mathcal{Z}_{\text{ad}} = \mathcal{Z}$ and $z \mapsto f((U(z))(\xi), z, \xi)$ is a.s. coercive i.e.,
 $\exists r > 0$ and coercive $\varphi : \mathcal{Z} \rightarrow \mathbb{R} \cup \{+\infty\}$, both independent of ξ , s.t.

$$\|z\|_{\mathcal{Z}} \geq r \implies f((U(z))(\xi), z, \xi) \geq \varphi(z) \text{ a.s.}$$

Known v.s. Unknown Probability Distribution

Known Probability Distribution:

- ▶ $\Xi \subseteq \mathbb{R}^M$ is known and $P \circ \xi^{-1}$ has Lebesgue density $\rho : \Xi \rightarrow [0, \infty)$.
- ▶ Enables UQ techniques including gPC, collocation, and sampling.
- ▶ All analysis performed in $L_\rho^p(\Xi)$ instead of $L_{P \circ \xi^{-1}}^p(\Xi)$.

Unknown Probability Distribution:

- ▶ Must determine optimal solutions that are robust to unknown pdf.
- ▶ Use **data** to estimate pdf (i.e., experimental data or inverted coefficients).
- ▶ Formulate optimization problem as a minimax problem

$$\min_{z \in \mathcal{Z}_{\text{ad}}} \sup_{P \in \mathcal{A}} \mathbb{E}_P[f((U(z), z, \cdot))]$$

- ▶ \mathcal{A} is the **ambiguity** set and is defined with **data**, i.e., moment matching.
- ▶ Must discretize the probability measures $P \in \mathcal{A}$.
- ▶ Require specialized optimization algorithms to efficiently solve.

Outline

Known Probability Distribution

Unknown Probability Distribution

Risk Measures

Assumptions:

- ▶ $\mathcal{R} : L_{p \circ \xi^{-1}}^q(\Xi) \rightarrow \mathbb{R} \cup \{+\infty\}$
see Rockafellar, Uryasev, Shapiro, Dentcheva, Ruszczynski, ...
- ▶ \mathcal{R} is convex, lsc and satisfies $\mathcal{R}(C) = C$ for all constants C ;
- ▶ \mathcal{R} is monotonic, i.e., if $X_1 \geq X_2$ a.s., then $\mathcal{R}(X_1) \geq \mathcal{R}(X_2)$.

Result: There exists a minimizer of J in \mathcal{Z}_{ad} .

Risk Neutral v.s. Risk Averse

- ▶ **Risk Neutral:** $\mathcal{R} \equiv \mathbb{E}$.
 - ▶ Optimal solution minimizes on average.
 - ▶ Efficiently solved with adaptive sparse grid trust-region algorithm
Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders.
- ▶ **Risk Averse:** $\mathcal{R}(X) > \mathbb{E}[X] \quad \forall \text{ nonconstant } X \in L_{p \circ \xi^{-1}}^q(\Xi)$.
 - ▶ More conservative than $\mathcal{R} \equiv \mathbb{E}$.
 - ▶ Can minimize measures of deviation and/or tail events.

Choosing a Risk Measure

Controlling Uncertainty

- ▶ Reduce **variability** of optimized system:

$$\mathbb{E}[(X - \mathbb{E}[X])^2] \quad \text{or} \quad \mathbb{E}[(X - \mathbb{E}[X])_+^q]^{\frac{1}{q}}$$

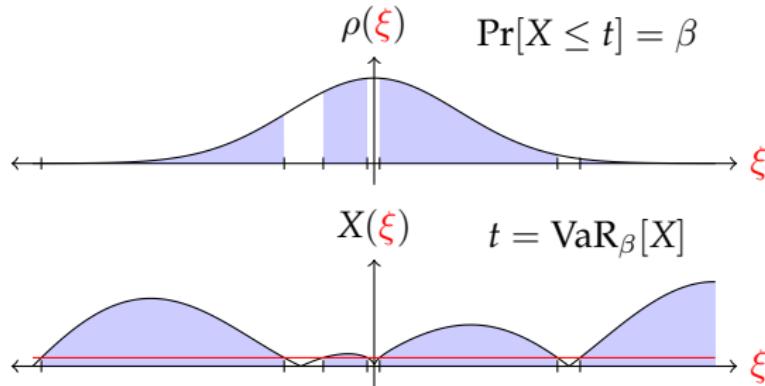
- ▶ Control **rare events**, reduce **failure regions**, and certify **reliability**:

$$\Pr[X \leq t] \quad \text{or} \quad \text{VaR}_\beta[X] = \inf \{t \in \mathbb{R} : \Pr[X \leq t] \geq \beta\}$$

- ▶ Minimize over **undesirable events**:

$$\text{CVaR}_\beta[X] = \frac{1}{1 - \beta} \int_{X \geq \text{VaR}_\beta[X]} X(\omega) dP(\omega) = \mathbb{E}[X \mid X \geq \text{VaR}_\beta[X]]$$

**CONDITIONAL
VALUE-AT-RISK:**
 $\mathcal{R}(X) = \text{CVaR}_\beta[X]$



Classification of Risk Measures

Shapiro, Dentcheva, Ruszcynski, Rockafellar, Uryasev, ...

$\mathcal{R} : L_p^q(\Xi) \rightarrow \mathbb{R} \cup \{\infty\}$ is a **monetary** risk measure if for $X, X_1, X_2 \in L_p^q(\Xi)$

- ▶ **Monotonicity:** $X_1 \geq X_2$ a.e. $\implies \mathcal{R}(X_1) \geq \mathcal{R}(X_2)$
- ▶ **Translation Equivariance:** $\mathcal{R}(X + t) = \mathcal{R}(X) + t, \quad \forall t \in \mathbb{R}$

\mathcal{R} is a **convex** risk measure if

- ▶ \mathcal{R} is a monetary risk measure
- ▶ **Convexity:** $\mathcal{R}(tX_1 + (1-t)X_2) \leq t\mathcal{R}(X_1) + (1-t)\mathcal{R}(X_2), \quad \forall t \in [0, 1]$

\mathcal{R} is a **coherent** risk measure if

- ▶ \mathcal{R} is a convex risk measure
- ▶ **Positive Homogeneity:** $\mathcal{R}(tX) = t\mathcal{R}(X), \quad \forall t > 0.$

Examples of coherent risk measures with $X \in L_p^q(\Xi)$:

- ▶ Risk Neutral: $\mathcal{R}(X) = \mathbb{E}[X]$
- ▶ Mean Plus Semideviation: $\mathcal{R}(X) = \mathbb{E}[X] + c\mathbb{E}[(X - \mathbb{E}[X])_+], \quad c \in (0, 1)$
- ▶ Conditional Value-at-Risk: $\mathcal{R}(X) = \inf \{ t + c\mathbb{E}[(X - t)_+] : t \in \mathbb{R} \}, \quad c > 1$

Duality Theory of Risk Measures

The Fenchel-Moreau Theorem \implies if \mathcal{R} is a **convex** risk measure, then

$$\mathcal{R}(X) = \sup_{\vartheta \in \text{dom}(\mathcal{R}^*)} \{ \mathbb{E}[\vartheta X] - \mathcal{R}^*(\vartheta) \}$$

where \mathcal{R}^* is the conjugate of \mathcal{R} , i.e., $\mathcal{R}^*(\vartheta) = \sup_{X \in \text{dom}(\mathcal{R})} \{ \mathbb{E}[\vartheta X] - \mathcal{R}(X) \}$.

Moreover, if \mathcal{R} is a **coherent** risk measure, then

$$\mathcal{R}(X) = \sup_{\vartheta \in \text{dom}(\mathcal{R}^*)} \mathbb{E}[\vartheta X].$$

$\text{dom}(\mathcal{R}^*)$ is the **risk envelope** \implies related to **ambiguity set**.

Example (Conditional Value-at-Risk):

$$\mathcal{R}(X) = \text{CVaR}_\beta[X] = \inf_t \left\{ t + (1 - \beta)^{-1} \mathbb{E}[(X - t)_+] \right\} = \sup_{\vartheta \in \text{dom}(\mathcal{R}^*)} \mathbb{E}[\vartheta X]$$

$$\text{dom}(\mathcal{R}^*) = \left\{ \vartheta \in (L_\rho^q(\Xi))^* : \mathbb{E}[\vartheta] = 1, 0 \leq \vartheta \leq \frac{1}{1 - \beta} \text{ } \rho\text{-a.e.} \right\}.$$

Outline

Known Probability Distribution

Unknown Probability Distribution

Distributionally Robust PDE-Optimization

Recall: (Ξ, \mathcal{F}) is a measurable space and prob. measure is *unknown*.

- ▶ \mathcal{M} is the Banach space of regular Borel measures on \mathcal{F} , i.e.,

$$C(\Xi)^* \cong \mathcal{M}.$$

- ▶ $\mathcal{M}^+ \subset \mathcal{M}$ is the set of positive measures, i.e.,

$$\mu \in \mathcal{M}^+ \implies \mu(V) \geq 0 \quad \forall V \in \mathcal{F}.$$

- ▶ **Ambiguity Set:** $\mathcal{A} \subset \mathcal{M}$ defined by data. For example:

- ▶ **Moment Matching:** Given generalized moment data m_1, \dots, m_N ,

$$\mathcal{A} = \left\{ P \in \mathcal{M}^+ : P(\Xi) = 1, \int_{\Xi} \psi_i(\xi) dP(\xi) = m_i, i = 1, \dots, N \right\}.$$

- ▶ **Φ -Divergence (e.g., Kullback-Leibler):** Given an estimated prob. measure P_0 and $\epsilon > 0$,

$$\mathcal{A} = \left\{ P \in \mathcal{M}^+ : P(\Xi) = 1, D_{\Phi}(P, P_0) \leq \epsilon \right\}.$$

- ▶ **Distributionally-robust (a.k.a. data-driven) optimization problem:**

$$\min_{z \in \mathcal{Z}_{\text{ad}}} \sup_{P \in \mathcal{A}} \int_{\Xi} f((U(z))(\xi), z, \xi) dP(\xi).$$

Measure Approximation

General Approach:

1. Let $\{\varphi_i\}_{i=1}^n$ be a partition of unity on Ξ and $\mu \in \mathcal{M}$ be any measure.
2. Define the “localized” measures

$$\mu_i(V) = \int_V \varphi_i(\xi) \, d\mu(\xi).$$

3. Note $\mu(\Xi) = \mu_1(\Xi) + \dots + \mu_n(\Xi)$.
4. Define the projection operators $\Pi_n^\mu : C(\Xi) \rightarrow \text{span}\{\varphi_1, \dots, \varphi_n\}$ as

$$\Pi_n^\mu y = \sum_{i=1}^n \mu_i(\Xi)^{-1} \int_{\Xi} y(\xi) \, d\mu_i(\xi) \varphi_i \quad \forall y \in C(\Xi)$$

and $\Lambda_n^\mu : \mathcal{M} \rightarrow \text{span}\{\mu_1, \dots, \mu_n\}$ as

$$\Lambda_n^\mu \nu = \sum_{i=1}^n \mu_i(\Xi)^{-1} \int_{\Xi} \varphi_i(\xi) \, d\nu(\xi) \mu_i \quad \forall \nu \in \mathcal{N},$$

Approximation Properties

- ▶ **Lemma:** If $\mu \in \mathcal{M}^+$ is σ -finite, then $\Lambda_n^\mu \nu$ is absolutely continuous with respect to μ with density

$$f_n^\mu[\nu] = \sum_{i=1}^n \mu_i(\Xi)^{-1} \int_{\Xi} \varphi_i(\xi) d\nu(\xi) \varphi_i \quad \text{for any } \nu \in \mathcal{M}.$$

- ▶ **Lemma:** Λ_n^μ is invariant on the space of probability measures.
- ▶ **Lemma:** Π_n^μ is the adjoint of Λ_n^μ .
- ▶ **Theorem:** Let $V_i = \text{supp}(\varphi_i)$ and $\|\cdot\|_{u,V_i}$ denote the uniform norm on V_i . Then, there exists $c_i > 0$ such that

$$|\langle \nu - \Lambda_n^\mu \nu, y \rangle_{\mathcal{M}, \mathcal{C}(\Xi)}| \leq \sum_{i=1}^n c_i \left\{ \int_{\Xi} \sqrt{\varphi_i(\xi)} d|\nu|(\xi) \right\} \inf_{\bar{y}_i \in \mathbb{R}} \|\sqrt{\varphi_i}(y - \bar{y}_i)\|_{u,V_i}.$$

Measure Approximation

Piecewise Constants:

1. Let $\{V_i\}_{i=1}^n$ be a tessellation of Ξ and define $\varphi_i = \chi_{V_i}$.
2. The “localized” measures are

$$\mu_i(V) = \mu(V \cap V_i).$$

3. The projection operator $\Pi_n^\mu : C(\Xi) \rightarrow \text{span}\{\varphi_1, \dots, \varphi_n\}$ is

$$\Pi_n^\mu y = \sum_{i=1}^n \mu(V_i)^{-1} \int_{V_i} y(\xi) d\mu(\xi) \chi_{V_i} \quad \forall y \in C(\Xi)$$

and $\Lambda_n^\mu : \mathcal{M} \rightarrow \text{span}\{\mu_1, \dots, \mu_n\}$ is

$$\Lambda_n^\mu \nu = \sum_{i=1}^n \mu(V_i)^{-1} \nu(V_i) \mu_i \quad \forall \nu \in \mathcal{N},$$

- **Theorem:** Suppose V_i are convex, bounded, and Lipschitz, and $\mu \in \mathcal{M}$. Then $\exists c > 0$ only depending on M such that

$$\|\nu - \Lambda_n^\mu \nu\|_{W^{1,\infty}(\Xi)^*} \leq c \sum_{i=1}^n \left(1 + \frac{|\mu|(V_i)}{|\mu(V_i)|}\right) |\nu|(V_i) \text{ diam}(V_i).$$

Example — Voronoi Tesselation

Suppose $\Xi = [0, 1]$ and P has pdf

$$\text{pdf}(\xi) = \frac{\beta}{1 - e^{-\beta}} e^{-\beta\xi} \quad \text{for } \beta > 0.$$

Approx. P using piecewise constant projection and μ set to the uniform prob. measure:

$$\text{approx-pdf}(\xi) = \sum_{i=1}^n \frac{(e^{-\beta a_{i-1}} - e^{-\beta a_i})}{(1 - e^{-\beta})(a_i - a_{i-1})} \chi_{[a_{i-1}, a_i]}(\xi).$$

β	n	Error	Sum W. Diam.	Max. Diam.	Max. W. Diam.
1	10	3.592×10^{-2}	1.438×10^{-1}	2.518×10^{-1}	5.899×10^{-2}
	100	3.740×10^{-3}	1.496×10^{-2}	4.269×10^{-2}	1.471×10^{-3}
	1000	3.751×10^{-4}	1.501×10^{-3}	6.089×10^{-3}	2.733×10^{-5}
	10000	3.750×10^{-5}	1.500×10^{-4}	7.955×10^{-4}	4.404×10^{-7}
10	10	2.282×10^{-1}	1.304×10^{-1}	7.572×10^{-1}	1.010×10^{-1}
	100	3.053×10^{-2}	1.451×10^{-2}	5.328×10^{-1}	8.191×10^{-3}
	1000	3.551×10^{-3}	1.502×10^{-3}	3.133×10^{-1}	5.424×10^{-4}
	10000	3.763×10^{-4}	1.517×10^{-4}	1.300×10^{-1}	2.710×10^{-5}
100	10	3.076×10^{-1}	1.226×10^{-1}	9.758×10^{-1}	1.194×10^{-1}
	100	4.128×10^{-2}	1.327×10^{-2}	9.531×10^{-1}	1.261×10^{-2}
	1000	5.022×10^{-3}	1.348×10^{-3}	9.301×10^{-1}	1.247×10^{-3}
	10000	5.899×10^{-4}	1.360×10^{-4}	9.072×10^{-1}	1.224×10^{-4}

Approximation and Optimization Algorithms

Given an arbitrary $\mu \in \mathcal{M}^+$ with $\mu(\Xi) = 1$, we approximate

$$J(z) = \sup_{P \in \mathcal{A}} \int_{\Xi} f((U(z))(\xi), z, \xi) dP(\xi)$$

using our measure discretization, i.e.,

$$J_n(z) = \sup_{p \in \mathcal{A}_n} \sum_{i=1}^n \frac{p_i}{\mu_i(\Xi)} \int_{\Xi} f(U(z)(\xi), z, \xi) d\mu_i(\xi), \quad \mathcal{A}_n = \left\{ p \in \mathbb{R}^n : \sum_{i=1}^n \frac{p_i}{\mu_i(\Xi)} \mu_i \in \mathcal{A} \right\}.$$

- **Theorem (Piecewise Constants):** If $\xi \mapsto f(U(z)(\xi), z, \xi) \in W^{1,\infty}(\Xi)$ and z_n minimizes J_n defined on a family of tessellations $\{V_{ni}\}_{i=1}^n$ satisfying

$$\lim_{n \rightarrow \infty} \sup_{P \in \mathcal{A}} \sum_{i=1}^n P(V_{ni}) \text{diam}(V_{ni}) = 0.$$

Then, z_n has a w-converging subsequence and the w-limit minimizes J .

- J and J_n may **not** be differentiable!
 - J and J_n are *Fréchet subdifferentiable*.
 - Compute value and subgradient using linear/convex optimization.
 - **Cannot** use derivative-based optimization algorithms.
 - Subgradient descent and bundle methods converge *sublinearly*.
- **Expensive PDEs** \implies **Need rapid optimization algorithms.**

Example — Moment Matching

Let $\psi_i : \Xi \rightarrow \mathbb{R}$ be \mathcal{F} -measurable functions and $m_i \in \mathbb{R}$ for $i = 1, \dots, N$

$$\mathcal{A} = \left\{ P \in \mathcal{M}^+ : P(\Xi) = 1, \begin{array}{l} \int_{\Xi} \psi_i(\xi) dP(\xi) = m_i, i = 1, \dots, N_e \\ \int_{\Xi} \psi_i(\xi) dP(\xi) \leq m_i, i = N_e + 1, \dots, N \end{array} \right\}.$$

Theorem (Shapiro): If $\mathcal{A} \neq \emptyset$, then for each $z \in \mathcal{Z}$ there exists ξ_i and $p_i \geq 0$ with $p_1 + \dots + p_{N+1} = 1$ such that

$$\sup_{P \in \mathcal{A}} \int_{\Xi} f((U(z))(\xi), z, \xi) dP(\xi) = \sum_{i=1}^{N+1} p_i f((U(z))(\xi_i), z, \xi_i)$$

Approximation: Localized measures μ_j

$$\mathcal{A}_n = \left\{ p \in \mathbb{R}^n : \sum_{j=1}^n p_j = 1, \begin{array}{l} \sum_{j=1}^n \frac{p_j}{\mu_j(\Xi)} \int_{\Xi} \psi_i(\xi) d\mu_j(\xi) = m_i, i = 1, \dots, N_e \\ \sum_{j=1}^n \frac{p_j}{\mu_j(\Xi)} \int_{\Xi} \psi_i(\xi) d\mu_j(\xi) \leq m_i, i = N_e + 1, \dots, N \end{array} \right\}.$$

Theorem (Kouri): If $\mathcal{A}_n \neq \emptyset$, then for each $z \in \mathcal{Z}$ there exists $p_i \geq 0$ with at most $\min\{n, N+1\}$ nonzero such that $p_1 + \dots + p_{N+1} = 1$ and

$$\sup_{q \in \mathcal{A}_n} \sum_{j=1}^n \frac{q_j}{\mu_j(\Xi)} \int_{\Xi} f((U(z))(\xi), z, \xi) d\mu_j(\xi) = \sum_{j=1}^{N+1} \frac{p_j}{\mu_j(\Xi)} \int_{\Xi} f((U(z))(\xi), z, \xi) d\mu_j(\xi).$$

Example — Moment Matching

Optimal Control of 1D Elliptic Equation

Let $\alpha = 10^{-4}$, $\Omega_o = \Omega_c = \Omega = (-1, 1)$, and $w \equiv 1$ and consider

$$\underset{z \in L^2(-1,1)}{\text{minimize}} \quad J(z) = \frac{1}{2} \mathcal{R} \left[\int_{-1}^1 (U(z)(\cdot, x) - 1)^2 \, dx \right] + \frac{\alpha}{2} \int_{-1}^1 z(x)^2 \, dx$$

where $U(z) = u \in L^2_\rho(\Xi; H_0^1(0, 1))$ solves the weak form of

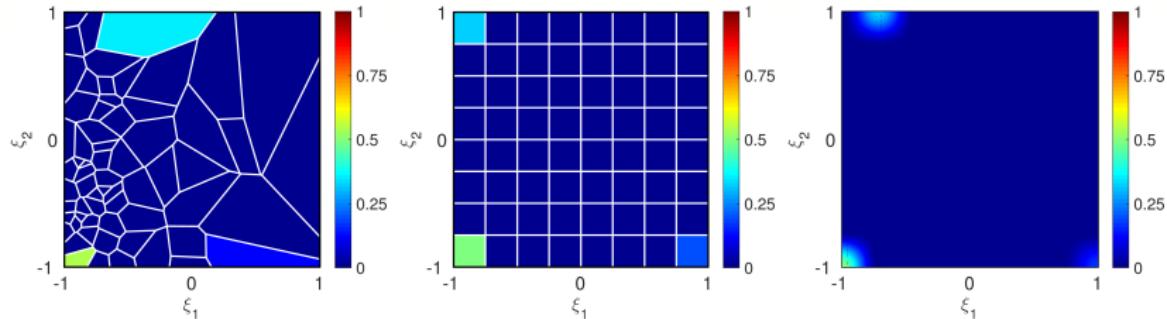
$$\begin{aligned} -\partial_x (\epsilon(\xi, x) \partial_x u(\xi, x)) &= f(\xi, x) + z(x) & (\xi, x) \in \Xi \times \Omega, \\ u(\xi, -1) &= 0, \quad u(\xi, 1) = 0 & \xi \in \Xi. \end{aligned}$$

$\Xi = [-0.1, 0.1] \times [-0.5, 0.5]$, the true distribution is a tensor product of truncated exponentials, and the random field coefficients are

$$\epsilon(\xi, x) = 0.1 \chi_{(-1, \xi_1)} + 10 \chi_{(\xi_1, 1)}, \quad \text{and} \quad f(\xi, x) = \exp(-(x - \xi_2)^2).$$

Example — Moment Matching

$$P(\Xi) = 1, \quad \int_{\Xi} \xi_1 dP(\xi) \approx -0.537, \quad \text{and} \quad \int_{\Xi} \xi_2 dP(\xi) \approx -0.313$$



- ▶ **Left:** Voronoi ($n = 64$) with 1000 MC samples per cell.
- ▶ **Center:** Uniform ($n = 64$) with level 4 sparse grids.
- ▶ **Right:** C^2 partition of unity ($n = 64$) with level 4 sparse grids, i.e., shifted/scaled tensor products of

$$\theta(x) = \begin{cases} 4x^2(3 - 4x) & \text{if } 0 < x \leq \frac{1}{2} \\ 4(x - 1)^2(4x - 1) & \text{if } \frac{1}{2} < x < 1 \\ 0 & \text{otherwise.} \end{cases}$$

Example — Moment Matching

	n	Obj. Val.	Center	Prob.	Center	Prob.	Center	Prob.
Voronoi 1000	16	0.13457	(-0.864, -0.893)	0.435	(-0.634, 0.841)	0.328	(0.195, -0.848)	0.237
	64	0.13777	(-0.882, -0.933)	0.540	(-0.331, 0.849)	0.346	(0.467, -0.909)	0.114
	256	0.14056	(-0.981, -0.983)	0.605	(0.116, 0.922)	0.351	(0.330, -0.960)	0.044
	1024	0.14133	(-0.126, -0.987)	0.484	(-0.916, 0.988)	0.342	(-0.939, -0.994)	0.174
	4096	0.14207	(-0.978, -0.997)	0.368	(-0.813, 0.988)	0.343	(0.350, -0.991)	0.289
Square $\ell = 4$	16	0.13221	(-0.750, -0.750)	0.709	(-0.750, 0.750)	0.150	(0.750, 0.750)	0.142
	64	0.13779	(-0.857, -0.875)	0.496	(-0.875, 0.875)	0.321	(0.875, -0.875)	0.193
	256	0.14058	(-0.063, -0.938)	0.457	(-0.938, 0.938)	0.333	(-0.938, -0.938)	0.210
	1024	0.14194	(-0.969, -0.969)	0.438	(-0.969, 0.969)	0.338	(0.906, -0.969)	0.223
	4096	0.14286	(-1.000, -1.000)	0.433	(-0.968, 1.000)	0.342	(1.000, -1.000)	0.225
C^2 $\ell = 4$	16	0.13444	(-1.000, -1.000)	0.696	(1.000, 1.000)	0.164	(-1.000, 1.000)	0.140
	64	0.13953	(-1.000, -1.000)	0.501	(-0.714, 1.000)	0.329	(1.000, -1.000)	0.170
	256	0.14154	(-1.000, -1.000)	0.663	(0.867, 1.000)	0.231	(-1.000, 1.000)	0.106
	1024	0.14244	(-1.000, -1.000)	0.441	(-0.935, 1.000)	0.340	(1.000, -1.000)	0.218
	4096	0.14286	(-1.000, -1.000)	0.433	(-0.968, 1.000)	0.342	(1.000, -1.000)	0.225
	*	0.15640	(-0.995, -0.996)	0.657	(0.432, 1.000)	0.323	(-0.993, 0.999)	0.019

- ★ Computed using Gaivoronski's stochastic descent algorithm for moment matching.

Example — CVaR

Optimal Control of 1D Elliptic Equation

Let $\alpha = 10$, $\Omega_o = \Omega_c = \Omega = (-1, 1)$, and $w \equiv 1$ and consider

$$\underset{z \in L^2(-1,1)}{\text{minimize}} \quad J(z) = \frac{1}{2} \mathcal{R} \left[\int_{-1}^1 (U(z)(\cdot, x) - 1)^2 \, dx \right] + \frac{\alpha}{2} \int_{-1}^1 z(x)^2 \, dx$$

where $U(z) = u \in L^2_\rho(\Xi; H_0^1(0, 1))$ solves the weak form of

$$\begin{aligned} -\partial_x (\epsilon(\xi, x) \partial_x u(\xi, x)) &= f(\xi, x) + z(x) & (\xi, x) \in \Xi \times \Omega, \\ u(\xi, -1) &= 0, \quad u(\xi, 1) = 0 & \xi \in \Xi. \end{aligned}$$

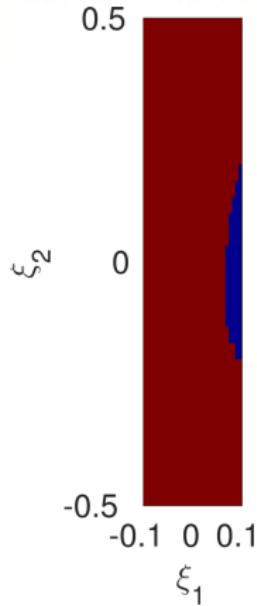
$\Xi = [-0.1, 0.1] \times [-0.5, 0.5]$ is endowed with the uniform density $\rho \equiv 5$ and the random field coefficients are

$$\epsilon(\xi, x) = 0.1 \chi_{(-1, \xi_1)} + 10 \chi_{(\xi_1, 1)}, \quad \text{and} \quad f(\xi, x) = \exp(-(x - \xi_2)^2).$$

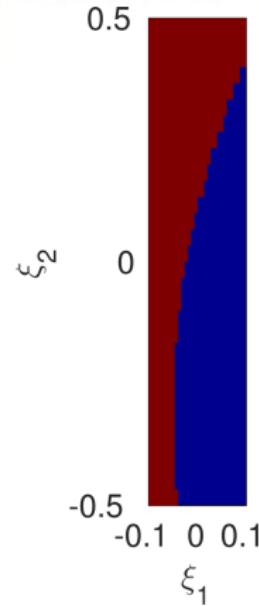
Example — CVaR

Discretization: Uniform ($n = 900$) with level 4 sparse grids.

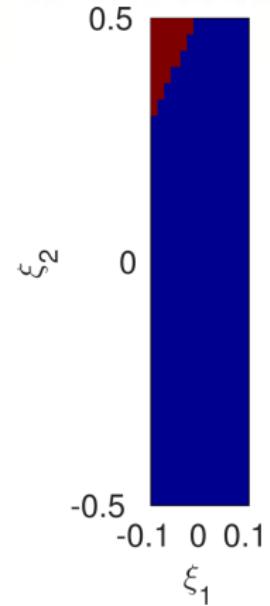
$$\beta = 0.05$$



$$\beta = 0.5$$



$$\beta = 0.95$$



$$\mathcal{A}_n = \left\{ p \in \mathbb{R}^n : \sum_{i=1}^n p_i = 1, 0 \leq p_i \leq \frac{\mu(V_i)}{1 - \beta}, i = 1, \dots, n \right\}$$

Conclusions:

- ▶ **Risk Neutral:**
 - ▶ Can efficiently solve using adaptive sparse grids and trust regions.
- ▶ **Risk Averse:**
 - ▶ Risk measures often not differentiable;
 - ▶ Define smooth risk measures using the risk quadrangle;
 - ▶ Can use Newton's method/quad. and can prove error bounds.
- ▶ **Unknown Distribution:**
 - ▶ Incorporate data into distributionally-robust opt. formulation;
 - ▶ Objective function not differentiable;
 - ▶ Nonsmooth optimization algorithms converge slowly.

Future Work:

- ▶ **Risk measures:** Develop error indicators and use locally adaptive sparse grids with trust-region algorithm.
- ▶ **Unknown distribution:** Develop opt. algorithm with adaptive tessellation and sampling that exploits PDE constraint.
- ▶ Incorporate **(buffered) probabilistic objectives and constraints** to control *tail-probabilities* and *rare events*
(Rockafellar, Uryasev, Royset, Shapiro, Henrion, Kibzun, ...)