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Motivation
Reservoir Optimization

v = −Kλ(s)∇p, ∇ · v = q

φ ∂ts +∇ · ( f (s)v ) = q̂

Superconductor Vortex Pinning

Courtesy Argonne National Laboratory

γ(∂t + iµ)ψ = εψ − |ψ|2ψ + (∇− iA)
2
ψ

J = Im(ψ̄(∇− iA)ψ)− (∂tA +∇µ), ∇ · J = 0

Direct Field Acoustic Testing

−∆u− κ2
(1 + σε)

2u = z



Optimization Problem Formulation

Goal: Control uncertainty rather than quantify uncertainty.

Initialize
Physical
Model

Determine
Control
Action

Observe
Physical
System

Inverse
or OED
Problem

Update
Model

Make
Decision

We implement the control prior to observing the state.
Control is deterministic.



Optimization of PDEs with Uncertain Inputs
Optimal Control: Given α > 0, Ωo ⊆ Ω, Ωc ⊆ Ω, and w ∈ L2(Ωo).

min
z∈Z

J(z) ≡ 1
2
R
[∫

Ωo

((U(z))(ξ, x)− w(x))2 dx
]

+
α

2

∫
Ωc

z2(x) dx

where U(z) = u : Ξ→ H1(Ω) solves the weak form of

−∇ · (ε(ξ)∇u(ξ)) + N(u(ξ), ξ) = χΩc z, in Ω, a.s..

u(ξ) = g(ξ), on ∂Ω, a.s.

Topology Optimization: Given 0 < V0 < 1 and Ω ⊂ Rd, d = 1, 2, 3.

min
z∈Z

J(z) ≡ R
[∫

Ω

F(ξ, x) · (U(z))(ξ, x) dx
]

s.t. 0 ≤ z ≤ 1,
∫

Ω

z(x) dx ≤ V0|Ω|

where U(z) = u : Ξ→ H1(Ω)d solves the weak form of

−∇ · (E(z) : ε(u(ξ)) = F(ξ), in Ω, a.s..

ε(u(ξ)) =
1
2

(∇u(ξ) +∇u(ξ)>), in Ω, a.s..

u(ξ) = g(ξ), on ∂Ω, a.s.



General PDE-Optimization under Uncertainty
(Ω,F ,P) is a complete probability space and ξ : Ω→ Ξ is a random variable.
Consider

min
z∈Zad

J(z) = R(f ((U(z))(ξ), z, ξ))

where U(z) = u ∈ Lp
P(Ω;U) solves the weak form PDE

e(u, z, ξ) = 0 and Zad ⊆ Z.

Assumptions:
I U is a reflexive Banach space and Z is a Hilbert spaces.
I For each z ∈ Zad and ξ ∈ Ξ, e(u, z, ξ) = 0 is well posed, i.e.,

I ∃! U(z) = u ∈ Lp
P(Ξ;U) such that e(U(z), z, ξ) = 0;

I ∃ c > 0 indpendent of z and ξ ∈ Ξ such that ‖U(z)‖U ≤ c(‖z‖Z + 1).
I e is a.s. sequentially weakly continuous.
I f is a.s. sequentially weakly lsc and ξ 7→ f ((U(z))(ξ), z, ξ) ∈ Lq

P◦ξ−1 (Ξ).

I Zad is convex, closed and bounded – or –
Zad = Z and z 7→ f ((U(z))(ξ), z, ξ) is a.s. coercive i.e.,
∃ r > 0 and coercive ϕ : Z → R ∪ {+∞}, both independent of ξ, s.t.

‖z‖Z ≥ r =⇒ f ((U(z))(ξ), z, ξ) ≥ ϕ(z) a.s.



Known v.s. Unknown Probability Distribution

Known Probability Distribution:
I Ξ ⊆ RM is known and P ◦ ξ−1 has Lebesgue density ρ : Ξ→ [0,∞).
I Enables UQ techniques including gPC, collocation, and sampling.
I All analysis performed in Lp

ρ(Ξ) instead of Lp
P◦ξ−1 (Ξ).

Unknown Probability Distribution:
I Must determine optimal solutions that are robust to unknown pdf.
I Use data to estimate pdf (i.e., experimental data or inverted coefficients).
I Formulate optimization problem as a minimax problem

min
z∈Zad

sup
P∈A

EP[ f ((U(z), z, ·)]

I A is the ambiguity set and is defined with data, i.e., moment matching.
I Must discretize the probability measures P ∈ A.
I Require specialized optimization algorithms to efficiently solve.



Outline

Known Probability Distribution

Unknown Probability Distribution



Risk Measures

Assumptions:
I R : Lq

P◦ξ−1(Ξ)→ R ∪ {+∞}
see Rockafellar, Uryasev, Shapiro, Dentcheva, Ruszczynski, . . .

I R is convex, lsc and satisfies R(C) = C for all constants C;
I R is monotonic, i.e., if X1 ≥ X2 a.s., then R(X1) ≥ R(X2).

Result: There exists a minimizer of J in Zad.

Risk Neutral v.s. Risk Averse
I Risk Neutral: R ≡ E.

I Optimal solution minimizes on average.
I Efficiently solved with adaptive sparse grid trust-region algorithm

Kouri, Heinkenschloss, Ridzal, van Bloemen Waanders.
I Risk Averse: R(X) > E[X] ∀ nonconstant X ∈ Lq

P◦ξ−1(Ξ).

I More conservative than R ≡ E.
I Can minimize measures of deviation and/or tail events.



Choosing a Risk Measure
Controlling Uncertainty

I Reduce variability of optimized system:

E[(X − E[X])2] or E[(X − E[X])
q
+]

1
q

I Control rare events, reduce failure regions, and certify reliability:
Pr[X ≤ t] or VaRβ [X] = inf { t ∈ R : Pr[X ≤ t] ≥ β }

I Minimize over undesirable events:

CVaRβ [X] =
1

1− β

∫
X≥VaRβ [X]

X(ω) dP(ω) = E[X |X ≥ VaRβ [X]]

CONDITIONAL

VALUE-AT-RISK:
R(X) = CVaRβ [X]

ξ

ρ(ξ) Pr[X ≤ t] = β

ξ

X(ξ) t = VaRβ [X]



Classification of Risk Measures
Shapiro, Dentcheva, Ruszczynski, Rockafellar, Uryasev, . . .

R : Lq
ρ(Ξ)→ R ∪ {∞} is a monetary risk measure if for X, X1, X2 ∈ Lq

ρ(Ξ)

I Monotonicity: X1 ≥ X2 a.e. =⇒ R(X1) ≥ R(X2)

I Translation Equivariance: R(X + t) = R(X) + t, ∀t ∈ R
R is a convex risk measure if

I R is a monetary risk measure
I Convexity: R(tX1 + (1− t)X2) ≤ tR(X1) + (1− t)R(X2), ∀t ∈ [0, 1]

R is a coherent risk measure if
I R is a convex risk measure
I Positive Homogeneity: R(tX) = tR(X), ∀t > 0.

Examples of coherent risk measures with X ∈ Lq
ρ(Ξ):

I Risk Neutral: R(X) = E[X]

I Mean Plus Semideviation: R(X) = E[X] + cE[(X − E[X])+], c ∈ (0, 1)

I Conditional Value-at-Risk: R(X) = inf { t + cE[(X− t)+] : t ∈ R }, c > 1



Duality Theory of Risk Measures

The Fenchel-Moreau Theorem =⇒ if R is a convex risk measure, then

R(X) = sup
ϑ∈dom(R∗)

{E[ϑX]−R∗(ϑ)}

where R∗ is the conjugate of R, i.e., R∗(ϑ) = sup
X∈dom(R)

{E[ϑX]−R(X)}.

Moreover, if R is a coherent risk measure, then

R(X) = sup
ϑ∈dom(R∗)

E[ϑX].

dom(R∗) is the risk envelope =⇒ related to ambiguity set.

Example (Conditional Value-at-Risk):

R(X) = CVaRβ [X] = inf
t

{
t + (1− β)−1E[(X − t)+]

}
= sup
ϑ∈dom(R∗)

E[ϑX]

dom(R∗) =

{
ϑ ∈ (Lq

ρ(Ξ))∗ : E[ϑ] = 1, 0 ≤ ϑ ≤ 1
1− β ρ-a.e.

}
.
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Distributionally Robust PDE-Optimization

Recall: (Ξ,F) is a measurable space and prob. measure is unknown.
I M is the Banach space of regular Borel measures on F , i.e.,

C(Ξ)∗ ∼=M.

I M+ ⊂M is the set of positive measures, i.e.,

µ ∈M+ =⇒ µ(V) ≥ 0 ∀V ∈ F .

I Ambiguity Set: A ⊂M defined by data. For example:
I Moment Matching: Given generalized moment data m1, . . . ,mN,

A =

{
P ∈M+ : P(Ξ) = 1,

∫
Ξ

ψi(ξ) dP(ξ) = mi, i = 1, . . . ,N
}
.

I Φ-Divergence (e.g., Kullback-Leibler): Given an estimated prob.
measure P0 and ε > 0,

A =
{

P ∈M+ : P(Ξ) = 1, DΦ(P,P0) ≤ ε
}
.

I Distributionally-robust (a.k.a. data-driven) optimization problem:

min
z∈Zad

sup
P∈A

∫
Ξ

f ((U(z))(ξ), z, ξ) dP(ξ).



Measure Approximation

General Approach:
1. Let {ϕi}n

i=1 be a partition of unity on Ξ and µ ∈M be any measure.

2. Define the “localized” measures

µi(V) =

∫
V
ϕi(ξ) dµ(ξ).

3. Note µ(Ξ) = µ1(Ξ) + . . .+ µn(Ξ).

4. Define the projection operators Πµ
n : C(Ξ)→ span{ϕ1, . . . , ϕn} as

Πµ
n y =

n∑
i=1

µi(Ξ)−1
∫

Ξ

y(ξ) dµi(ξ) ϕi ∀ y ∈ C(Ξ)

and Λµn :M→ span{µ1, . . . , µn} as

Λµn ν =
n∑

i=1

µi(Ξ)−1
∫

Ξ

ϕi(ξ) dν(ξ) µi ∀ ν ∈ N ,



Approximation Properties

I Lemma: If µ ∈M+ is σ-finite, then Λµnν is absolutely continuous
with respect to µ with density

fµn [ν] =

n∑
i=1

µi(Ξ)−1
∫

Ξ

ϕi(ξ) dν(ξ)ϕi for any ν ∈M.

I Lemma: Λµn is invariant on the space of probability measures.
I Lemma: Πµ

n is the adjoint of Λµn .
I Theorem: Let Vi = supp(ϕi) and ‖ · ‖u,Vi denote the uniform

norm on Vi. Then, there exists ci > 0 such that

|〈ν − Λµn ν, y〉M,C(Ξ)| ≤
n∑

i=1

ci

{∫
Ξ

√
ϕi(ξ) d|ν|(ξ)

}
inf

ȳi∈R
‖√ϕi(y− ȳi)‖u,Vi .



Measure Approximation
Piecewise Constants:

1. Let {Vi}n
i=1 be a tesselation of Ξ and define ϕi = χVi .

2. The “localized” measures are

µi(V) = µ(V ∩ Vi).

3. The projection operator Πµ
n : C(Ξ)→ span{ϕ1, . . . , ϕn} is

Πµ
n y =

n∑
i=1

µ(Vi)
−1
∫

Vi

y(ξ) dµ(ξ) χVi ∀ y ∈ C(Ξ)

and Λµn :M→ span{µ1, . . . , µn} is

Λµn ν =

n∑
i=1

µ(Vi)
−1ν(Vi)µi ∀ ν ∈ N ,

I Theorem: Suppose Vi are convex, bounded, and Lipschitz, and µ ∈M.
Then ∃ c > 0 only depending on M such that

‖ν − Λµn ν‖W1,∞(Ξ)∗ ≤ c
n∑

i=1

(
1 +
|µ|(Vi)

|µ(Vi)|

)
|ν|(Vi) diam(Vi).



Example — Voronoi Tesselation

Suppose Ξ = [0, 1] and P has pdf

pdf(ξ) =
β

1− e−β
e−βξ for β > 0.

Approx. P using piecewise constant projection and µ set to the uniform prob. measure:

approx-pdf(ξ) =
n∑

i=1

(e−βai−1 − e−βai )

(1− e−β)(ai − ai−1)
χ[ai−1,ai]

(ξ).

β n Error Sum W. Diam. Max. Diam. Max. W. Diam.

1

10 3.592× 10−2 1.438× 10−1 2.518× 10−1 5.899× 10−2

100 3.740× 10−3 1.496× 10−2 4.269× 10−2 1.471× 10−3

1000 3.751× 10−4 1.501× 10−3 6.089× 10−3 2.733× 10−5

10000 3.750× 10−5 1.500× 10−4 7.955× 10−4 4.404× 10−7

10

10 2.282× 10−1 1.304× 10−1 7.572× 10−1 1.010× 10−1

100 3.053× 10−2 1.451× 10−2 5.328× 10−1 8.191× 10−3

1000 3.551× 10−3 1.502× 10−3 3.133× 10−1 5.424× 10−4

10000 3.763× 10−4 1.517× 10−4 1.300× 10−1 2.710× 10−5

100

10 3.076× 10−1 1.226× 10−1 9.758× 10−1 1.194× 10−1

100 4.128× 10−2 1.327× 10−2 9.531× 10−1 1.261× 10−2

1000 5.022× 10−3 1.348× 10−3 9.301× 10−1 1.247× 10−3

10000 5.899× 10−4 1.360× 10−4 9.072× 10−1 1.224× 10−4



Approximation and Optimization Algorithms
Given an arbitrary µ ∈M+ with µ(Ξ) = 1, we approximate

J(z) = sup
P∈A

∫
Ξ

f ((U(z))(ξ), z, ξ) dP(ξ)

using our measure discretization, i.e.,

Jn(z) = sup
p∈An

n∑
i=1

pi

µi(Ξ)

∫
Ξ

f (U(z)(ξ), z, ξ) dµi(ξ), An =

{
p ∈ Rn :

n∑
i=1

pi

µi(Ξ)
µi ∈ A

}
.

I Theorem (Piecewise Constants): If ξ 7→ f (U(z)(ξ), z, ξ) ∈ W1,∞(Ξ)
and zn minimizes Jn defined on a family of tesselations {Vni}n

i=1 satisfying

lim
n→∞

sup
P∈A

n∑
i=1

P(Vni)diam(Vni) = 0.

Then, zn has a w-converging subsequence and the w-limit minimizes J.
I J and Jn may not be differentiable!

I J and Jn are Fréchet subdifferentiable.
I Compute value and subgradient using linear/convex optimization.
I Cannot use derivative-based optimization algorithms.
I Subgradient descent and bundle methods converge sublinearly.

I Expensive PDEs =⇒ Need rapid optimization algorithms.



Example — Moment Matching
Let ψi : Ξ→ R be F -measurable functions and mi ∈ R for i = 1, . . . ,N

A =

 P ∈M+ : P(Ξ) = 1,

∫
Ξ ψi(ξ) dP(ξ) = mi, i = 1, . . . ,Ne∫
Ξ ψi(ξ) dP(ξ) ≤ mi, i = Ne + 1, . . . ,N

 .

Theorem (Shapiro): If A 6= ∅, then for each z ∈ Z there exists ξi and pi ≥ 0 with
p1 + · · ·+ pN+1 = 1 such that

sup
P∈A

∫
Ξ

f ((U(z))(ξ), z, ξ) dP(ξ) =

N+1∑
i=1

pi f ((U(z))(ξi), z, ξi)

Approximation: Localized measures µj

An =

 p ∈ Rn :
n∑

j=1

pj = 1,

∑n
j=1

pj
µj(Ξ)

∫
Ξ ψi(ξ) dµj(ξ) = mi, i = 1, . . . ,Ne

∑n
j=1

pj
µj(Ξ)

∫
Ξ ψi(ξ) dµj(ξ) ≤ mi, i = Ne + 1, . . . ,N

 .

Theorem (Kouri): If An 6= ∅, then for each z ∈ Z there exists pi ≥ 0 with at most
min{n,N + 1} nonzero such that p1 + · · ·+ pN+1 = 1 and

sup
q∈An

n∑
j=1

qj

µj(Ξ)

∫
Ξ

f ((U(z))(ξ), z, ξ) dµj(ξ) =

N+1∑
j=1

pj

µj(Ξ)

∫
Ξ

f ((U(z))(ξ), z, ξ) dµj(ξ).



Example — Moment Matching
Optimal Control of 1D Elliptic Equation

Let α = 10−4, Ωo = Ωc = Ω = (−1, 1), and w ≡ 1 and consider

minimize
z∈L2(−1,1)

J(z) =
1
2
R

[∫ 1

−1
(U(z)(·, x)− 1)2 dx

]
+
α

2

∫ 1

−1
z(x)2 dx

where U(z) = u ∈ L2
ρ(Ξ; H1

0(0, 1)) solves the weak form of

−∂x (ε(ξ, x)∂xu(ξ, x)) = f (ξ, x) + z(x) (ξ, x) ∈ Ξ× Ω,

u(ξ,−1) = 0, u(ξ, 1) = 0 ξ ∈ Ξ.

Ξ = [−0.1, 0.1]× [−0.5, 0.5], the true distribution is a tensor product of
truncated exponentials, and the random field coefficients are

ε(ξ, x) = 0.1χ(−1,ξ1) + 10χ(ξ1,1), and f (ξ, x) = exp(−(x− ξ2)2).



Example — Moment Matching

P(Ξ) = 1,
∫

Ξ

ξ1 dP(ξ) ≈ −0.537, and
∫

Ξ

ξ2 dP(ξ) ≈ −0.313

I Left: Voronoi (n = 64) with 1000 MC samples per cell.
I Center: Uniform (n = 64) with level 4 sparse grids.
I Right: C2 parition of unity (n = 64) with level 4 sparse grids,

i.e., shifted/scaled tensor products of

θ(x) =


4x2(3− 4x) if 0 < x ≤ 1

2
4(x− 1)2(4x− 1) if 1

2 < x < 1
0 otherwise.



Example — Moment Matching

n Obj. Val. Center Prob. Center Prob. Center Prob.

Vo
ro

no
i1

00
0 16 0.13457 (−0.864,−0.893) 0.435 (−0.634, 0.841) 0.328 (0.195,−0.848) 0.237

64 0.13777 (−0.882,−0.933) 0.540 (−0.331, 0.849) 0.346 (0.467,−0.909) 0.114
256 0.14056 (−0.981,−0.983) 0.605 (0.116, 0.922) 0.351 (0.330,−0.960) 0.044

1024 0.14133 (−0.126,−0.987) 0.484 (−0.916, 0.988) 0.342 (−0.939,−0.994) 0.174
4096 0.14207 (−0.978,−0.997) 0.368 (−0.813, 0.988) 0.343 (0.350,−0.991) 0.289

S
qu

ar
e
`

=
4 16 0.13221 (−0.750,−0.750) 0.709 (−0.750, 0.750) 0.150 (0.750, 0.750) 0.142

64 0.13779 (−0.857,−0.875) 0.496 (−0.875, 0.875) 0.321 (0.875,−0.875) 0.193
256 0.14058 (−0.063,−0.938) 0.457 (−0.938, 0.938) 0.333 (−0.938,−0.938) 0.210

1024 0.14194 (−0.969,−0.969) 0.438 (−0.969, 0.969) 0.338 (0.906,−0.969) 0.223
4096 0.14286 (−1.000,−1.000) 0.433 (−0.968, 1.000) 0.342 (1.000,−1.000) 0.225

C
2
`

=
4

16 0.13444 (−1.000,−1.000) 0.696 (1.000, 1.000) 0.164 (−1.000, 1.000) 0.140
64 0.13953 (−1.000,−1.000) 0.501 (−0.714, 1.000) 0.329 (1.000,−1.000) 0.170

256 0.14154 (−1.000,−1.000) 0.663 (0.867, 1.000) 0.231 (−1.000, 1.000) 0.106
1024 0.14244 (−1.000,−1.000) 0.441 (−0.935, 1.000) 0.340 (1.000,−1.000) 0.218
4096 0.14286 (−1.000,−1.000) 0.433 (−0.968, 1.000) 0.342 (1.000,−1.000) 0.225

? 0.15640 (−0.995,−0.996) 0.657 (0.432, 1.000) 0.323 (−0.993, 0.999) 0.019

? Computed using Gaivoronski’s stochastic descent algorithm for moment matching.



Example — CVaR
Optimal Control of 1D Elliptic Equation

Let α = 10, Ωo = Ωc = Ω = (−1, 1), and w ≡ 1 and consider

minimize
z∈L2(−1,1)

J(z) =
1
2
R

[∫ 1

−1
(U(z)(·, x)− 1)2 dx

]
+
α

2

∫ 1

−1
z(x)2 dx

where U(z) = u ∈ L2
ρ(Ξ; H1

0(0, 1)) solves the weak form of

−∂x (ε(ξ, x)∂xu(ξ, x)) = f (ξ, x) + z(x) (ξ, x) ∈ Ξ× Ω,

u(ξ,−1) = 0, u(ξ, 1) = 0 ξ ∈ Ξ.

Ξ = [−0.1, 0.1]× [−0.5, 0.5] is endowed with the uniform density ρ ≡ 5
and the random field coefficients are

ε(ξ, x) = 0.1χ(−1,ξ1) + 10χ(ξ1,1), and f (ξ, x) = exp(−(x− ξ2)2).



Example — CVaR
Discretization: Uniform (n = 900) with level 4 sparse grids.

β = 0.05 β = 0.5 β = 0.95

An =

{
p ∈ Rn :

n∑
i=1

pi = 1, 0 ≤ pi ≤
µ(Vi)

1− β , i = 1, . . . , n

}



Conclusions:
I Risk Neutral:

I Can efficiently solve using adaptive sparse grids and trust regions.
I Risk Averse:

I Risk measures often not differentiable;
I Define smooth risk measures using the risk quadrangle;
I Can use Newton’s method/quad. and can prove error bounds.

I Unknown Distribution:
I Incorporate data into distributionally-robust opt. formulation;
I Objective function not differentiable;
I Nonsmooth optimization algorithms converge slowly.

Future Work:
I Risk measures: Develop error indicators and use locally adaptive

sparse grids with trust-region algorithm.
I Unknown distribution: Develop opt. algorithm with adaptive

tessellation and sampling that exploits PDE constraint.
I Incorporate (buffered) probabilistic objectives and constraints to

control tail-probabilities and rare events
(Rockafellar, Uryasev, Royset, Shapiro, Henrion, Kibzun, ...)
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