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Motivation

Reservoir Optimization Superconductor Vortex Pinning
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Optimization Problem Formulation

Goal: Control uncertainty rather than quantify uncertainty.

Initialize Determine Observe Mak
Physical Control Physical Deceilsi?)n
Model Action System
' !
: A
Inverse
=
Problem

We implement the control prior to observing the state.
Control is deterministic.
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+.Optimization of PDEs with Uncertain Inputs
Optimal Control: Given a >0, Q, C Q, Q. C Q, and w € L*(Q,).

mip J&) = 3R | [ (U@NED - vl dx| + 5 [ ) ax
where U(z) = u : = — H(Q) solves the weak form of
-V - (e(§)Vu(&)) + N(u(8),¢) = xa.z, in Q, a.s.
u(€) = g(&), on 99, a.s.

Topology Optimization: Given0 < Vy <land Q c R, d =1,2,3.

min J(z) =R [/Q F(&,x)- (U(2)(&,x)dx| st 0<z<1, /Qz(x) dx < Vy|Q|

ZEZ

where U(z) = u : = — H'(Q)“ solves the weak form of

=V - (E(z) : e(u(§)) = F(¢), in Q, a.s.
e(u(&)) = %(Vu(f) +vue)"), inQ, as.
u(§) = g(¢), on 99, a.s.
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+General PDE-Optimization under Uncertainty

(Q2, F, P) is a complete probability space and & : Q@ — = is a random variable.
Consider
min J(z) = R(f((U(2))(£),2 €))

Z€EZ,4
where U(z) = u € L5 (9;U) solves the weak form PDE

e(u,z,6) =0 and Z,4 C Z.

Assumptions:
» U is a reflexive Banach space and Z is a Hilbert spaces.
» Foreachz € Z,3and € € E, e(u,z,£) = 0 is well posed, i.e.,
» 31 U(z) = u € LL(E;U) such that e(U(z),z, &) = 0;
» Jc¢ > 0indpendent of z and £ € E such that ||U(z)||u < ¢(||z]|z +1).
> eis a.s. sequentially weakly continuous.
> fis a.s. sequentially weakly Isc and & — f((U(2))(¢),z,¢) € Llog,l(E).
» Z.4 is convex, closed and bounded — or —

Za=Zandz — f((U(z))(&),z¢) is a.s. coercive i.e.,
3r >0 and coercive ¢ : Z — R U {400}, both independent of ¢, s.t.

ez 27 = AUE)E).20 2 v(2) as.




+.Known v.s. Unknown Probability Distribution

Known Probability Distribution:
» = C RMis known and P o £~! has Lebesgue density p : = — [0, 00).
» Enables UQ techniques including gPC, collocation, and sampling.
» All analysis performed in L},(Z) instead of Lgos,l (2).

Unknown Probability Distribution:
» Must determine optimal solutions that are robust to unknown pdf.

v

Use data to estimate pdf (i.e., experimental data or inverted coefficients).

v

Formulate optimization problem as a minimax problem

min sup EP[f((U(Z)VZv )]

Z€Zad pe A

v

A is the ambiguity set and is defined with data, i.e., moment matching.

v

Must discretize the probability measures P € A.

v

Require specialized optimization algorithms to efficiently solve.

Sandia
National
Laboratories



ks Outline

Known Probability Distribution
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Risk Measures

Assumptions:
> R: L} 1(8) = RU{+o0}
see Rockafellar, Uryasev, Shapiro, Dentcheva, Ruszczynski, ...
» R is convex, Isc and satisfies R(C) = C for all constants C;

» R is monotonic, i.e., if X; > X5 a.s., then R(X;) > R(Xa).

Result: There exists a minimizer of ] in Z.4.

Risk Neutral v.s. Risk Averse
» Risk Neutral: R = E.

» Optimal solution minimizes on average.
» Efficiently solved with adaptive sparse grid trust-region algorithm
Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders.

» Risk Averse: R(X) > E[X] V nonconstant X € L;’,og,l(E).

» More conservative than R = E.
» Can minimize measures of deviation and/or tail events.
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Choosing a Risk Measure

Controlling Uncertainty
> Reduce variability of optimized system:
18
E(X-E[X])? or E[(X-E[X)}]7
» Control rare events, reduce failure regions, and certify reliability:
Pr[X < ] or  VaRg[X]=inf{teR : PrX<t>p}
» Minimize over undesirable events:

CVaRg[X] = —— X(w) dP(w) = E[X| X > VaRg[X]]
1= B8 Jx>varg[x]
P& PrX<i=5
CONDITIONAL ' HE “ f
VALUE-AT-RISK: X o
R(X) = CVaR[X] (&)t =VaRs[x]
. = §
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’ Classification of Risk Measures

Shapiro, Dentcheva, Ruszczynski, Rockafellar, Uryasey, . . .

R : L} (Z) — RU {co} is a monetary risk measure if for X, X1, Xo € L} (=)
» Monotonicity: X; > X; ae. = R(X1) > R(X2)
» Translation Equivariance: R(X+1t) =R(X)+t, VteR
R is a convex risk measure if
> TR is a monetary risk measure
> Convexity: R(tX:+ (1 —1)Xz) <tR(X1) + (1 -HR(X2), Vte0,1]
R is a coherent risk measure if
> R is a convex risk measure
> Positive Homogeneity: R(tX) = tR(X), Vt>D0.

Examples of coherent risk measures with X € L],(=):
> Risk Neutral: R(X) =E[X]
» Mean Plus Semideviation: R(X) = E[X] + cE[(X — E[X])+], c € (0,1)
» Conditional Value-at-Risk: R(X) =inf {t+cE[(X —t)+] : t e R}, ¢ >1
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’ Duality Theory of Risk Measures

The Fenchel-Moreau Theorem = if R is a convex risk measure, then

R(X)= sup {E[¥X]—R"(¥)}
Yedom(R*)

where R™ is the conjugate of R, i.e., R*(¥) = sup {E[¥X] - R(X)}.

Xedom(R)

Moreover, if R is a coherent risk measure, then

R(X)= sup E[WX].
Yedom(R*)

dom(R") is the risk envelope — related to ambiguity set.
Example (Conditional Value-at-Risk):

R(X) = CVaRs[X] = inf { t+(1—8)'E[(X - t)+]} = sup E[X]
t Yedom(R*)

dom(R*) = {19 € (L) :EW =1,0<9< ﬁ p-a.e.}.
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Distributionally Robust PDE-Optimization

Recall: (Z, F) is a measurable space and prob. measure is unknown.
» M is the Banach space of regular Borel measures on F, i.e.,

C(E)" M.
» M* C Mis the set of positive measures, i.e.,
peEMt = wV)>0 VVeF
» Ambiguity Set: A C M defined by data. For example:

» Moment Matching: Given generalized moment data m, . .., my,

A:{Pe/\/ﬁ; (2) /wl YAP(6) =my, i=1,. N}.

» ®-Divergence (e.g., Kullback-Leibler): Given an estimated prob.
measure Py and € > 0,
A={Pe M’ : P(E)=1,Ds(P,Py) <€}.

» Distributionally-robust (a.k.a. data-driven) optimization problem:

min sup f(( (2))(€),2,) dP(E).

2€2ad pea

Sandia
National
Laboratories



Measure Approximation

General Approach:
1. Let {yi}i_; be a partition of unity on Z and n € M be any measure.
2. Define the “localized” measures

(V) = / i(6) du(é).

3. Note u(B) = () + ... + ().
4. Define the projection operators I/ : C(Z) — span{¢1,...,pn} as

My =3 (=)™ / Y& dui(€) i Wy € C(E)
i=1 =
and A : M — span{u1,..., .} as

A”V—Zu157L Edv(¢) pi YveN,
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Approximation Properties

» Lemma: If u € M™ is o-finite, then Al/v is absolutely continuous
with respect to p with density

Zu, =) / (&) dv(&)yi forany v e M.

» Lemma: A} is invariant on the space of probability measures.

» Lemma: II/ is the adjoint of AJ.

» Theorem: Let V; = supp(y;) and || - ||.,v, denote the uniform
norm on V;. Then, there exists ¢; > 0 such that

v = Niv ) amce| < e { / \/wi(E)dIVI(f)} inf V@i = 59l
i=1 = !
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’ Measure Approximation

Piecewise Constants:
1. Let {Vi}._, be a tesselation of E and define ¢; = xv,.
2. The “localized” measures are

pi(V) = p(V N Vi).
3. The projection operator IT} : C(Z) — span{1,...,pn} IS
iy =Y uv) " [ w©)du©) x, vyecE)
i=1 i
and A : M — span{u1,..., ta}is

Aﬁy = Zu(vi)_ll/(vi)ui Vv e N,
i=1

» Theorem: Suppose V; are convex, bounded, and Lipschitz, and . € M.
Then 3 ¢ > 0 only depending on M such that

n V) .
v—Av||pee iz < (1—|—|M(1>1/V,» diam(V;).
l llwi.o (=) ; (V)] lvI(Vi) (Vi)
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Example — Voronoi Tesselation

Suppose = = [0,1] and P has pdf

__ B s
pdf(¢) = P for B >0.
Approx. P using piecewise constant projection and y set to the uniform prob. measure:

n —Baj_1 _ ,—PBa;
approx-pdf(§) = Z (1(6_ e*ﬁ)(a-e— 11‘7)1) X

i=1

a;_1,a;] (g)

B n Error Sum W. Diam. Max. Diam. Max. W. Diam.
10 | 3592 x 1072  1.438x 10~T 2518 x 10! 5.899 x 102
1 100 | 3.740 x 1073 1.496 x 1072 4.269 x 1072 1.471 x 1073
1000 | 3.751 x 107* 1501 x 107%  6.089 x 107> 2.733 x 10~°
10000 | 3.750 x 107> 1.500 x 10~*  7.955 x 10~*  4.404 x 1077

10 | 2282 x 1077 1.304 x 10°T 7572 x 10! 1.010 x 1071
10 100 | 3.053 x 1072 1451 x 1072 5328 x 107! 8.191 x 1073
1000 | 3.551 x 1072 1.502 x 1073 3.133 x 107! 5.424 x 1074
10000 | 3.763 x 10~% 1517 x 10~*  1.300 x 107! 2.710 x 107°

10 | 3.076 x 1077 1.226 x 10°7  9.758 x 10! 1.194 x 1077
100 100 | 4128 x 1072 1.327 x 1072 9.531 x 10~! 1.261 x 1072
1000 | 5.022 x 107°  1.348 x 10~%  9.301 x 10" 1.247 x 1072
10000 | 5.899 x 10™*  1.360 x 10™*  9.072 x 10" 1.224 x 10~*
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Approximation and Optimization Algorithms
Given an arbitrary u € M™ with u(Z) = 1, we approximate
J(z) = sup | f((U(2))(€),2,€) dP(E)
PeAJE

using our measure discretization, i.e.,

Ja(z) = sup > ””)/:fw(z)(o,z,s)dm(o, An:{pew: 2 mGA}~

ped, = Hi(E = 1i(E)

» Theorem (Piecewise Constants): If ¢ — f(U(z)(€),z,&) € W2 (E)
and z, minimizes J, defined on a family of tesselations {V,;}/_, satisfying
lim su P(V,;)diam(V,;) = 0.
Jim sup D )
Then, z, has a w-converging subsequence and the w-limit minimizes J.
» ] and J, may not be differentiable!
» J and J, are Fréchet subdifferentiable.
» Compute value and subgradient using linear/convex optimization.
» Cannot use derivative-based optimization algorithms.
» Subgradient descent and bundle methods converge sublinearly.
@ sn Expensive PDEs —- Need rapid optimization algorithms.
National
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e Example — Moment Matching

Let ¢; : © — R be F-measurable functions and m; € Rfori=1,...,N
qupl(&)dP(é-) =m;,i=1,...,Ne
o .

Je¥i(©)dP(&) <mj,i=Ne+1,...,

Theorem (Shapiro): If A # (), then for each z € Z there exists & and p; > 0 with
p1+ -+ pny1 = 1 such that

A:{PeM* : P(B) =1,

N+1

sup / PO 4 = 3 pf(UE)(E)2:)

Approximation: Localized measures y;

]nlu()f Pi(€ d/ij(g):mivizlw-wNe
A=< peR" : ijzl,
= o1 ey J= i€ dui(€) <mi i =Ne+1,.. N
Theorem (Kouri): If A, # 0, then for each z € Z there exists p; > 0 with at most
min{n, N + 1} nonzero such thatp; 4+ - -+ py4+1 =1 and
n N+1

sup @ f U(2))(€),2, &) dpi(8) =

qE-An]1'u']':'
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Example — Moment Matching

Optimal Control of 1D Elliptic Equation
Leta=10"%Q, = Q. = Q= (-1,1), and w = 1 and consider

1
+Q/ z(x)? dx
2/,

where U(z) = u € L3(Z; Hj(0,1)) solves the weak form of

1
minimize z)==R
z€L2(—1,1) /@) 2

/_ 11<u<z><-,x> 1) dx

—0x (e(&,x)0cu(&,x)) = f(&,x) + z(x) (&,x) €2 xQ,
u(Ev 71) = 0’ u(Ev 1) =0 E €=
= =[-0.1,0.1] x [-0.5,0.5], the true distribution is a tensor product of

truncated exponentials, and the random field coefficients are

6(5,3() = O~1X(71,$1) + 10}((51’1), and f(f,X) = exp(—(x — 52)2).
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Example — Moment Matching

P / €1dP(€) ~ —0.537, and / £ dP(¢) ~ —0.313

1 1 1
0.75
G0 105 & 0
0.25
-1 0 -1
-1 0 1
¢
™1

0
-1 0 1

& &

» Left: Voronoi (n = 64) with 1000 MC samples per cell.
» Center: Uniform (n = 64) with level 4 sparse grids.

» Right: C? parition of unity (1 = 64) with level 4 sparse grids,
i.e., shifted/scaled tensor products of

4x*(3 — 4x) ifo<x<l
O(x) = 4(x—1)*(4x—1)if § <x <1
0 otherwise.
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Example — Moment Matching

n | Obj. Val. Center Prob. Center Prob. Center Prob.
S 16 | 0.13457 || (—0.864,—0.893) | 0.435 | (—0.634,0.841) | 0.328 || (0.195,—0.848) | 0.237
e 64 || 0.13777 || (—0.882,-0.933) | 0.540 || (—0.331,0.849) | 0.346 | (0.467,—0.909) | 0.114
S| 256 || 0.14056 (—0.981,—-0.983) | 0.605 (0.116,0.922) | 0.351 (0.330, —0.960) 0.044
§ 1024 || 0.14133 (—0.126,—-0.987) | 0.484 | (—0.916,0.988) | 0.342 | (—0.939,—0.994) | 0.174
S| 4096 | 0.14207 (—0.978,—-0.997) | 0.368 | (—0.813,0.988) | 0.343 (0.350, —0.991) 0.289
~* 16 || 0.13221 (—0.750, —0.750) | 0.709 | (—0.750,0.750) | 0.150 (0.750,0.750) 0.142
Il 64| 013779 | (~0.857,-0.875) | 0.49 || (—0.875,0.875) | 0.321 || (0.875,—0.875) | 0.193
©| 256 || 0.14058 || (—0.063,—0.938) | 0.457 || (—0.938,0.938) | 0.333 | (—0.938,—0.938) | 0.210
S| 1024 | 0.14194 || (—0.969, —0.969) | 0.438 | (—0.969,0.969) | 0.338 || (0.906,—0.969) | 0.223
g 4096 || 0.14286 (—1.000,—1.000) | 0.433 | (—0.968,1.000) | 0.342 (1.000, —1.000) 0.225
16 | 0.13444 || (—1.000,—1.000) | 0.696 | (1.000,1.000) | 0.164 || (—1.000,1.000) | 0.140
T‘I‘ 64 || 0.13953 (—1.000,—1.000) | 0.501 | (—0.714,1.000) | 0.329 (1.000, —1.000) 0.170
~| 256 || 0.14154 (—1.000, —1.000) | 0.663 (0.867,1.000) | 0.231 (—1.000, 1.000) 0.106
Y| 1024 | 0.14244 (—1.000, —1.000) | 0.441 | (—0.935,1.000) | 0.340 (1.000, —1.000) 0.218
4096 || 0.14286 || (—1.000,—1.000) | 0.433 || (—0.968,1.000) | 0.342 || (1.000,—1.000) | 0.225

[ [ *] 0.15640 ] (—0.995,-0.996) [ 0.657 ]| (0.432,1.000) | 0.323 [ (—0.993,0.999) [ 0.019 |

* Computed using Gaivoronski’s stochastic descent algorithm for moment matching.
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Example — CVaR

Optimal Control of 1D Elliptic Equation
Leta=10,Q,=Q,=Q = (-1,1),and w = 1 and consider

1
+E/ z(x)? dx
2J

where U(z) = u € L}(Z; Hj(0,1)) solves the weak form of

/ L (UE)(x) 17 dx

1
minimize [(z) = ER
-1

z€l2(—1,1)

=0y (e(&,x)0xu (&, x)) = f(&,x) +z(x) (&x) €ExQ,
u(€,-1)=0, u(&,1)=0 ==

E =[-0.1,0.1] x [-0.5,0.5] is endowed with the uniform density p = 5
and the random field coefficients are

€(&,x) = 0.1x(—1,¢,) + 10x(e,,1),  and  f(&,x) = exp(—(x — 52)2).
Sandia
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- Example — CVaR

Discretization: Uniform (n = 900) with level 4 sparse grids.

,3:0.05 _05 _095
0.5 0.5
uj\l | I I
-0.5
-0.1 0 0.1 -01001 -01001
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e
Conclusions:

» Risk Neutral:

» Can efficiently solve using adaptive sparse grids and trust regions.
> Risk Averse:

» Risk measures often not differentiable;

» Define smooth risk measures using the risk quadrangle;

» Can use Newton’s method/quad. and can prove error bounds.
» Unknown Distribution:

» Incorporate data into distributionally-robust opt. formulation;
» Objective function not differentiable;
» Nonsmooth optimization algorithms converge slowly.

Future Work:

» Risk measures: Develop error indicators and use locally adaptive
sparse grids with trust-region algorithm.
» Unknown distribution: Develop opt. algorithm with adaptive
tessellation and sampling that exploits PDE constraint.
» Incorporate (buffered) probabilistic objectives and constraints to
control tail-probabilities and rare events
@ o (Rockafellar, Uryasev, Royset, Shapiro, Henrion, Kibzun, ...)
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