

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-698269

Identification of genome-wide mutations in Ciprofloxacin-resistant *F. tularensis* LVS using whole genome tiling arrays and next generation sequencing

C. Jaing, K. McLoughlin, J. Thissen, A. Zemla, S. Gardner, L. Vergez, F. Bourguet, S. Mabery, V. Fofanov, H. Koshinsky, P. Jackson

July 21, 2016

PLOS ONE

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Identification of genome-wide mutations in Ciprofloxacin-resistant *F. tularensis* LVS using whole genome tiling arrays and next generation sequencing

Author: Crystal Jaing

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Lawrence Livermore National Laboratory

June 23, 2016

Dear editor of PLoS ONE:

I would like to submit a research article titled "Identification of genome-wide mutations in ciprofloxacin-resistant *F. tularensis* LVS using whole genome tiling arrays and high throughput sequencing" for consideration for publication in your journal.

In this study, we selected a large number of *F. tularensis* live vaccine strain (LVS) isolates that survived in progressively higher ciprofloxacin concentrations, screened the isolates using a whole genome *F. tularensis* LVS tiling microarray and Illumina sequencing, and identified both known and novel mutations associated with cipro resistance. Genes containing mutations encode DNA gyrase subunit A, a hypothetical protein, an asparagine synthase and a sugar transamine/perosamine synthetase. Structural modeling performed on these proteins provides insights into the potential function of these proteins and how they might contribute to cipro resistance mechanisms.

This study provided a comprehensive analysis of genes and mutations that associated with cipro resistance in *F. tularensis* LVS. The knowledge can benefit public health and biodefense applications and is therefore of interest to the broader scientific community.

All authors listed in this paper have seen and approved submission of this article to your journal. This article has not been submitted to any other journal for consideration.

Thank you very much for your consideration.

Sincerely,

A handwritten signature in blue ink that reads "Crystal Jaing".

Crystal Jaing
Lawrence Livermore National Laboratory
Physical and Life Sciences Directorate
7000 East Ave.
Mail Code L-452
Livermore, CA 94550
Phone: 925-424-6574
Fax: 925-422-2282
Email: jaing2@llnl.gov

Identification of genome-wide mutations in Ciprofloxacin-resistant *F. tularensis* LVS using whole genome tiling arrays and next generation sequencing

Crystal J. Jaing^{1*}, Kevin S. McLoughlin², James B. Thissen¹, Adam Zemla², Shea N. Gardner^{2†}, Lisa Vergez¹, Feliza Bourguet¹, Shalini Mabery¹, Viacheslav Fofanov^{3#}, Heather Koshinsky³, and Paul J. Jackson¹

¹Physical Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA

10 94550

11 ²Computations Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550

12 3Eureka Genomics, Hercules, CA 94547

13 [†]Deceased

¹⁴ #Current address: Northern Arizona State University, Flagstaff, AZ 86011

15

16 *Corresponding author

17 Email: jaing2@llnl.gov (CJ)

18

19 **Abstract**

20 *Francisella tularensis* is classified as a Class A bioterrorism agent by the U.S.
21 government due to its high virulence and the ease with which it can be spread as an aerosol. It is
22 a facultative intracellular pathogen and the causative agent of tularemia. Ciprofloxacin (Cipro) is
23 a broad spectrum antibiotic effective against Gram-positive and Gram-negative bacteria.
24 Increased Cipro resistance in pathogenic microbes is of serious concern when considering
25 options for medical treatment of bacterial infections. Identification of genes and loci that are
26 associated with Ciprofloxacin resistance will help advance the understanding of resistance
27 mechanisms and may, in the future, provide better treatment options for patients. It may also
28 provide information for development of assays that can rapidly identify Cipro-resistant isolates
29 of this pathogen.

30 In this study, we selected a large number of *F. tularensis* live vaccine strain (LVS)
31 isolates that survived in progressively higher Ciprofloxacin concentrations, screened the isolates
32 using a whole genome *F. tularensis* LVS tiling microarray and Illumina sequencing, and
33 identified both known and novel mutations associated with resistance. Genes containing
34 mutations encode DNA gyrase subunit A, a hypothetical protein, an asparagine synthetase, a sugar
35 transamine/perosamine synthetase and others. Structural modeling performed on these proteins
36 provides insights into the potential function of these proteins and how they might contribute to
37 Cipro resistance mechanisms.

38

39 **Introduction**

40 Ciprofloxacin (Cipro) is a broad-spectrum bactericidal fluoroquinolone antibiotic
41 effective against many Gram-positive and Gram-negative bacteria. Its known mode of action is
42 to bind to DNA topoisomerases involved in bacterial DNA replication, resulting in multiple
43 double-stranded breaks in the bacterial chromosome. Studies of naturally-occurring mutations in
44 several Gram-positive and Gram-negative pathogens that result in Ciprofloxacin resistance show
45 that amino acid substitutions within the quinolone resistance-determining regions (QRDRs) of
46 the *gyrA* and *parC* (and, in some cases, *gyrB* and *parE*) genes play crucial roles in resistance to
47 this and other quinolone compounds. Cipro resistance in *B. anthracis* is associated with single
48 nucleotide polymorphisms (SNPs) in *gyrA* and *parC* ([1] and our own unpublished results) but
49 may also result from changes in either the structure or expression of multi-drug efflux pumps
50 that actively remove antibiotics from microbial cells [2]. A single mutation within either a
51 topoisomerase or an efflux pump gene or its regulatory region may be sufficient to make *B.*
52 *anthracis* resistant to low Cipro concentrations. However, a combination of mutations is
53 apparently required to confer resistance to higher antibiotic concentrations (19). Recent studies
54 of *B. anthracis* ([3] and our own unpublished results) also identified mutations associated with
55 Cipro resistance in TetR-type transcriptional regulator genes. Point mutations in *gyrA* and *marA*
56 associated with multi-drug and Cipro resistance have been observed in *Yersinia pestis* [4, 5]
57 though they likely represent a minor fraction of the mutations that confer antibiotic resistance in
58 this species. To date, no genome-wide studies to identify mutations associated with Cipro
59 resistance in *Francisella tularensis* have been reported.

60 While unintended selection of naturally occurring antibiotic resistant mutants through
61 antibiotic overuse is a long-standing public health issue, a more recent concern is the possibility
62 that hostile individuals or organizations could engineer resistant strains deliberately. These
63 strains could be created either by targeted introduction of resistance elements or by selection of
64 spontaneous mutants. Introduction of genes encoding antibiotic resistance requires identification
65 of the responsible genes and insertion into an appropriate recipient pathogen, such that the
66 introduced material is expressed in an appropriate manner to cause drug resistance. Thus,
67 information about the genes and their impact on resistance must be known. Many such genes
68 have been described and their sequences are available in different DNA sequence databases. Not
69 all such genes have been inserted into the listed threat agents. However, methods of inserting
70 genetic material have been developed for a number of microbes including *B. anthracis*, *Y. pestis*,
71 *F. tularensis* and *B. pseudomallei* [6-8]. It is therefore feasible that, by targeting genes that
72 function in microbes closely related to specific threat agents, threat agent isolates that are
73 resistant to therapeutically important antibiotic concentrations can be developed. However, a
74 much more likely scenario for engineered resistance is that a threat agent will be subjected to
75 selection by exposure to increasing concentrations of relevant antibiotics, resulting in highly
76 resistant isolates with no signature of inserted DNA. Therefore, it is of utmost importance to
77 understand the types of antibiotic resistance mechanisms that can arise spontaneously through
78 selective pressure.

79 Unintended selection has resulted in a wide range of antibiotic resistant, clinically
80 important pathogens. Most antibiotic resistance mechanisms fall into one of three classes: (1)
81 Resistance based on changes in the structure of proteins targeted by the antibiotics, such as when
82 changes in genes encoding components of topoisomerases change the shape of the sites where

83 Cipro ordinarily binds to them; (2) resistance based on acquisition or increased expression of
84 proteins that directly act on the antibiotic molecule, e.g. of β -lactamase enzymes that break down
85 penicillins; and (3) resistance based on acquisition or upregulation of energy-dependent efflux
86 pumps that actively remove antibiotics from the bacterial cells, such as the Bmr and Blt multi-
87 drug transporter proteins of *Bacillus subtilis* (1). Efflux pumps are very common in Gram-
88 negative bacteria, are often poorly characterized, and can result in co-resistance to several
89 antibiotics. All three types of resistance mechanisms may be chromosomally encoded or may be
90 acquired on extra-chromosomal elements.

91 Studies have shown that naturally occurring *F. tularensis* strains are susceptible to
92 streptomycin, gentamicin, doxycycline, chloramphenicol and quinolones, and have
93 heterogeneous susceptibility to erythromycin [9-11]. While *F. tularensis* can acquire Cipro
94 resistance under selective pressure, the mechanisms of Cipro resistance in *F. tularensis* are not
95 well understood. We selected for survival of *F. tularensis* LVS isolates in the presence of
96 increasing Cipro concentrations, then compared whole genome sequences of resistant and related
97 sensitive isolates to identify mutations likely to be found in *F. tularensis* subjected to
98 Ciprofloxacin selective pressure. We performed whole genome analysis using a combination of
99 two methods to assess the relative strengths of each platform for mutation detection. First, we
100 developed a comparative genome hybridization (CGH) tiling microarray for *F. tularensis* LVS,
101 with successive probes overlapping by at least 85% of their length, and performed two-color
102 hybridizations of each resistant isolate together with the parent LVS strain. We then used
103 Illumina next generation shotgun sequencing to generate large numbers of short sequence reads
104 for each isolate, with more than 200X coverage over the entire genome. Here we describe the

105 mutations found by these experiments and report the results of protein structure analyses to
106 elucidate the underlying resistance mechanisms.

107 **Methods**

108 **Selection of Cipro resistant mutants**

109 A parental avirulent *F. tularensis* LVS culture was streaked onto a Mueller Hinton broth
110 (MHB) agar plate (enriched with Proteose Peptone, NaCl₂, Bovine serum, D-(+) Glucose, Ferric
111 Pyrophosphate, and Iso-Vitalex). The wild-type Ciprofloxacin minimum inhibitory
112 concentration (MIC) value was determined for *F. tularensis* LVS by picking a single colony to
113 inoculate 2 mL enriched MHB and incubating overnight at 37°C, 180 rpm. A subculture
114 containing 2 mL enriched MHB was inoculated with 200 µL of the overnight culture and
115 incubated at 37°C, 180 rpm to an optical density at 600 nm of 0.8. A Cipro E-test (BioMerieux)
116 was applied to an enriched MHB agar plate swabbed for full coverage with the *F. tularensis* LVS
117 subculture, and the E-test plate was incubated overnight at 37°C in an atmosphere containing 5%
118 CO₂. An approximate Cipro MIC was determined to be 0.023 µg/mL for the wild-type *F.*
119 *tularensis* LVS.

120 Cultures were prepared for first-round selections by inoculating each well of a 24 well
121 bioblock containing 2 mL of enriched MHB with the same single *F. tularensis* LVS colony. The
122 bioblock was covered with an airpore tape seal and incubated at 37°C, 180 rpm overnight. Fresh
123 subcultures were prepared by adding 20 µL of each overnight culture to 2 mL enriched MHB.
124 The subcultures were incubated at 37°C, 180 rpm for approximately 4-6 hours to an optical
125 density at 600 nm of 0.8. Cell suspensions were concentrated by centrifugation at 4,000 g for 2
126 min. The supernatant was discarded and each cell pellet was suspended in the remaining 200 µL

127 of enriched MHB. Each of the 24 suspensions was plated on enriched MHB agar plates
128 containing 0.075 µg/mL Cipro (approximately three times the wild-type MIC value). These 24
129 first-round selection plates were incubated at 37°C, up to 72 hours in a CO₂ enriched
130 atmosphere. One Cipro resistant colony was picked from each plate into 2 mL enriched MHB
131 containing 0.05 µg/mL Cipro (75% of the resistant concentrations) and incubated at 37°C, 180
132 rpm overnight. Subcultures were prepared by adding 20 µL of the passage culture that grew in
133 the presence of Cipro to 2 mL enriched MHB without Cipro and incubating at 37°C, 180 rpm to
134 an optical density at 600 nm of 0.8. These subcultures were used for MIC value determinations
135 (as indicated above) and to prepare frozen stocks by adding 700 µL of the subculture to 300 µL
136 sterile 80% glycerol followed by storage at -80°C. Second- and third-round selections using
137 first-round resistant isolates were carried out by increasing Cipro concentrations to
138 approximately three-fold the parent generation MIC values at each step. Approximately 10
139 second-round resistant isolates were collected following selection for resistance to a higher Cipro
140 concentration for each of 24 first-round mutants (approximately 240 total), and up to five third-
141 round resistant isolates were collected following exposure of each second round isolate to even
142 higher Cipro concentrations producing approximately 1,000 Cipro resistant *F. tularensis* LVS
143 isolates.

144 Resistant colonies were verified to be *F. tularensis* LVS by colony morphology and *F.*
145 *tularensis*-specific PCR with a forward primer of: GGCTATATGATGGCATTTCATTAG; and
146 a reverse primer of: GATATATACCCATTATCGAACCATCC. Glycerol stock dilutions were
147 used directly as templates for the PCR analyses.

148

149 **Whole genome tiling array design for *F. tularensis* LVS**

150 Tiling arrays were designed for *F. tularensis* LVS using the NimbleGen 388K array
151 platform, which supports probes of multiple lengths on the same array. We developed
152 computational tools to design probes that tile across entire bacterial genomes while satisfying
153 length, overlap and melting temperature (T_m) constraints. By designing and hybridizing *F.*
154 *tularensis* DNA to several test arrays, we determined that a length range of 32-40 nucleotides
155 (nt) provided optimal sensitivity and specificity; reference genomic DNA did not consistently
156 bind to probes shorter than 32 nt, while probes longer than 40 nt did not discriminate well
157 between perfect match targets and targets containing SNPs (data not shown). Individual probe
158 lengths were selected to minimize the overall variation of melting temperatures, given the
159 allowed length range of 32-40 nt. A T_m range of $74\pm3^\circ\text{C}$ was selected, based on GC content of
160 the *F. tularensis* LVS genome and a median probe length of 36 nt. Melting temperatures were
161 calculated using Unafold [12] which employs accurate nearest neighbor thermodynamic
162 predictions.

163 Probes were tiled with an overlap of 85% (every 5-6 nt) across the sequences of the
164 *Francisella tularensis* subsp. *holarctica* LVS chromosome (GenBank gi number 89143280) and
165 plasmids pOM1 from *F. tularensis* LVS (gi number 10954617), pFPHI01 from *F. philomiragia*
166 subsp. *philomiragia* strain ATCC 25017 (gi number 167626220), and pFNL10 from *F. tularensis*
167 subsp. *novicida* strain F6168 (gi number 32455353). There were a total of 363,359 unique tiled
168 probe sequences on the array. Every seventeenth probe was replicated on the array. We included
169 3,494 probes containing randomly generated sequences, matching the length and GC%
170 distributions of the tiled probes as negative controls for assessing the distribution of background
171 signals.

172

173 **Microarray hybridization of mutant and reference DNAs**

174 Genomic DNAs from wild type and Cipro resistant isolates were isolated using a
175 Promega Wizard™ genomic DNA purification kit. DNA labeling and hybridization were
176 performed as described in [13] with the following modifications. The reference LVS DNA was
177 labeled with Cy3-labeled random 9-mers and the DNA from the Cipro resistant isolates was
178 labeled with Cy5-labeled random 9-mers. Two μ g of the Cy3 labeled reference DNA and Cy5-
179 labeled DNA from a Cipro resistant isolate were hybridized to the same array. Hybridization was
180 for 17 hours at 42°C temperature. Following hybridization, arrays were washed, then scanned
181 using an Axon 4000B scanner (Molecular Devices, Sunnyvale, CA) at 5 μ m resolution.
182 Excitation wavelengths of 532 nm and 635 nm were used to detect Cy3 and Cy5 hybridization,
183 respectively. Array images were saved as TIFF files. NimbleScan software 2.4 (Roche
184 Diagnostics) was used to compute the probe fluorescent intensities from TIFF images and
185 overlay them to pair file reports (text files with the signal intensities from the array). The pair
186 reports were used for statistical analysis of microarray data.

187

188 **Statistical analysis of sequence changes from tiling microarrays**

189 An algorithm called TAPS (Tiling Array Polymorphism Sensor) was developed to
190 analyze data from the two-color hybridizations. The TAPS algorithm is based on a
191 thermodynamic model that predicts the effect of mutations on probe-target hybridization
192 affinities, and estimates the likelihood of a mutation at every reference genome position, given
193 the intensities of all probes overlapping the position. The algorithm superficially resembles the

194 “SNPscanner” algorithm of Gresham et al [14], but requires fewer training parameters (70 vs.
195 4608), and is less susceptible to over-fitting. It can also analyze two-color data sets, and is not
196 restricted to Affymetrix array designs.

197 The TAPS algorithm models the effect of a SNP on the intensity of an overlapping probe
198 as a function of several variables: the reference channel probe intensity, the position of the SNP
199 in the probe sequence, the base substitution relative to the reference genome, and the two
200 perfect-match bases on either side of the SNP locus. We assume that probe intensity decreases as
201 the free energy of hybridization increases (becomes less negative), and that the free energy ΔG is
202 a sum of contributions from aligned pairs of nearest-neighbor (NN) nucleotides. A SNP in the
203 target sequence increases the free energy by replacing two perfect-match NN pairs with pairs
204 having a single mismatch. For example, a mutation that changes the sequence AGC to ATC
205 replaces the perfect match pairs AG/TC and GC/CG with the mismatch pairs AT/TC and
206 TC/CG. Since our tiling array only has probes for the reference genome sequence, it does not
207 provide information about the specific base substitution in the target genome. However, we can
208 predict the *average* effect of the three possible substitutions at the central base of a particular
209 base triplet. To estimate these average mutation effects for the different base triplets, we
210 performed experiments in which labeled DNA from the reference LVS strain was hybridized to
211 an array, together with a differentially labeled DNA from a different *F. tularensis* strain of
212 known sequence (subspecies tularensis strain Schu S4 or subspecies novicida strain U112), and
213 thus, with known sequence variations relative to the LVS strain. S1 Fig shows the distributions
214 of log intensity ratios for probes overlapping known sequence variations between the LVS and
215 Schu S4 strains, for an array hybridized to these two strains. The distributions are shown as a box
216 plot, with probes grouped by the reference triplet centered at the SNP locus. As expected, SNPs

217 affecting a triplet with a central G or C base have a stronger effect on average than those
218 replacing an A or a T.

219 The TAPS model also includes a multiplicative position effect, in which SNPs aligning
220 near the middle of a probe cause larger intensity drops than SNPs aligned near the ends,
221 especially the 3' region closest to the array surface. We expected to see this positional effect
222 based on our earlier work with virulence gene arrays [13]. S2 Fig shows a typical profile of
223 intensity change vs. SNP position, for the same Schu S4 vs. LVS array used in S1 Fig. Each
224 column in this plot represents the distribution of log intensity ratios between the Cy3 (LVS) and
225 Cy5 (Schu S4) channels, for probes overlapping a Schu S4 variation at a given position in the
226 probe; the central bar represents the range from the 25th to the 75th percentiles. We see that, on
227 average, the intensity drop is almost two-fold when a SNP affects the nucleotides binding near
228 the middle of the probe, but is reduced to zero at either end.

229 Even in the absence of SNP effects, probe intensities will differ between the two channels
230 due to dye effects, scanner bias and noise. To correct for these effects, each pair of intensities
231 (y_{ref} , y_{mut}) was transformed into the log ratio (M) and log geometric mean (A):

$$232 M = \log \frac{y_{mut}}{y_{ref}}$$
$$A = \frac{1}{2}(\log y_{ref} + \log y_{mut})$$

233 A semi-parametric regression model was fitted using the M vs. A data for all probes:

$$234 M = \mu(A) + \varepsilon(A)$$

235 in which the error term $\varepsilon(A)$ has mean 0 and variance $\sigma^2(A)$, and $\mu(A)$ and $\sigma^2(A)$ are smooth mean
236 and variance functions. The functions $\mu(A)$ and $\sigma^2(A)$ were fit to the M and A values for all
237 probes on each array, using regression on cubic splines to fit $\mu(A)$, and a smoothing spline on

238 binned squared residuals to fit $\sigma^2(A)$. Since SNPs only affect a small fraction of probes on the
 239 array, the fitted $\mu(A)$ closely approximates the mean function for perfect match probes (those not
 240 overlapping variations between the reference and target strains).

241 To model the effect of a free energy change $\Delta\Delta G = \Delta G_{mut} - \Delta G_{ref}$ on the log intensity
 242 ratio, we assume that the probe DNA oligomers within an array feature can be in one of three
 243 states: unbound, bound to target DNA from the mutant strain, or bound to target DNA from the
 244 reference. At thermodynamic equilibrium at temperature T , the fraction of oligomers bound to
 245 mutant DNA is given by the Boltzmann equation:

$$246 \quad \theta_{mut} = \frac{e^{-\Delta G_{mut}/RT}}{1 + e^{-\Delta G_{mut}/RT} + e^{-\Delta G_{ref}/RT}}$$

247 where R is the gas constant; a similar equation holds for the fraction of oligomers bound to
 248 reference DNA, θ_{ref} . It follows that

$$249 \quad \log \frac{\theta_{mut}}{\theta_{ref}} = -\frac{\Delta\Delta G}{RT}$$

250 Since the probe intensity for each dye at concentrations well above background and
 251 below saturation scales with the fraction of oligomers bound to target labeled with that dye, we
 252 expect the SNP effect on the log intensity ratio to be proportional to $\Delta\Delta G$. Therefore, for probes
 253 overlapping SNPs, our semi-parametric regression model is modified to include a term for the
 254 SNP effect:

$$255 \quad M_{obs} = \mu(A_{obs}) + w \Delta\Delta G + \epsilon(A_{obs})$$

256 where w is a proportionality constant (typically < 0) and the noise term $\epsilon(A)$ is assumed to be
 257 Gaussian with mean 0 and the same variance $\sigma^2(A)$ as was estimated for perfect match probes.
 258 The free energy effect $w \Delta\Delta G$ is modeled as a product of triplet and position effects:

$$259 \quad w \Delta\Delta G = \beta_\tau h(x)$$

260 where τ indexes the triplet and x is the position of the SNP within the probe, as a fraction of the
261 probe length. The position effect $h(x)$ is approximated by a polynomial function of degree 5:

262
$$h(x) = \sum_{j=0}^5 a_j x^j$$

263 The triplet effects are assumed to be equivalent for reverse complements, so there are 32
264 β_τ parameters and six α_j parameters to be fit. Note that the proportionality constant w has been
265 absorbed into the triplet effects. The model parameters were fit to data from the experiments
266 described above, in which arrays were hybridized to DNA from *F. tularensis* strains of known
267 genome sequence, and thus with SNPs at known positions relative to the reference LVS genome.
268 To make the parameters identifiable, we scaled the coefficients α_j so that $h(0.5) = 1$.

269 To apply the model to data from target strains of unknown sequence, we computed a log
270 likelihood ratio test statistic for every position z in the reference genome. Let $P(z)$ be the set of
271 probes overlapping position z , and let M_i and A_i be the log intensity ratio and average for probe i .
272 The semi-parametric regression model given above leads to the following expression for the log
273 likelihood:

274
$$\log L(z) = - \sum_{i \in P(z)} \frac{(M_i - \mu(A_i) - w\Delta\Delta G_i)^2}{2\sigma^2(A_i)}$$

275 Under the null hypothesis that there is no SNP at position z , then $\Delta\Delta G_i = 0$ for all probes in $P(z)$,
276 and the log likelihood is given by:

277
$$\log L_0(z) = - \sum_{i \in P(z)} \frac{(M_i - \mu(A_i))^2}{2\sigma^2(A_i)}$$

278 Under the alternative hypothesis that there is a SNP at position z , $\Delta\Delta G_i$ was computed for each
279 probe using the fitted model parameters, leading to a different log likelihood value $\log L_{alt}(z)$.

280 The log likelihood ratio test statistic is simply:

281
$$\log LR(z) = \log \frac{L_{alt}(z)}{L_0(z)} = \log L_{alt}(z) - \log L_0(z)$$

282 To identify candidate SNP loci, we computed $\log LR(z)$ for every position z in the
283 reference genome and compared it to a threshold value, which we selected by analyzing data
284 from the test arrays hybridized to DNA from *F. tularensis* strains with SNPs at known positions
285 relative to the LVS strain, and choosing the threshold that gave the best tradeoff between false
286 positive and false negative error rates. This threshold was 20 for the *F. tularensis* arrays.

287 Typically SNPs were characterized by a contiguous series of position values with $\log LR$ scores
288 above the threshold. The most likely SNP location within the series was identified by the
289 position with the maximum score. As an example, Fig 1 plots the test statistic values for a short
290 region of the DNA gyrase A gene in one of the Cipro resistant *F. tularensis* LVS isolates. The
291 log likelihood ratio has an obvious peak in this region.

292

293 **Illumina sequence data generation and quality control**

294 Illumina paired end libraries were prepared from 1 μ g of genomic DNA from each of
295 eleven third round Cipro resistant isolates, for the purpose of single-end sequencing on the
296 Genome Analyzer IIx. Briefly, the gDNA was fragmented, ends repaired, A' tagged, ligated to
297 adaptors, size-selected and enriched with 13 cycles of PCR. Each library was assigned one lane
298 of a flow cell to undergo cluster amplification and sequencing on the Genome Analyzer IIx, and
299 36 cycles of single-end sequence data were generated. One lane of paired end 51 cycle sequence

300 data were generated for *F. tularensis* LVS Cipro resistant isolate 1:1:5. The resulting sequencing
301 reads were filtered using the default parameters of the Illumina QC pipeline (Bustard + Gerald).

302 As an additional quality control step, all reads were analyzed using the PIQA pipeline
303 [15]. This pipeline examines genomic reads produced by Illumina machines and provides tile-by-
304 tile and cycle-by-cycle graphical representations of cluster density, quality scores, and nucleotide
305 frequencies. This method allows easy identification of defective tiles, mistakes in sample/library
306 preparations and abnormalities in the frequencies of appearance of sequenced genomic reads.

307 All reads were determined to be of sufficient quality to proceed with subsequent analysis. The
308 amount of sequence data generated for each sample is indicated in Table 1.

309

310 **Mapping and identifying candidate mutations**

311 The sequence reads from each of the samples were mapped with up to 1 mismatch to the
312 reference *F. tularensis* LVS genome (RefSeq accession NC_007880). To avoid uncertainty
313 associated with identifying mutations in repeatable parts of the reference genome, for each
314 position in the reference sequence a *uniqueness score* based on the subsequences covering this
315 nucleotide was determined. Specifically, the copy number of each subsequence of size 36 (the
316 length of reads used in sequencing) present in the reference genome was first calculated; the
317 *uniqueness score* of each position in the reference genome was then defined as the total number
318 of subsequences (factoring in the copy number) which covered this position. For example, in
319 this metric, the score of 36 will appear only if each subsequence covering a given nucleotide is
320 unique in the reference; higher scores indicate that one or more subsequences are present in the
321 reference in several copies. 94.11 % (1,784,242 bases) of the *F. tularensis* LVS (NC_007880)

322 reference genome has a uniqueness score of 36. Mutations in these positions can be detected
323 without the ambiguity caused by the presence of repeatable regions.

324 A given position is predicted to contain a mutation if: (1) the number of reads confirming
325 the mutation on each strand exceeds the *minimum count threshold* – ensuring that only positions
326 that achieve the minimum required coverage are considered, and (2) the proportion of reads
327 confirming a mutation out of all the reads covering a given position exceeds a *ratio threshold* –
328 ensuring that only mutations that have the minimum required support are identified. As a
329 compromise between mutation detection sensitivity and false discovery rate, the *minimum count*
330 *threshold* was set at 10% of the median of the nucleotide-by-nucleotide coverage for each
331 sample, and the *ratio threshold* was set at 30% of the total coverage on a per-nucleotide basis. In
332 the present analysis, mutations confirmed on both strands (if the number of reads supporting the
333 mutation exceeds the *minimum count threshold* on each of the strands separately) are
334 distinguished from mutations for which such a condition was met on only one strand. In the case
335 of insertions, the mapping process results in the association of both perfect matches (PM) and
336 insertions to the same location on the reference genome. Thus different *ratio threshold* criteria
337 are used to detect different types of mutations at a given genome position. The criterion for
338 detecting a substitution of base *B* for the reference base is:

$$339 \frac{SubB^+ + SubB^-}{PM^+ + PM^- + Del^+ + Del^- + SubACTG^+ + SubACTG^-} \geq \text{ratio threshold}$$

340 The criterion for detecting a deletion is:

$$341 \frac{Del^+ + Del^-}{PM^+ + PM^- + Del^+ + Del^- + SubACTG^+ + SubACTG^-} \geq \text{ratio threshold}$$

342 The criterion for detecting an insertion of base *B* on the plus strand is:

343
$$\frac{InsB^+ + InsB^-}{Del^+ + Del^- + SubACTG^+ + SubACTG^- + InsACTG^+ + InsACTG^-} \geq \text{ratio threshold}$$

344 In the numerators of the above formulas, $SubB^{+/-}$, $Del^{+/-}$, and $InsB^{+/-}$ stand for the
 345 numbers of reads confirming a substitution, deletion, or insertion, respectively, mapping to the
 346 genome strand indicated by the superscript. For substitutions and insertions, $SubB^+$ and $InsB^+$
 347 indicate the numbers of reads mapped to the minus strand in which the base complementary to B
 348 is substituted or inserted. In the denominators, the variables PM , $SubACTG$, and $InsACTG$
 349 respectively indicate the numbers of reads confirming a perfect match (PM), a substitution of any
 350 base, or an insertion of any base, at the genome position of interest.

351 While paired end data was generated, the reads were decoupled and a single-end read
 352 assembly (using in-house algorithms) was performed on each of the sequence data sets. These
 353 contigs are shorter in length than contigs obtained with paired end data, but in general have
 354 fewer errors. Each mutation identified in each sample was confirmed to be present on the
 355 contigs assembled for that sample. Mutations (including insertions, deletions, and substitutions)
 356 that pass both thresholds and appear on both strands are less likely to be sequencing read
 357 generation or mapping artifacts. Mutations that only appear on one strand and cannot be verified
 358 on the opposite strand (something that is not common, given sufficient coverage), such as
 359 insertions, other than ‘G’ after ‘G’, ‘C’ after ‘C’, ‘A’ after ‘A’, and ‘T’ after ‘T’ are likely
 360 artifacts of sequencing/mapping (false positives) or positions in the genome that did not have
 361 sufficient coverage to be verified on both strands.

362

363 **PCR and Sanger sequencing confirmation of Cipro-resistant**

364 **mutants**

365 To confirm mutations identified by tiling microarray and Illumina sequencing, PCR
366 oligonucleotide primers were designed using Primer3™ [16] to amplify *F. tularensis* LVS
367 genome-specific sequences surrounding the locus where the mutations were identified. In
368 addition to round 3 Cipro-resistant isolates, PCR and sequencing reactions were also performed
369 on round 1 and 2 isolates to identify the selection step in which each mutation occurred. PCR
370 was performed using Promega PCR reagents. Sanger sequencing was performed using ABI3730
371 DNA analyzers at the DOE Joint Genome Institute in Walnut Creek, CA or at Elim
372 Biopharmaceuticals, Inc (Hayward, CA).

373

374 **Analysis of the impact of the mutations on protein structure and**

375 **function**

376 The automated homology modeling system AS2TS [17] was used with other
377 computational tools (<http://proteinmodel.org>) to construct and analyze structural models for all *F.*
378 *tularensis* LVS proteins (listed in Table 2 and S4 Table). Created structural models were analyzed
379 to assess the possibility of conformational changes implied by the observed mutations, and to
380 estimate the level of possible sequence variability in identified structurally conserved regions.
381 Structure alignments were calculated using the program LGA (Local Global Alignment) [18] and
382 evaluation of detected structural similarities between LVS proteins and related structures from
383 Protein Data Bank (PDB) was performed by StralSV sequence/structure variability evaluation
384 system [19]. StralSV identifies all structurally similar protein structure fragments in the PDB for

385 any given structural motif, evaluates calculated structure-based alignments between the query
386 motif and the fragments, and quantifies observed sequence variability at each residue position.
387 The output from the system enables rapid identification of invariant residues (often those
388 essential to protein function) and unusual variants, and predictions about natural or engineered
389 mutations that are not yet observed in current sequence databases. Results from the StralSV
390 analysis allowed us to characterize observed mutation points by assigning their location on the
391 protein (e.g. buried, exposed, within an active site), and to identify other proteins (sometimes
392 from more distant organisms) in which a similar structural motif with a given substitution was
393 observed and characterized.

394

395 **Testing multi-drug resistance properties of the *F. tularensis* LVS**

396 **Cipro resistant mutants**

397 A total of 148 third round *F. tularensis* LVS Cipro-resistant isolates were screened for
398 resistance to other antibiotic drugs including amoxicillin w/clavulanic acid, ampicillin,
399 carbenicillin, doxycycline, erythromycin, gentamicin, nalidixic acid, rifampin and
400 streptomycin. Cells were plated onto enriched Mueller Hinton broth agar plates, and Sensi-discs
401 (BD, Franklin Lakes, NJ) impregnated with the aforementioned antibiotics were applied to the
402 surface. Plates were incubated at 37°C with 5% CO₂ for two days. Isolates were determined to
403 be resistant if the zone of inhibition was at least 1 mm less than the zone of inhibition of the wild
404 type. MIC values for amoxicillin with clavulanic acid and ampicillin were determined with an
405 amoxicillin with clavulanic acid (XL) E-test strip or ampicillin (AM) E-test strip (BioMerieux).

406

407 **Results**

408 **Minimum inhibitory Cipro concentrations for *F. tularensis* LVS**

409 **Cipro resistant isolates**

410 Following three rounds of selection by exposure to increasing Cipro concentrations, 289
411 Cipro resistant *F. tularensis* LVS isolates were collected and characterized. This included 28
412 first round isolates, 94 second round isolates and 148 third round isolates. The MIC value for the
413 original Cipro-sensitive LVS strain was 0.023 μ g/mL. MIC values ranged from 0.25 to 1 μ g/mL
414 for first round resistant isolates, 0.5 to 16 μ g/mL for second round isolates, and from 6 to greater
415 than 32 μ g/mL (the limit of the Ciprofloxacin E-test) for isolates collected following the third
416 round of selection. The full set of MIC measurements is given in S1 Table. Each isolate is
417 identified with a one, two or three-digit code indicating its lineage; for example, round 3 isolate
418 15:6:5 was derived from round 2 isolate 15:6, which was derived from round 1 isolate 15.

419

420 **Analysis of microarray data for *F. tularensis* LVS Cipro resistant**

421 **isolates**

422 We tested the wild type LVS strain and 11 third round Cipro resistant *F. tularensis* LVS
423 isolates using the *F. tularensis* LVS tiling array. Forty-eight distinct mutations from a total of 15
424 gene regions were identified in two or more of the 11 Cipro resistant isolates. The list of
425 mutations identified by the microarray from two or more clones is shown in S2 Table.

426 The isolate with the largest number of mutations identified by the microarray was isolate
427 15:6:5, with 21 candidate mutations. Mutations at six identical positions were each found in two

428 or more of the 11 Cipro resistant isolates tested. There is one mutation at position 514,141 in the
429 *F. tularensis* LVS genome in *gyrA*, occurring in four isolates, plus five other mutations, each
430 occurring in two isolates. Array probes are tiled every 5 to 6 bases along the LVS genome.
431 Therefore, the actual position of each mutation could be anywhere within 5 bases of the location
432 having the peak log likelihood ratio. Therefore, identified mutations in different isolates whose
433 estimated positions differ by 10 or fewer bases may potentially have resulted from SNPs at the
434 same position.

435 A six base deletion in clone 18:5:2, in gene FTL 0598 (Membrane protein/O-antigen
436 protein) was identified by microarray, but missed by Illumina sequencing. The mutation analysis
437 used in sequencing analysis was targeting single mutations, not multiple deletions, which could
438 result in mis-detection by sequencing. Mutations identified by the microarray that were also
439 found by Illumina sequencing are listed in Table 2.

440

441 **Analysis of Illumina sequencing data for *F. tularensis* LVS Cipro
442 resistant isolates**

443 We analyzed the DNA from the wild type and 11 third round Cipro resistant *F. tularensis*
444 LVS isolates using Illumina sequencing. Mutations were identified by comparison to the
445 published reference LVS sequence. Three mutations at positions 152,924 (C->A), 717,695
446 (T->G) and 1,713,576 (G->T) were identified in all Cipro resistant isolates and the parent wild-
447 type isolate. These are most likely due either to errors in the published reference sequence, or to
448 mutations that appeared during passaging of the original LVS culture prior to selection for Cipro
449 resistance.

450 A total of 30 unique mutations from 20 genes, one 7 T insertion and one single T
451 insertion were identified in the 11 third round Cipro resistant samples using Illumina sequencing.
452 The location of the SNPs, the gene description, gene location, the number of reads and the
453 percentage of reads containing the SNP are shown in S3 Table. The number of reads where the
454 mutations were identified ranged from 80 reads in isolate 23:2:4 at position 851,357 to 842 reads
455 at position 514,141 for isolate 1:1:5. Twenty-six SNPs were detected at >90% of all reads at that
456 position. The 4 SNPs that were detected at <90% of reads at that position are 406,467 (isolate
457 15:6:5, 198 reads, 60.2% reads detected the SNP), 436,130 (isolate 5:8:3, 334 reads, 51.5% with
458 SNP), 466,243 (isolate 14:6:5, 202 reads, 65.6% with SNP), 1,683,798 (isolate 1:1:5, 559 reads,
459 64.1% with SNP). There was an insertion of 7 Ts in isolate 23:2:4 at positions 578,478 to
460 578,484, all of which were detected at 100% of the reads. A single T insertion was identified at
461 position 1,706,353 in all 11 isolates. Since the number of reads containing this insertion is low
462 (from 6 to 40) and this insertion was found in all of the isolates tested, it is possible that this is a
463 sequencing error. This insertion was not included in the final table of SNPs.

464 Two SNPs confirmed on one strand were identified at position 533,839 (G->T) in clone
465 5:8:3 and at position 850,695 (A->C) at clone 12:3:4 (not included in S3Table). The SNP at
466 position 533,839 is likely real since this mutation was also identified by microarray. This
467 mutation is included in Table 2. The SNP at position 850,695 is likely an incorrect read because
468 it is not confirmed in the contig and is found only in sequences at the edge of the reads contain
469 the SNP. Cipro resistant sample 15:6:5 contained the highest number of SNPs with 11.

470 Mutations that were identified by Illumina sequencing and also confirmed by SNP
471 microarray are shown in Table 2. There are a total of 23 mutations from 15 genes that are

472 consistent between the two technologies. Mutations that were identified by Illumina and not
473 confirmed by microarray are listed in S4 Table.

474

475 **Protein structural modeling to analyze the effects of the mutations**

476 **Mutations on FTL_0439, hypothetical protein**

477 There are four SNPs identified in the genetic locus FTL_0439 in *F. tularensis* LVS
478 isolates resistant to Cipro. Seven out of the 11 Cipro resistant isolates tested have at least one
479 SNP in this gene, with the SNP at position 407,700 being the most common. The triplet that
480 includes nucleotide 407,700 in the *F. tularensis* genome encodes Asp at amino acid position 417
481 in this hypothetical protein. Mutations found in Cipro resistant isolates would change this to Tyr.
482 None of the first round resistant isolates has a mutation in this gene. Only one second round
483 isolate has a mutation at position 407,700 suggesting that this mutation did not occur in the first
484 round of selection and likely occurred in isolates prior to the third round of selection.

485 SNPs at two additional positions in FTL_0439 were identified. A mutation at position
486 406,467 would result in a change from a protein with a Lys at position 6 to a truncated protein as
487 a result of a stop codon present at this position; The nucleotide normally present at position
488 407,039 encodes a Tyr at amino acid position 196 in this protein and is also changed to a stop
489 codon when the observed mutation is present.

490 Results from the homology modeling suggest that FTL_0439 could be an outer
491 membrane protein involved in ion transport. However, because the level of sequence identity
492 between FTL_0439 and identified structural templates from PDB is very low, around 15%, a
493 detailed structural analysis of the created models cannot be conducted with sufficient confidence.

494

495 **Mutations in the DNA gyrase FTL_0533**

496 Two SNPs in the *gyrA* gene (genome locations 514,141 and 514,152) were found in all
497 third round Cipro resistant isolates subjected to microarray and Illumina analyses. Additional
498 Sanger sequencing confirmed that all third round Cipro resistant isolates analyzed have one or
499 both of these SNPs in *gyrA*. All first round isolates analyzed by Sanger sequencing contain a
500 SNP at either 514,141 or 514,152, but none of the first round isolates has SNPs at both locations.
501 As expected, all second round isolates tested also have a SNP at either position 514,141 or
502 514,152 and approximately one-third of the second round isolates tested contain SNPs at both
503 locations. This suggests that one SNP occurs early in the selection process, and the second SNP
504 arises during second or third round selection. Either mutation will result in a change of an amino
505 acid in the DNA gyrase encoded by FTL_0533. There is normally a Thr encoded by the wild-
506 type gene but detected SNPs at position 514,141 would change this to Lys or Ile. The DNA
507 sequence that includes position 514,152 normally encodes an Asp at position 87 in the DNA
508 gyrase gene. Detected SNPs caused a change at this location to Asn or Tyr.

509 A protein structural model of FTL_0533 was constructed to identify the potential
510 structural and functional effects of the two mutations at positions 83 and 87. The N-terminal
511 domain of GyrA from *E. coli* (PDB chain: 2wl2_B) was used to construct the homology model.
512 The percentage of amino acid sequence identity between FTL_0533 and 2wl2_B is 65%.
513 Structural analysis of created models showed that the mutations at Thr83 and Asp87 are located
514 on the fragment 83-90 which is a short helical region in close proximity to the active site
515 residues Arg121 and Tyr122 (Fig 2). A recent study of the *gyrA* crystal structure from *E. coli*

516 showed that the substitutions in the region 81 to 84 and at position 87 in *F. turlarensis* would
517 likely impact drug binding [20].

518

519 **Mutations in FTL_0600 encoding asparagine synthase**

520 Two mutations were identified in FTL_0600 at nucleotide positions 588,296 and 588,909
521 from two of the 11 isolates, 15:6:5 and 11:4:2. The triplet that includes nucleotide 588,296
522 normally encodes Lys at amino acid position 398 in this protein. The mutation observed results
523 in a change to Asn. The triplet that includes nucleotide 588,909 normally encodes a Glu at
524 position 603 in the protein and the observed mutation results in a Lys at this position. A
525 structural model of FTL_0600 was constructed based on predicted similarity to the crystal
526 structure of Asparagine synthase B from *E. coli* (PDB chain: 1ct9_A). The level of sequence
527 identity between the protein encoded by FTL_0600 and the closest structural templates from
528 PDB is 22%, hence a detailed structural analysis of the created models cannot be conducted with
529 sufficient confidence.

530

531 **Mutations in FTL_0601 encoding sugar transamine/perosamine synthetase**

532 A total of two mutations were identified in this gene from two isolates. The mutation at
533 position 589,311 (amino acid position 110) is a synonymous mutation while the mutation at
534 589,187 is a non-synonymous mutation. The wild-type triplet encodes Ala at position 69 in the
535 corresponding protein. The mutation found results in a Glu at this position. One of the closest
536 structural templates for modeling of FTL_0601 is a crystal structure of DesI from *Streptomyces*
537 *venezuelae* (PDB chain: 2po3_A). The level of sequence identity between FTL_0601 and

538 2po3_A is 29%. Another identified structural template with a similar level of sequence identity is
539 GDP-perosamine synthase from *Caulobacter crescentus* (PDB chain: 3dr4_C). Both templates
540 belong to the same aspartate aminotransferase superfamily. The functional units of enzymes in
541 this group are typically formed as homodimers with an extensive subunit/subunit interface [21].
542 Construction of a structural model of FTL_0601 and comparative analysis with these two
543 proteins suggests that the corresponding interface in FTL_0601 is formed by the following
544 segments: Lys8-Asn32, N58-Arg68, F83-Asn93, Ile188-E189, F207-Ile212, and Ile218-F230. In
545 Fig 3 examples of critical residues (colored as yellow sticks) found within these segments were
546 shown: interacting residues Arg68 and Ser92, and highly conserved residues Thr60 and Asn224
547 which are involved in stabilizing interaction between ligand and protein [22]. The detected
548 mutation associated with Cipro resistance is located at Ala69; in immediate proximity to these
549 critical residues (Fig 3). Recently published studies [23, 24] on structural analysis of active sites
550 of different aminotransferases suggests that the observed differences in residues in close
551 proximity to functionally critical residues may be crucial for enzyme function, substrate binding
552 and specificity. Results from the StralSV analysis indicate that the Ala69 position can absorb
553 substitutions with different types of amino acids without significant conformational change of
554 the backbone structure (terminal part of the α -helix). The list of observed diversity of amino
555 acids at the corresponding position in homologous proteins is provided in the Table 2.
556

557 **Mutations in FTL_1547 encoding DNA gyrase B**

558 FTL_1547 is a type II DNA topoisomerase enzyme that catalyzes topological
559 rearrangement of double-stranded DNA by generating a transient double-stranded break in one
560 DNA duplex (the 'G' or gate segment) and passing another duplex (the 'T' or transported

561 segment) through the break before resealing it. It is a known target for Cipro resistance. A SNP
562 at location 1,477,418 was identified by microarray analysis and Illumina sequencing. Only one
563 isolate 18:5:2 from the 11 Cipro resistant isolates contained this mutation. Sanger sequencing
564 results showed that none of the first round isolates tested contained this mutation but the majority
565 of the second round Cipro resistant isolates had this mutation. This suggests that the mutation
566 occurred during the second round of the selection at higher Cipro concentrations. The mutation
567 results in an amino acid change from Ser to Tyr and is located next to positions 463, 460, 453
568 and 456. These positions correspond to 471, 468, 464 and 461 from the X-ray structure of
569 topoisomerase from *Streptococcus pneumoniae* (PDB chain: 4i3h_A) and are described in [25]
570 as critical functional positions located in the helical region of the C-gate facilitating DNA (T-
571 segment) release (Fig 4). A second mutation was identified by Illumina sequencing at position
572 1,477,419, but this mutation was not detected in the analysis of the microarray data.
573

574 **Multi drug resistance analysis of Cipro resistant FT LVS mutants**

575 *F. tularensis* Ciprofloxacin resistant isolates were resistant to several of the antibiotics
576 while the wild type strain was only resistant to erythromycin. Nearly all of the 148 tested round
577 three mutants were found to grow in elevated concentrations of ampicillin, erythromycin,
578 nalidixic acid, and vancomycin compared to the sensitive isolate from which they were derived.
579 In this group, only the specific MIC values for ampicillin were tested. The wild type strain had a
580 MIC of 3 μ g/mL while the tested mutants had a range of 1.5 μ g/mL to > 256 μ g/mL. Thirty-one
581 of the 148 isolates were resistant to amoxicillin with MICs from 1.5 μ g/mL to > 256 μ g/mL, the
582 wild type was resistant to 2 μ g/mL. Sixty-seven mutants also showed some level of resistance to
583 carbenicillin. The MIC values for the 11 isolates subjected to microarray analysis and Illumina

584 sequencing are listed in Table 3. The drug sensitivity or resistance results from all antibiotics
585 tested on all third round mutants are shown in S5 Table.

586

587 **Discussion**

588 In this study, we performed the first reported genome-wide study to identify mutations
589 that are associated with Cipro resistance in *F. tularensis* LVS. More than 200 first-, second- and
590 third-round mutants were selected for Cipro resistance. A combination of high density tiling
591 microarray, Illumina and Sanger sequencing were used to identify and confirm mutations in
592 these isolates. Protein structural modeling of the proteins encoded by genes containing these
593 mutations was performed to analyze the structural impacts of these mutations.

594 The known mechanism of action for fluoroquinolones is inhibition of certain bacterial
595 topoisomerase enzymes, DNA gyrase and topoisomerase IV. Alterations in target enzymes
596 appear to be the most dominant factors in expression of resistance to quinolones [26]. Prior
597 studies have demonstrated that species naturally bearing a serine residue at position 83 of gyrA
598 are usually susceptible to fluoroquinolones, whereas the presence of an alanine at this critical
599 position corresponds to natural resistance to these antibiotics [9, 27]. An amino acid change from
600 Asp 87 to Asn in gyrA has been reported recently in a Cipro-resistant *B. bacilliformis* strain [9,
601 28]. A recent study by Sutera *et al.* also observed mutations at gyrA-83 and gyrA-87 in Cipro
602 resistant *F. tularensis* LVS mutants [29]. Our study showed that mutations at both positions 83
603 and 87 can occur in the same Cipro resistant *F. tularensis* LVS isolate and that the combination
604 of two mutations results in a resistance to a higher Cipro concentration than is conferred by
605 either mutation alone. In addition, the two mutations were present in almost all the first and

606 second round mutants, in addition to the third round mutants. We also identified mutations in
607 *gyrB* (S464Y) which encodes the subunit B of DNA gyrase and DNA topoisomerase IV subunit
608 A, both known Cipro targets. This mutation was also identified by a recent study [29].

609 In addition to the known mechanisms and mutations in *GyrA* and *GyrB*, we identified
610 mutations in a number of other genes that have not previously been reported to be involved in
611 Cipro resistance in this species. These include mutations in a hypothetical protein (FTL_0439),
612 an asparagine synthase (FTL_0600), a sugar transamine/perosamine synthetase (FTL_0601) and
613 a few others. Multiple SNPs were identified in FTL_0439, encoding a hypothetical protein.
614 Such mutations have not been reported previously. While, structural homology studies suggest
615 that this is an outer membrane protein that could be involved in ion transport or, possibly,
616 transport or Cipro into or out of the cell, this protein only has 15% homology to any known
617 structural templates and the function of this protein is unknown. Asparagine synthase is a gene
618 responsible for the *F. tularensis* biosynthetic pathway [30].

619 Our studies showed that both high density microarray and Illumina sequencing are
620 capable of identifying rare mutations and can be used to compare genomic differences between
621 different bacterial isolates of the same species and between sensitive and antibiotic resistant
622 isolates. It is important that at least 85% overlap of tiling probes are needed in array design to
623 identify the minor genomic differences. A previous design on a different bacterium using a 50%
624 overlap did not provide high confidence SNP calling (unpublished data). The use of a sensitive
625 analysis algorithm was also needed to predict the genomic differences between a reference strain
626 and an antibiotic resistance isolate derived from the same strain.

627 Comparison of microarray and Illumina sequencing data from the different isolates
628 showed that 23 mutations were identified by both array and Illumina sequencing, while 8

629 mutations were identified by Illumina sequencing only. Microarray analyses detected more
630 apparent mutations than were identified by Illumina sequencing. These presumed false positives
631 could be due to the errors caused by hybridization efficiency. It is also possible that the >85%
632 tiling overlap was still not sensitive enough to accurately detect all mutations.

633 Further studies to verify the role of the identified mutations are necessary. One such
634 approach is to revert a mutation thought to confer Cipro resistance back to wild-type then
635 measure changes in resistance. We have performed such studies with *B. anthracis* Sterne and
636 shown that replacement of the mutant gyrA gene with a wild-type gyrA reduces the Cipro MIC
637 back to that found in the Cipro-sensitive isolate (unpublished data) and such an approach can be
638 used to study mechanisms of resistance in *F. tularensis* as well.

639 This study provides insights into possible molecular mechanisms behind resistance to
640 antibiotics commonly used to treat infections caused by *F. tularensis* and other related Gram
641 negative bacteria. Once these putative mechanisms have been shown to contribute to antibiotic
642 resistance, such information can be used to develop assays that can rapidly detect these
643 molecular signatures without growth of the microbe. They should also provide insights into
644 previously unknown mechanisms of antibiotic resistance and how these might be defeated
645 therapeutically.

646 It is not surprising that selection for resistance to Cipro results in co-resistance to
647 nalidixic acid, another quinolone that targets the same proteins as Ciprofloxacin. However, it is
648 more difficult to understand why selection for resistance to Cipro would result in isolates with
649 mutations in genes that target unrelated antibiotics. Amoxicillin, ampicillin and carbenicillin are
650 beta-lactam antibiotics in the penicillin family. Clavulanic acid is a beta-lactamase
651 inhibitor. Amoxicillin/clavulanic acid resistance has been linked to an increase in the expression

652 of beta-lactamase or inhibitor-resistant TEM enzymes [31, 32]. Ampicillin resistance is linked to
653 TEM 1 beta-lactamase in enterobacteriaceae [33, 34] or mutations in penicillin binding protein 4
654 [34, 35]. Carbenicillin can be used in place of ampicillin. Studies in *Staphylococcus aureus* have
655 demonstrated that exposure to sub-lethal Ciprofloxacin concentrations results in genomic
656 alterations linked to rifampin resistance [36]. Perhaps growth of first and second round Cipro-
657 resistant populations in higher Cipro concentrations results in introduction of such mutations at a
658 higher frequency in those isolates that manifest a mutation pattern that allows rapid growth in the
659 Cipro concentration used for selection.

660

661

662 **References**

663 1. Price LB, Vogler A, Pearson T, Busch JD, Schupp JM, Keim P. In vitroselection and
664 characterization of *Bacillus anthracis* mutants with high-level resistance to ciprofloxacin.
665 *Antimicrob Agents Chemother* 2000;47:2362-5.

666 2. Ahmed M, Lyass L, Markham PN, Taylor SS, Vazquez-Laslop N, Neyfakh AA. Two
667 highly similar multi-drug transporters of *Bacillus subtilis* whose expression is differentially
668 regulated. *J Bacteriol* 1995;177:3904-10.

669 3. Serizawa M, Sekizuka T, Okutani A, Banno S, Sata T, Inoue S, et al. Genomewide
670 screening for novel genetic variations associated with ciprofloxacin resistance in *Bacillus*
671 *anthracis*. *Antimicrob Agents Chemother*. 2010;54(7):2787-92.

672 4. Lindler LE, Fan W. Development of a 5' nuclease assay to detect ciprofloxacin resistant
673 isolates of the biowarfare agent *Yersinia pestis*. *Mol Cell Probes*. 2003;17:41-7.

674 5. Udani RA, Levy SB. MarA-like regulator of multidrug resistance in *Yersinia pestis*.
675 *Antimicrob Agents Chemother*. 2006;50:2971-5.

676 6. Janes BK, Stibitz S. Routine Markerless Gene Replacement in *Bacillus anthracis*.
677 *Infection and Immunity*. 2006;74:1949-53.

678 7. López C, Rholl D, Trunck L, Schweizer H. Versatile dual-technology system for
679 markerless allele replacement in *Burkholderia pseudomallei*. *Appl Environ Microbiol*.
680 2009;75:6496-503.

681 8. Horzempaa J, Shanksa RMQ, Matthew J. Brown, Brian C. Russo, O'Dee DM, Nau GJ.
682 Utilization of an unstable plasmid and the I-SceI endonuclease to generate routine markerless
683 deletion mutants in *Francisella tularensis*. *J Microbiol Methods*. 2010;80:106-8.

684 9. Biswas S, Raoult D, Rolain J-M. A bioinformatic approach to understanding antibiotic
685 resistance in intracellular bacteria through whole genome analysis. *Inter J Antimicrob Agents.*
686 2008;32:207–20.

687 10. Ikäheimo I, Syrjälä H, Karhukorpi J, Schildt R, Koskela M. In vitro antibiotic
688 susceptibility of *Francisella tularensis* isolated from humans and animals. *J Antimicrob
689 Chemother.* 2000;46:287–90.

690 11. Kudelina R, Olsufiev N. Sensitivity to macrolide antibiotics and lincomycin in
691 *Francisella tularensis* holarctica. *J Hyg Epidemiol Microbiol Immunol* 1980;24:84-91.

692 12. Markham NR, Zuker M. DNAMelt web server for nucleic acid melting prediction.
693 *Nucleic Acids Res.* 2005;33:W577-W81.

694 13. Jaing C, Gardner SN, McLoughlin K, Mulakken N, Alegria-Hartman M, Banda P, et al.
695 A functional gene array for detection of bacterial virulence elements. *PLoS ONE.*
696 2008;3(5):e2163. doi:10.1371/journal.pone.0002163.

697 14. Gresham D, Ruderfer D, Pratt S, Schacherer J, Dunham M, Botstein D, et al. Genome-
698 wide detection of polymorphisms at nucleotide resolution with a single DNA microarray
699 *Science.* 2006;311:1932.

700 15. Martínez-Alcántara A, Ballesteros E, Feng C, Rojas M, Koshinsky H, Fofanov VY, et al.
701 PIQA: pipeline for Illumina G1 genome analyzer data quality assessment. *Bioinformatics.*
702 2009;5(25):2438-9.

703 16. Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist
704 programmers. In: Krawetz S, Misener S, editors. *Bioinformatics Methods and Protocols:*
705 *Methods in Molecular Biology* Totowa, NJ: Humana Press; 2000. p. 365-86.

706 17. Zemla A, Ecale Zhou C, Slezak T, KuczmarSKI T, Rama D, Torres C, et al. AS2TS
707 system for protein structure modeling and analysis. *Nucleic Acids Research*. 2005;33:111-5.

708 18. Zemla A. LGA - A Method for Finding 3-D Similarities in Protein Structures. *Nucleic
709 Acids Research*. 2003;31:3370-4.

710 19. Zemla A, Lang DM, Kostova T, Andino R, Ecale Zhou C. StralSV: assessment of
711 sequence variability within similar 3D structures and application to polio RNA-dependent RNA
712 polymerase. *BMC bioinformatics* (submitted).

713 20. Edwards MJ, Flatman RH, Mitchenall LA, Stevenson CEM, Le TBK, Clarke TA, et al. A
714 Crystal Structure of the Bifunctional Antibiotic Simocyclinone D8, Bound to DNA Gyrase.
715 *Science*. 2009;326(5958):1415-8. doi: 10.1126/science.1179123.

716 21. Burgie ES, Holden HM. Molecular Architecture of DesI: A Key Enzyme in the
717 Biosynthesis of Desosamine. *Biochemistry*. 2007;46(31):8999-9006. doi: 10.1021/bi700751d.

718 22. Cook PD, Holden HM. GDP-Perosamine Synthase: Structural Analysis and Production of
719 a Novel Trideoxysugar. *Biochemistry*. 2008;47(9):2833-40. doi: 10.1021/bi702430d.

720 23. Larkin A, Olivier NB, Imperiali B. Structural Analysis of WbpE from *Pseudomonas
721 aeruginosa* PAO1: A Nucleotide Sugar Aminotransferase Involved in O-Antigen Assembly.
722 *Biochemistry*. 2010;49(33):7227-37. doi: 10.1021/bi100805b.

723 24. Zachman-Brockmeyer TR, Thoden JB, Holden HM. Structures of KdnB and KdnA from
724 *Shewanella oneidensis*: Key Enzymes in the Formation of 8-Amino-3,8-Dideoxy-D-Manno-
725 Octulosonic Acid. *Biochemistry*. 2016. doi: 10.1021/acs.biochem.6b00439.

726 25. Laponogov I, Veselkov DA, Crevel IM-T, Pan X-S, Fisher LM, Sanderson MR. Structure
727 of an 'open' clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture
728 and transport. *Nucleic Acids Research*. 2013;41(21):9911-23. doi: 10.1093/nar/gkt749.

729 26. Hooper D. Mechanisms of fluoroquinolone resistance. *Drug Resist Updat.* 1999;2:38-55.

730 27. Yoshida H, Kojima T, Yamagishi J, Nakamura S. Quinolone-resistant mutations of the

731 *gyrA* gene of *Escherichia coli*. *Mol Gen Genet.* 1988;211:1-7.

732 28. Musso D, Drancourt M, Ossini S, Raoult D. Sequence of quinolone resistance-

733 determining region of *gyrA* gene for clinical isolates and for an in vitro-selected quinolone-

734 resistant strain of *Coxiella burnetii*. *Antimicrob Agents Chemother.* 1996;40:870-3.

735 29. Sutera V, Levert M, Burmeister WP, Schneider D, Maurin M. Evolution toward high-

736 level fluoroquinolone resistance in *Francisella* species. *Journal of Antimicrobial Chemotherapy.*

737 2014;69(1):101-10. doi: 10.1093/jac/dkt321.

738 30. Meibom KL, Charbit A. *Francisella Tularensis* Metabolism and its Relation to Virulence.

739 *Frontiers in Microbiology.* 2010;1:140. doi: 10.3389/fmicb.2010.00140. PubMed PMID:

740 PMC3109416.

741 31. Leflon-Guibout V, Spelbooren V, Heym B, Nicolas-Chanoine M-H. Epidemiological

742 Survey of Amoxicillin-Clavulanate Resistance and Corresponding Molecular Mechanisms in

743 *Escherichia coli* Isolates in France: New Genetic Features of *blaTEM* Genes. *Antimicrob Agents*

744 *Chemother.* 2000;44(10):2709-14.

745 32. Stapleton P, Wu P, King A, Shannon K, French G, Phillips I. Incidence and mechanisms

746 of resistance to the combination of amoxicillin and clavulanic acid in *Escherichia coli*.

747 *Antimicrob Agents Chemother* 1995;39(11):2478-83.

748 33. Jesudason S, Amyes S. The mechanism of ampicillin resistance in enterobacteriaceae

749 isolated in Vellore. *Indian J Pathol Microbiol.* 2000;43(1):51-3.

750 34. Reid AJ, Simpson IN, Harper PB, Amyes SGB. Ampicillin resistance in *Haemophilus*

751 *influenzae*: identification of resistance mechanisms. *J Antimicrob Chemother* 1987;20(5):645-56.

752 35. Ono S, Muratani T, Matsumoto T. Mechanisms of Resistance to Imipenem and

753 Ampicillin in *Enterococcus faecalis*. *Antimicrob Agents Chemother*. 2005;49(7):2954-8.

754 36. Didier J-P, Villet R, Huggler E, Lew DP, Hooper DC, Kelley WL, et al. Impact of

755 ciprofloxacin exposure on *Staphylococcus aureus* genomic alternations linked with emergence of

756 rifampin resistance. *Antimicrob Agents Chemother*. 2011;55:1946-52.

757

758 **Figure Legend**

759 **Fig 1. The test statistic values for a short region of the DNA gyrase A gene in one of the**
760 **Cipro resistant *F. tularensis* isolates.** The log likelihood ratio has a clear peak in this region.
761 Candidate SNP positions were identified by looking for regions of the genome where the log
762 likelihood ratio exceeds a fixed threshold.

763

764 **Fig 2. Structural model of the open dimeric conformation of DNA binding/cleavage domain**
765 **of GyrA from FTL_0533.** Left plot: the active site residues essential for DNA cleavage Arg121
766 and Tyr122 are shown in yellow sticks. Right plot close-up of the region outlined by the rounded
767 rectangle shows location of the mutated positions Thr83 and Asp87.

768

769 **Fig 3. Structural model of FTL_0601 with two mutation positions Ala69, and Asp110**
770 **labeled.** Left plot: a ribbon representation of two subunits forming homodimer with mutation
771 positions Ala69 and Asp110 shown as spheres colored in red and blue respectively (the asterisk
772 indicates residue from the second subunit of the dimer). Asp110 is located on the surface of the
773 protein within conserved helical region outside the interface area. Right plot: close-up of the
774 region showing Ala69 located at the end of the helical segment Asn58-Ala69 which is a part of
775 the interface between subunits. Examples of three residue positions within this helical region are
776 shown as yellow sticks and their functional importance can be described based on annotation of
777 corresponding positions in other homologous aminotransferases. In particular: two residues
778 Asn58 and Arg68 from both ends of the helix contribute to the interface formation by interacting
779 with Asn224* and Ser92* respectively, the residues Thr60 and Asn224* are both highly

780 conserved and are involved in stabilizing interaction between ligand and protein [21-24]. Ala69
781 is located on the edge of the interface in close proximity of these residues.

782

783 **Fig 4. Structural model of FTL_1547 in its dimeric conformation (chains A and B)**

784 **complexed with DNA.** A mutation position Ser465 is colored in red. Ser465 is located next to
785 positions 463, 460, 453 and 456 (colored in orange) that correspond to 471, 468, 464 and 461
786 from the X-ray structure (PDB chain 4i3h_A) described in [32] as critical functional positions
787 located in the helical region of the C-gate facilitating DNA (T-segment) release.

788

789
790

791 **Table 1. Illumina sequence data summary**

792

Isolate ID	Total sequenced amount (Mb)	Read size	Total # of reads	# of unique reads	% unique reads	Median coverage ^a
<i>F. tularensis</i> LVS 1:1:5	1,486	51	29,128,996	7,957,310	27.32%	711 x
<i>F. tularensis</i> LVS 5:8:3	730	36	20,269,065	4,626,044	22.82%	326 x
<i>F. tularensis</i> LVS 8:7:2	718	36	19,944,491	4,863,025	24.38%	317 x
<i>F. tularensis</i> LVS 11:4:3	748	36	20,777,320	4,365,901	21.01%	332 x
<i>F. tularensis</i> LVS 12:3:4	677	36	18,813,642	4,580,189	24.35%	266 x
<i>F. tularensis</i> LVS 14:6:5	690	36	19,161,169	4,259,430	22.23%	274 x
<i>F. tularensis</i> LVS 15:6:5	580	36	16,120,185	4,297,079	26.66%	275 x
<i>F. tularensis</i> LVS 16:10:2	607	36	16,847,563	4,004,713	23.77%	302 x
<i>F. tularensis</i> LVS 18:5:2	511	36	14,199,956	3,526,148	24.83%	211 x
<i>F. tularensis</i> LVS 21:8:2	607	36	16,852,775	3,707,584	22.00%	284 x
<i>F. tularensis</i> LVS 23:2:4	573	36	15,904,934	3,626,329	22.80%	259 x
<i>F. tularensis</i> LVS WT	590	36	16,400,385	3,764,767	22.96%	282 x

793

794 ^aMedian coverage of reference genome (*F. tularensis* NC_007880) by reads mapped with up to 1
 795 mismatch (insertion/deletion/substitution).

796

797 **Table 2:** Genes in Cipro resistant *F. tularensis* LVS isolates containing mutations identified both
 798 by Illumina sequencing and SNP microarray. The reference genome *F. tularensis* NC_007880
 799 was used to determine the reference genome position. The lists of identified amino acid
 800 diversities at the given mutation points observed in the corresponding positions in homologous
 801 proteins are provided in the “Amino acid change” column.

Gene annotation	Mutation and codon context	Amino acid change (AA diversity in homologous proteins in order from most to least frequent)	Cipro resistant isolates containing this mutation	Reference Genome Position
Hypothetical membrane protein [FTL_0073] complement(70687..71667)	C->A GCT <u>T</u> CATGG	E-209->stop (E,F)	8:7:2	71,043
TPR (tetratricopeptide repeat) domain protein [FTL_0204] region(203990..204988)	G->T GAG <u>C</u> GAGCT	R-115->L (R,Q,K,M,E,A,I,L)	11:4:2	204,333
Hypothetical protein [FTL_0439] region(406452..408107)	A->T ATTT <u>AAA</u> AA	K-6->stop (K,R,L,S)	15:6:5	406,467
Hypothetical protein [FTL_0439] region(406452..408107)	C->A CG <u>T</u> ACTCTG	Y-196->stop (Y,F,S,D,K,A)	21:8:2	407,039
Hypothetical protein [FTL_0439] region(406452..408107)	G->T TAT <u>C</u> GATAC	D-417->Y (D,N,G,S,Q,E,R,A,V,Y)	1:1:5 11:4:3 12:3:4 18:5:2	407,700
Hypothetical protein [FTL_0439] region(406452..408107)	A->G AT <u>C</u> GATACC	D-417->G (D,N,G,S,Q,E,R,A,V,Y)	23:2:4	407,701
Glucosamine--fructose-6-phosphate aminotransferase [FTL_0454] region(429717..431555)	C->A GGT <u>C</u> CTCTA	P-509->H (P,T,S,A,I,V,F,N,G,D,H)	21:8:2	431,242
DNA gyrase, subunit A [FTL_0533] region(513894..516500)	C->A GAT <u>A</u> CAGCT	T-83->K (S,T,A,Q,L,I,N,F,V,M,G,Y,R,K)	12:3:4 14:6:5 21:8:2	514,141
DNA gyrase, subunit A [FTL_0533]	C->T GAT <u>A</u> CAGCT	T-83->I (S,T,A,Q,L,I,N,F,V,M,G,Y,R,K)	1:1:5 5:8:3	514,141

region(513894..516500)			8:7:2 11:4:3 16:10:2	
DNA gyrase, subunit A [FTL_0533] region(513894..516500)	G->A TTAC <u>GATAC</u>	D-87->N (D,E,G,F,M,N,L,Q,Y)	5:8:3	514,152
DNA gyrase, subunit A [FTL_0533] region(513894..516500)	G->T TTAC <u>GATAC</u>	D-87->Y (D,E,G,F,M,N,L,Q,Y)	15:6:5 16:10:2 11:4:3 18:5:2 23:2:4	514,152
Conserved hypothetical protein, pseudogene [FTL_0551] region(533031..533885)	G->T TTC <u>AGGACA</u>	R-270->M (R)	5:8:3	533,839
UDP-glucose/GDP-mannose dehydrogenase [FTL_0596] region(582479..583789)	G->T ACC <u>AGTTAA</u>	V-92->F (I,V,L,T,A,P,F)	16:10:2	582,752
asparagine synthase [FTL_0600] region(587103..588989)	G->T CTA <u>AGTTAC</u>	K-398->N (R,K,A,P,S,Q,G,V,N)	15:6:5	588,296
asparagine synthase [FTL_0600] region(587103..588989)	G->A GCA <u>AGAGCA</u>	E-603->K (E,Q,D,A,N,R,K)	11:4:2	588,909
sugar transamine/perosamine synthetase [FTL_0601] region(588982..590064)	C->A AGAG <u>CGTTA</u>	A-69->E (A,S,T,V,L,G,I,N,C,D,M,F,K,Q,E)	8:7:2	589,187
sugar transamine/perosamine synthetase [FTL_0601] region(588982..590064)	C->T TAGAC <u>GTCT</u>	D-110->D (D,N,S)	15:6:5	589,311
Glycosyltransferase [FTL_0604] region(592271..593131)	C->A CAGG <u>CTGAT</u>	A-106->D (V,A,I,L,Y,S,M,F,N,K,H,T,C,D)	12:3:4	592,587
Conserved hypothetical protein [FTL_1107] region(1052313..1053695)	G->T CTC <u>AGTTGA</u>	Q-334->H (Q,A,L,E,S,K,W,N,Y,D,V,I,P,M)	16:10:2	1,053,314
Intergenic between [FTL_1327] type II-B CRISPR associated Cas9/Csx12 and [FTL_1328] outer membrane associated proteins region(1263690..1264351)	T->A ACATT <u>CTCT</u>	Not applicable	15:6:5	1,264,162
DNA gyrase subunit B	G->T	S-465->Y	18:5:2	1,477,418

[FTL_1547] complement(1476400..1478811)	TTGAGAACC	(S,N,A,Y)		
Efflux protein, RND family, MFP subunit [FTL_1671] region(1604054..1605427)	C->A TTAGCGAAA	S-145->R (D,S,T,K,I,V,L,R)	15:6:5	1,604,488
Hypothetical protein [FTL_1945] complement(1874376..1875031)	A->T GTACAAAAAA	C-169->S (F,V,L,C,R,Y,W,T,I,E,A,S)	15:6:5	1,874,528

802

803

804 Table 3. Multiple drug resistance testing of *F. tularensis* LVS Ciprofloxacin resistant clones.

805 Units are in $\mu\text{g/mL}$.

806

F. <i>tularensis</i> LVS Wild Type	AmC	Am10	CB100	CIP5	D30	E15	GM10	NA30	RA5	S10	VA30	AmC	Am10	CIP5	TZ	D30	E15	RA5
	S	S	S	S	S	R	S	S	S	S	S	2	3	0.023	U	U	>256	U
C1:1:5	R	R	S	R	S	R	S	R	S	S	R	32	>256	>32	U	U	U	U
C5:8:3	M	R	M	R	S	R	S	R	S	S	S	6	48	>32	U	U	U	U
C8:7:2	R	R	S	R	S	R	S	R	S	S	R	12	>256	24	U	U	U	U
C11:4:3	M	R	M	R	S	R	S	R	S	S	S	8	64	32	U	U	U	U
C12:3:4	R	R	S	R	S	R	S	R	S	S	R	8	>256	>32	U	U	U	U
C14:6:5	R	R	M	R	S	R	S	R	S	S	R	8	>256	32	U	U	U	U
C15:6:5	R	R	R	R	S	R	S	R	S	S	R	>256	>256	U	U	U	U	U
C16:10:2	R	R	S	R	S	R	S	R	S	S	R	>256	>256	U	U	U	>256	U
C18:5:2	S	R	S	M	S	R	S	M	S	S	S	2	48	U	U	U	U	U
C21:8:2	R	R	R	R	S	R	S	R	S	S	R	24	>256	U	U	U	U	U
C23:2:4	M	M	S	R	S	R	S	M	S	S	R	U	U	U	U	U	U	U

807

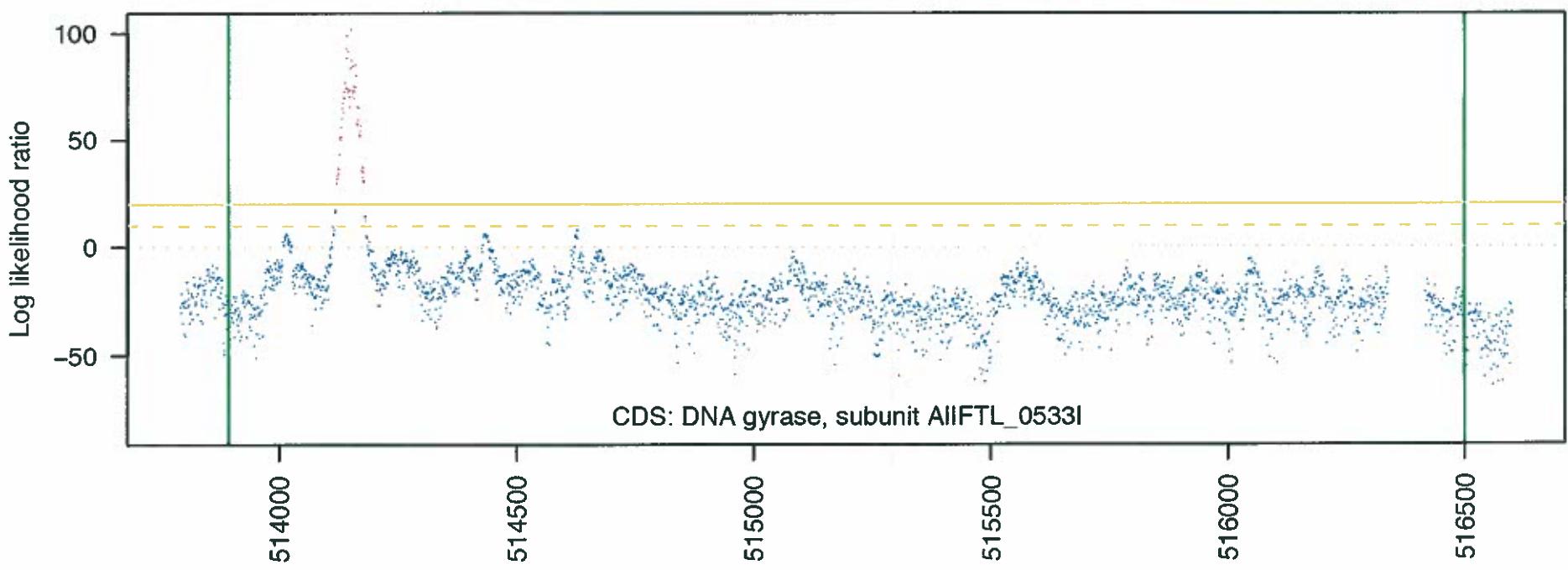
808 AmC= Amoxicillin, Am10= Ampicillin, Cb100= Carbenicillin, CIP5= Ciprofloxacin, E15= Erythromycin, GM10=

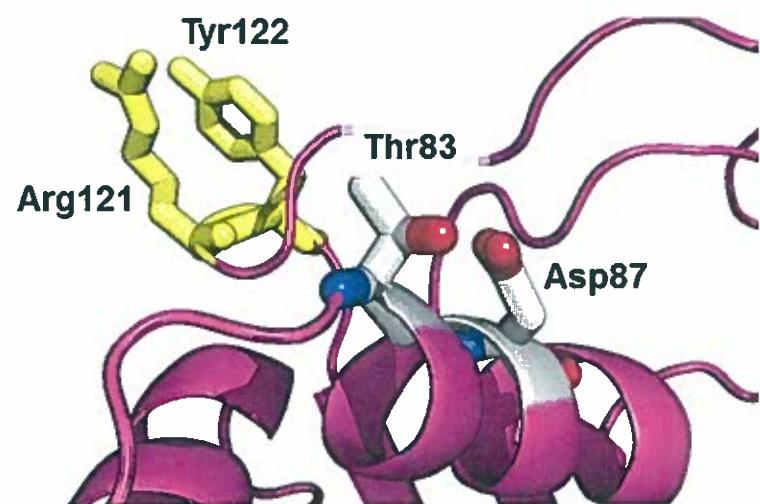
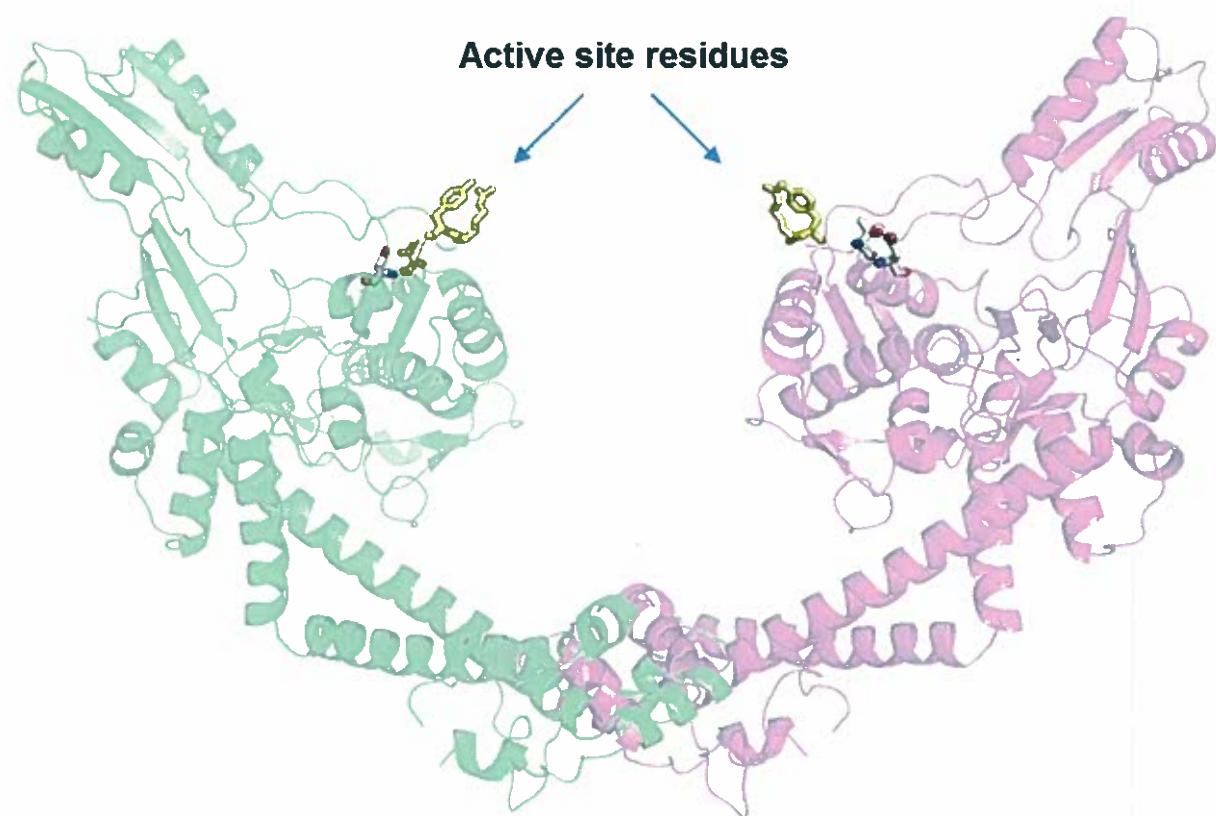
809 Gentamicin, D30= Doxycycline, VA30= Vancomycin, NA30= Nalidixic Acid, RA5= Rifampin, S10= Streptomycin

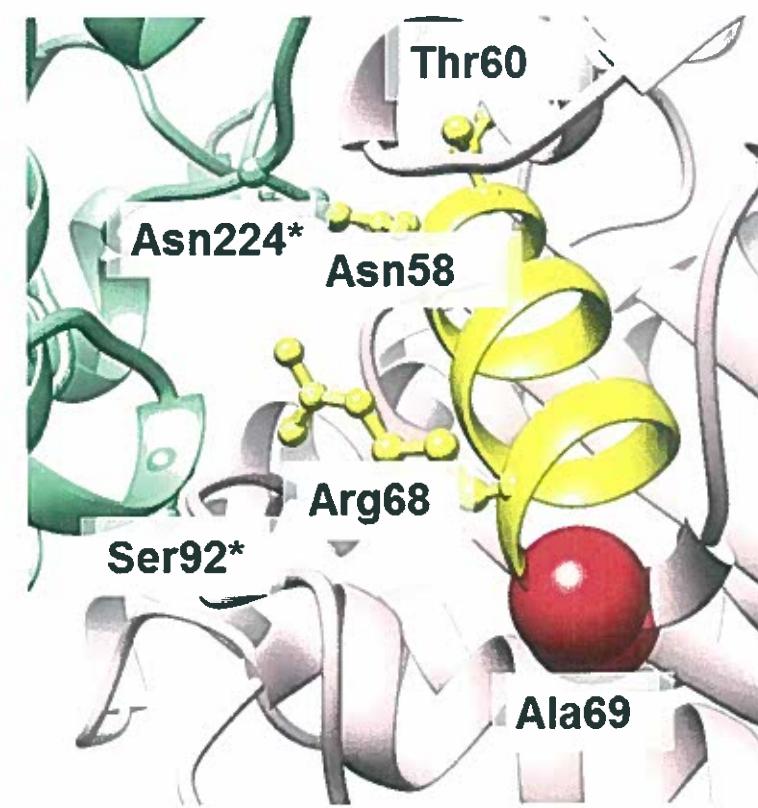
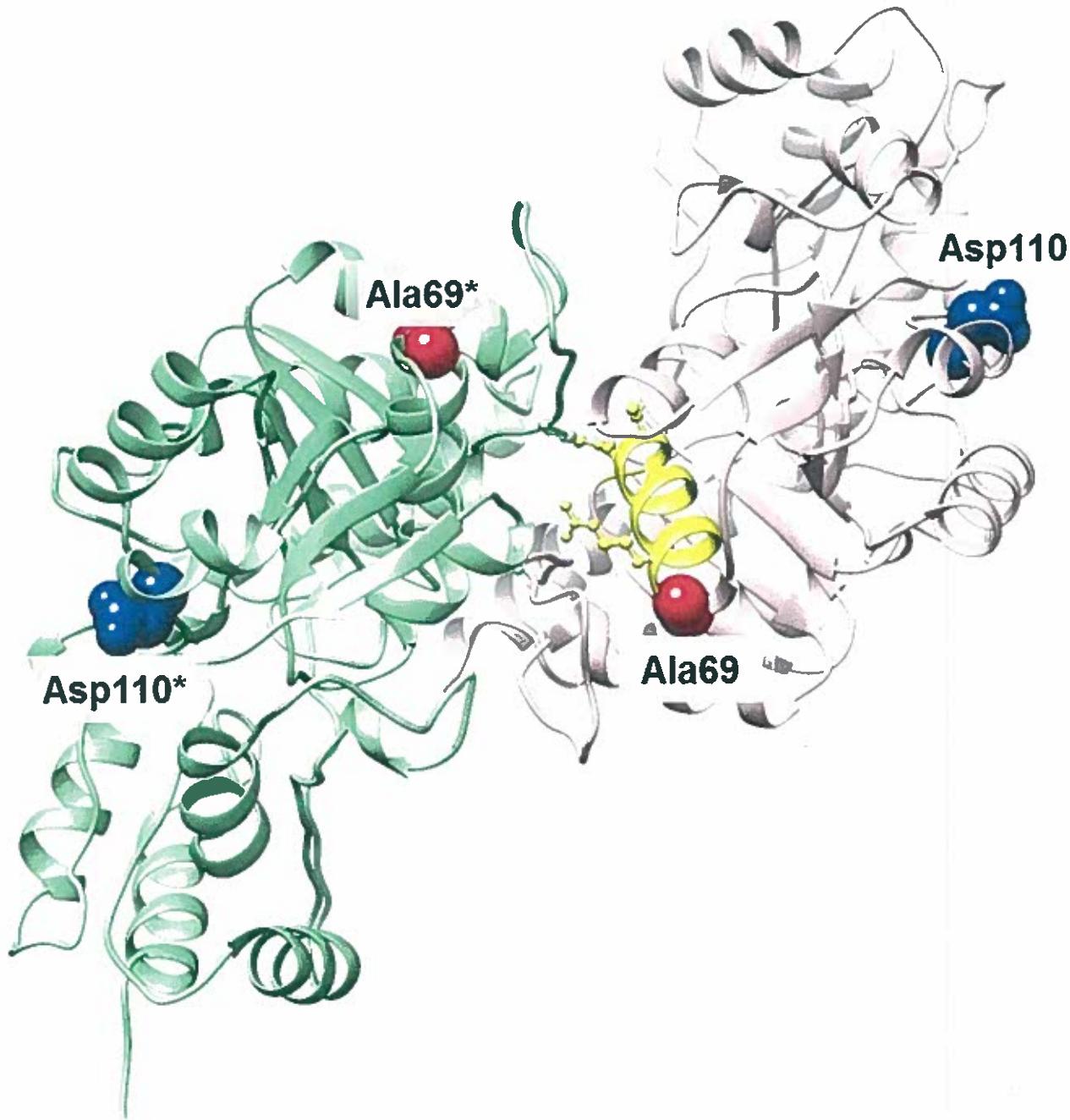
810 S= Susceptible, I= Increased Sensitivity, M= Moderate, R= Resistant, U= Untested

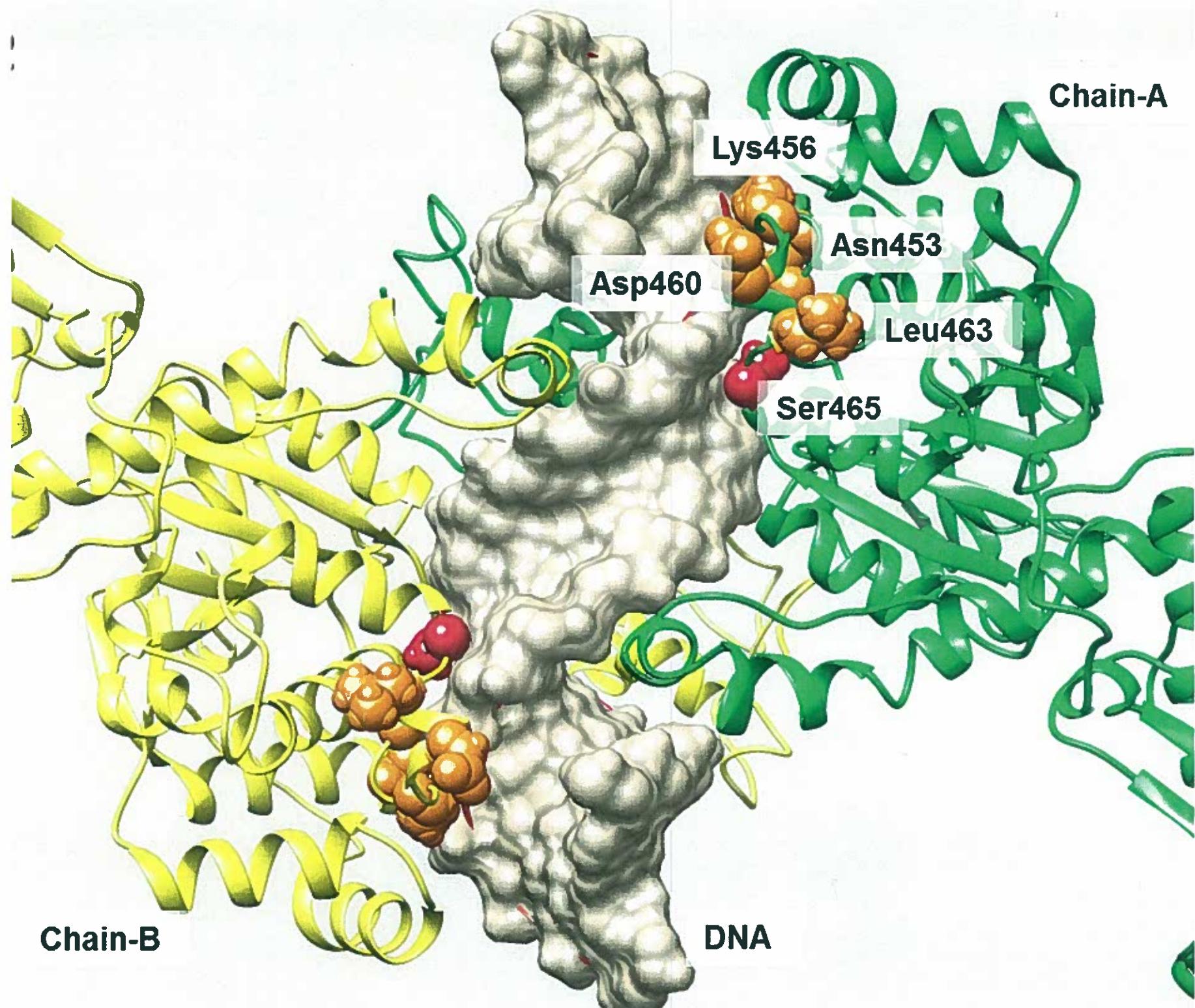
811

812 **Supplementary figure legends**


813 **S1 Fig. The distributions of log intensity ratios for probes overlapping known sequence**
814 **variations between the reference LVS strain and the SchuS4 strain hybridized to a typical**
815 **array.** The probes are grouped by the reference triplet centered at the SNP locus. As expected,
816 SNPs affecting a triplet with a central G or C base have a stronger effect on average than those
817 replacing an A or a T.



818



819 **S2 Fig. A typical profile of intensity change vs SNP position for the same SchuS4 vs LVS**
820 **array.** Each column in this plot represents the distribution of log intensity ratios between the
821 Cy3 (LVS) and Cy5 (SchuS4) channels, for probes overlapping a SchuS4 variation at a given
822 position in the probe; the central bar represents the range from the 25th to the 75th percentiles.


823

Genome position

Supplementary Table 1. Avirulent *F. tularensis* LVS – Ciprofloxacin resistant isolate MIC summary. All MIC values are in µg/ml.

Avirulent <i>F. tularensis</i> LVS – wild-type ciprofloxacin MIC (Etest) = 0.023 µg/ml					
Round 1		Round 2		Round 3	
Name	MIC	Name	MIC	Name	MIC
M1	0.75	M2:1	2.0	M1:1:2	12
M2	0.25	M2:4	2.0	M1:1:3	12
M3	0.38	M2:5	1.5	M1:1:5	> 32
M4	0.38	M2:6	2.0	M5:1:2	8
M5	0.38	M2:7	2.0	M5:1:3	6
M6	0.5	M2:8	1.0	M5:1:5	12
M7	1.0	M2:9	1.5	M5:1:6	12
M8	0.75	M2:10	1.5	M5:2:2	32
M9	0.5	M3:1	1.0	M5:2:3	12
M10	0.5	M3:3	1.5	M5:2:4	24
M11	0.38	M3:5	1.0	M5:2:5	16
M12	0.5	M3:6	1.5	M5:2:6	12
M13	0.5	M3:7	1.0	M5:3:1	32
M14	0.5	M3:8	2.0	M5:3:2	32
M15	0.25	M3:9	1.5	M5:3:3	12
M16	0.38	M3:10	2.0	M5:3:4	32
M17	0.5	M5:1	0.75	M5:3:5	> 32
M18	0.25	M5:2	1.5	M5:3:6	24
M19	0.5	M5:3	1.5	M5:4:1	> 32
M20	0.38	M5:4	2	M5:4:2	> 32
M21	0.5	M5:5	1.5	M5:4:3	8
M22	0.75	M5:6	1.5	M5:4:4	> 32
M23	0.25	M5:7	1.5	M5:4:5	32
M24	0.75	M5:8	2	M5:4:6	12
M25	1.0	M5:9	1	M5:5:2	12
M26	0.75	M5:10	1	M5:5:3	12
M27	1.0	M8:2	4	M5:5:5	12
M28	0.5	M8:7	3	M5:6:2	16
		M11:1	1.5	M5:6:3	12
		M11:3	3	M5:6:5	12
		M11:4	1.5	M5:6:6	24
		M11:7	2	M5:7:1	> 32
		M11:8	1.5	M5:7:3	24
		M11:10	1.5	M5:7:5	12
		M12:2	4	M5:7:6	8
		M12:3	0.75	M5:8:1	6
		M12:6	2	M5:8:2	12
		M12:8	4	M5:8:3	> 32
		M13:10	0.5	M5:8:4	16
		M14:6	4	M5:8:5	32
		M14:7	2	M5:8:6	> 32
		M14:8	2	M5:9:2	24
		M14:10	1.5	M5:9:5	32
		M14:6	4	M5:10:2	8
		M14:7	2	M5:10:5	8
		M14:8	2	M8:2:1	8
		M14:10	1.5	M8:2:3	12
		M15:1	3	M8:2:4	12
		M15:2	8	M8:2:5	12

		M15:3	1.5	M8:2:6	16
		M15:4	3	M8:7:2	24
		M15:6	1	M8:7:3	8
		M15:9	3	M8:7:5	12
		M16:1	3	M8:7:6	32
		M16:2	3	M11:3:1	> 32
		M16:3	2	M11:3:2	> 32
		M16:4	3	M11:3:3	> 32
		M16:6	4	M11:3:4	> 32
		M16:7	16	M11:3:5	> 32
		M16:8	4	M11:3:6	> 32
		M16:9	3	M11:4:3	32
		M16:10	3	M11:7:2	32
		M17:8	3	M11:10:1	8
		M17:9	3	M11:10:2	12
		M17:10	4	M11:10:3	6
		M18:1	3	M11:10:4	8
		M18:2	4	M11:10:5	12
		M18:3	4	M12:2:2	> 32
		M18:4	4	M12:2:3	> 32
		M18:5	6	M12:3:1	> 32
		M18:6	4	M12:3:2	> 32
		M18:7	6	M12:3:3	> 32
		M18:8	3	M12:3:4	> 32
		M18:9	3	M12:3:5	> 32
		M18:10	4	M12:3:6	> 32
		M19:10	4	M12:8:5	> 32
		M20:1	3	M14:6:1	32
		M20:3	1.5	M14:6:5	32
		M20:4	2	M14:7:4	32
		M20:5	2	M14:6:1	16
		M20:6	2	M14:10:1	32
		M20:7	1.5	M14:10:4	12
		M20:8	2	M15:4:6	> 32
		M20:9	2	M15:6:2	> 32
		M20:10	1.5	M15:6:3	> 32
		M21:4	1.5	M15:6:4	> 32
		M21:7	1.5	M15:6:5	24
		M21:8	1	M16:3:2	24
		M22:1	> 32	M16:3:2	24
		M22:7	2	M16:3:6	24
		M23:2	1.5	M16:4:1	> 32
		M23:3	2	M16:7:2	> 32
		M23:4	1.5	M16:7:3	> 32
		M23:5	3	M16:7:4	> 32
		M23:6	3	M16:7:5	> 32
		M23:7	3	M16:7:6	> 32
		M23:8	1	M16:8:3	> 32
		M23:9	2	M16:8:5	> 32
				M16:8:6	> 32
				M16:9:1	> 32
				M16:9:2	> 32
				M16:10:2	> 32
				M16:10:3	> 32

				M16:10:4	> 32
				M16:10:5	> 32
				M16:10:6	> 32
				M17:8:6	> 32
				M17:9:1	24
				M17:9:6	24
				M17:10:3	> 32
				M18:1:1	> 32
				M18:3:3	> 32
				M18:5:1	> 32
				M18:5:2	> 32
				M18:5:3	> 32
				M18:6:1	> 32
				M18:7:1	6
				M23:2:1	32
				M23:2:2	> 32
				M23:2:3	> 32
				M23:2:4	32
				M23:4:2	> 32

Supplementary Table 2: List of genes with mutations that are identified from more than 2 clones by Microarray listed under gene locus order for *F. tularensis* ciprofloxacin resistant clones

Gene annotation	Locus	Clone #
conserved hypothetical membrane protein FTL_0057	57386	23:2:4
	57511	14:6:5
	57832	15:6:5
conserved hypothetical membrane protein FTL_0206	205911	15:6:5
	205914	21:8:2
uridylate kinase FTL_0226	226927	14:6:5
	227097	15:6:5
phosphatidate cytidylyltransferase FTL_0229	229262	14:6:5
	229460	15:6:5
	229480	15:6:5
elongation factor G (EF-G) FTL_0234	231982	15:6:5
	232175	5:8:3
	232217	15:6:5
	232287	15:6:5
	232370	15:6:5
	232394	15:6:5
	232452	15:6:5
	232538	15:6:5
	232721	15:6:5
	232761	15:6:5
	232774	14:6:5
intergenic	351151	15:6:5, 21:8:2
hypothetical protein FTL_0439	406472	15:6:5
	407047	21:8:2
	407701	1:1:5, 11:4:3
	407703	12:3:4
	407706	18:5:2
	407708	23:2:4
ABC transporter, membrane protein FTL_0516	498547	15:6:5, 21:8:2
DNA gyrase, subunit A FTL_0533	514142	12:3:4, 14:6:5, 1:1:5, 8:7:2
	514145	21:8:2
	514148	5:8:3
	514150	11:4:3
	514153	16:10:2
	514157	23:2:4
	514159	15:6:5
asparagine synthase FTL_0600	514160	18:5:2
	588302	15:6:5
	588914	11:4:3
sugar transamine/berosamine synthetase FTL_0601	589192	8:7:2

	589315	15:6:5
	589652	15:6:5
conserved hypothetical protein, pseudogene FTL_0824	806163	11:4:3, 5:8:3
phosphoglycerate kinase FTL_1147	1090255	16:10:2
	1090261	18:5:2
virulence factor MviN FTL_1305	1242645	5:8:3, 11:4:3
intergenic preceding outer membrane associated protein FTL_1328	1264103	21:8:2
	1264170	15:6:5

Supplementary Table 3: SNPs identified from Cipro resistant *F. tularensis* clones on both strands, the location of the SNP, the # of reads and the % of reads containing the SNP

Clone ID

Genome Location	Gene annotation	SNP	Clone ID											# of reads	% of total reads
			Type	FTR 1	FTR 2	FTR 3	FTR 4	FTR 5	FTR 6	FTR 7	FTR 8	FTR 9	FTR 10	FTR 11	
71043	Hypothetical membrane protein [FT1_0071]	Sub C>A	1_1_5	5_8_3	8_7_2	11_4_3	12_3_4	14_6_5	15_6_5	16_10_2	18_5_2	21_8_2	23_2_4	0	0
			0	3	594	1	0	1	0	0	0	0	0	0	0
			0.00%	0.39%	99.66%	0.09%	0.00%	0.10%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
204333	TPR (tetratricopeptide repeat) domain protein	Sub G>T	0	0	0	616	0	0	0	0	0	0	0	0	0
			0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
406467	Hypothetical protein [FT1_0439]	Sub A>T	0	1	0	0	0	0	198	0	0	0	0	0	0
			0.00%	0.20%	0.00%	0.00%	0.00%	0.00%	60.18%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
406950	Hypothetical protein [FT1_0439]	Sub G>T	1	0	1	0	0	1	1	390	1	0	0	0	0
			0.09%	0.00%	0.15%	0.00%	0.00%	0.18%	0.28%	99.74%	0.21%	0.00%	0.00%	0.00%	0.00%
407039	Hypothetical protein [FT1_0439]	Sub C>A	1	0	0	0	0	0	0	0	0	0	585	0	0
			0.08%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	99.83%	0.00%	0.00%
407700	Hypothetical protein [FT1_0439]	Sub G>A	655	0	0	381	395	0	0	2	313	1	0	0	0
			100.00%	0.00%	0.00%	99.74%	100.00%	0.00%	0.00%	0.49%	99.37%	0.23%	0.00%	0.00%	0.00%
407701	Hypothetical protein [FT1_0439]	Sub A>G	0	0	0	0	0	0	0	0	0	0	0	354	0
			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	99.72%	0.00%	0.00%
431242	Glucosamine-6-phosphate aminotransferase	Sub C>A	0	1	0	0	0	0	1	0	0	0	443	0	0
			0.00%	0.19%	0.00%	0.00%	0.00%	0.00%	0.23%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%
436130	DNA topoisomerase IV subunit A [FT1_0446]	Sub C>A	0	334	0	1	0	0	0	0	0	0	0	0	0
			0.00%	51.54%	0.00%	0.14%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
466243	Phosphoglucomutase [FT1_0484]	Sub G>T	0	0	0	0	0	202	0	0	0	0	0	0	0
			0.00%	0.00%	0.00%	0.00%	0.00%	65.58%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
514141	DNA gyrase subunit A [FT1_0533]	Sub C>A	0	1	0	0	444	766	0	0	0	0	414	0	0
			0.00%	0.45%	0.00%	0.00%	100.00%	100.00%	0.00%	0.00%	0.00%	0.00%	99.76%	0.00%	0.00%
514141	DNA gyrase subunit A [FT1_0533]	Sub C>T	842	222	683	211	0	0	0	157	1	0	0	0	0
			100.00%	99.55%	100.00%	99.53%	0.00%	0.00%	0.00%	100.00%	0.43%	0.00%	0.00%	0.00%	0.00%
514152	DNA gyrase subunit A [FT1_0533]	Sub G>A	0	246	0	0	0	0	430	188	0	0	0	0	0
			0.00%	98.80%	0.00%	0.00%	0.00%	0.00%	99.54%	99.47%	0.00%	0.00%	0.00%	0.00%	0.00%
514152	DNA gyrase subunit A [FT1_0533]	Sub G>T	0	1	0	242	0	0	0	1	255	0	0	335	0
			0.00%	0.40%	0.00%	100.00%	0.00%	0.00%	0.00%	0.53%	100.00%	0.00%	0.00%	100.00%	0.00%
527613	Hypothetical protein [FT1_0541]	Sub G>T	0	0	0	1	0	0	0	0	0	0	0	164	0
			0.00%	0.00%	0.00%	0.34%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%
578478	dTDP-glucose 4,6-dehydratase [FT1_0592]	Ins T	2	0	0	0	0	0	0	0	0	0	0	124	0
			100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%
578479	dTDP-glucose 4,6-dehydratase [FT1_0592]	Ins T	2	0	0	0	0	0	0	0	0	0	0	127	0
			100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%
578480	dTDP-glucose 4,6-dehydratase [FT1_0592]	Ins T	2	0	0	0	0	0	0	0	0	0	0	127	0
			100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%
578481	dTDP-glucose 4,6-dehydratase [FT1_0592]	Ins T	1	0	0	0	0	0	0	0	0	0	0	127	0
			50.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%

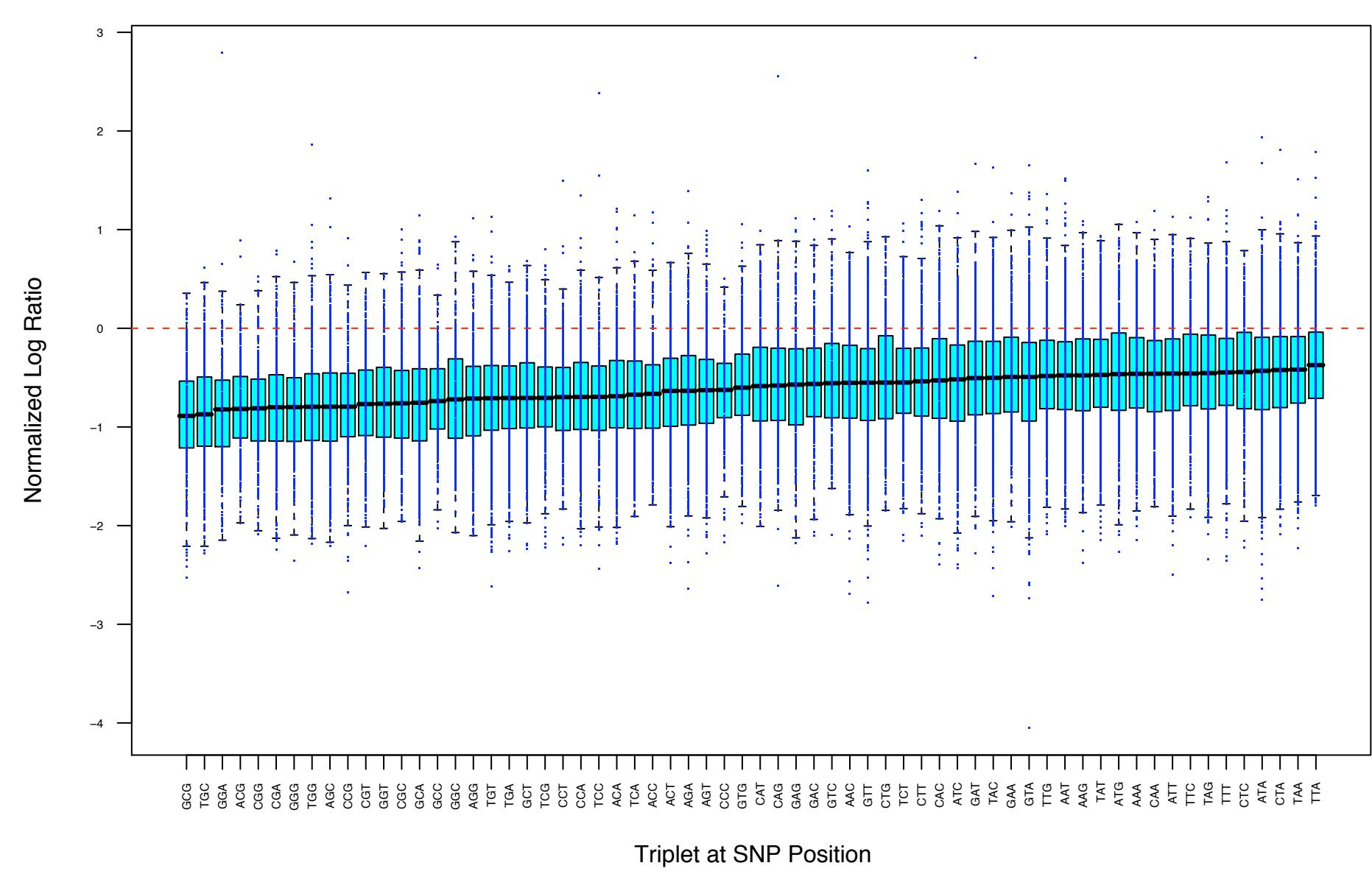
	dTDP-glucose 4,6-dehydratase [FT1_0592]			1	0	0	0	0	0	0	0	0	127
578482		Ins T		100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%
	dTDP-glucose 4,6-dehydratase [FT1_0592]		Ins T	1	0	0	0	0	0	0	0	0	126
578483				50.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%
	dTDP-glucose 4,6-dehydratase [FT1_0592]		Ins T	1	0	0	0	0	0	0	0	0	122
578484				100.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%
	UDPGlucose GDP-mannose dehydrogenase			0	1	0	0	0	0	376	3	0	0
582752		Sub G->T		0.00%	0.16%	0.00%	0.00%	0.00%	0.00%	100.00%	1.74%	0.00%	0.00%
	asparagine synthase [FT1_0600]		Sub G->T	0	0	0	0	0	0	156	0	0	0
588296				0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%
	asparagine synthase [FT1_0600]		Sub G->A	0	0	0	172	0	1	0	0	0	0
588909				0.00%	0.00%	0.00%	100.00%	0.00%	0.48%	0.00%	0.00%	0.00%	0.00%
	[FT1_0601]		Sub C->A	0	0	176	0	0	0	0	0	0	0
589187				0.00%	0.00%	99.44%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
	[FT1_0601]		Sub C->T	0	1	0	0	0	0	197	1	0	0
589311				0.00%	0.43%	0.00%	0.00%	0.00%	0.00%	99.49%	0.31%	0.00%	0.00%
	Glycosyltransferase [FT1_0604]		Sub C->A	2	0	0	0	159	0	0	0	0	0
592587				0.28%	0.00%	0.00%	0.00%	98.76%	0.00%	0.00%	0.00%	0.00%	0.00%
	[FT1_0851]		Sub A->T	0	0	0	0	0	0	0	0	0	204
833238				0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	89.87%
	Hypothetical protein [FT1_0872]		Sub G->A	0	0	0	0	0	1	0	0	0	80
851357				0.00%	0.00%	0.00%	0.00%	0.00%	0.61%	0.00%	0.00%	0.00%	98.77%
	[FT1_1107]		Sub G->T	1	0	1	0	0	2	0	298	2	0
1053314				0.11%	0.00%	0.16%	0.00%	0.00%	0.32%	0.00%	100.00%	1.01%	0.00%
	associated protein [FT1_1328]		Sub T->A	0	0	0	0	0	0	85	0	0	0
1264162				0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%
	DNA gyrase subunit B [FT1_1547]		Sub G->T	1	0	1	0	0	1	0	0	682	0
1477418				0.09%	0.00%	0.13%	0.00%	0.00%	0.20%	0.00%	0.00%	99.71%	0.00%
	DNA gyrase subunit B [FT1_1547]		Sub A->C	0	0	0	0	0	0	2	1	0	672
1477419				0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.41%	0.19%	0.00%	99.85%
	[FT1_1671]		Sub C->A	0	0	0	0	0	0	400	0	0	0
1604488				0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	100.00%	0.00%	0.00%	0.00%
	50S ribosomal protein L11 [FT1_1748]		Sub A->C	559	0	0	0	0	0	0	0	0	0
1683798				64.11%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
		Ins T		6	40	23	32	29	18	29	28	56	31
1706353				100.00%	100.00%	100.00%	96.97%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
	Hypothetical protein [FT1_1945]		Sub A->T	2	0	0	0	1	0	180	0	0	0
1874528				0.46%	0.00%	0.00%	0.00%	0.83%	0.00%	90.91%	0.00%	0.00%	0.00%

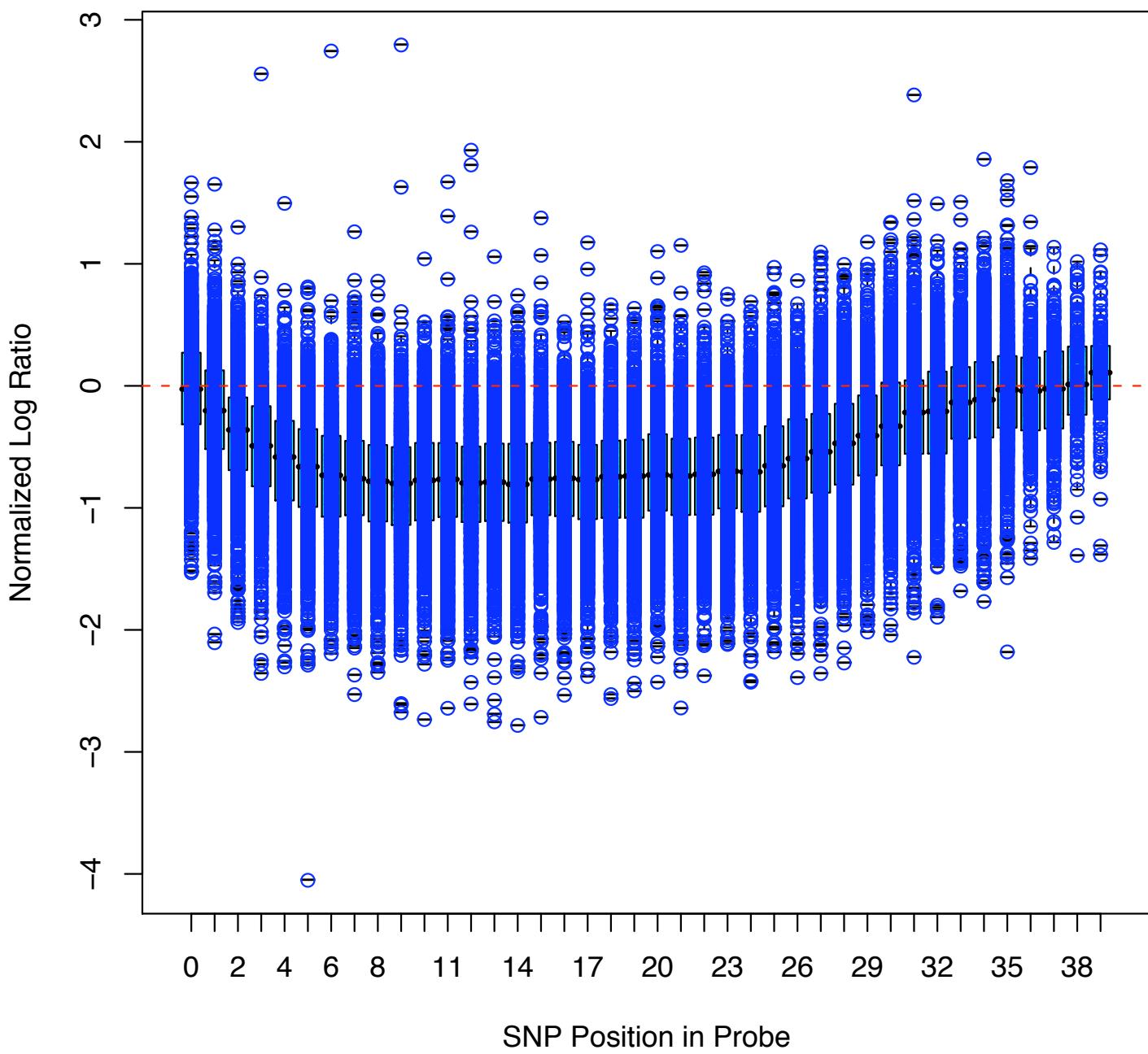
synonymous

Supplementary Table 4: SNPs that were detected by sequencing, but not by microarray

Gene annotation	Mutation and codon context	Amino acid change (AA diversity in homologous proteins in order from most to least frequent)	Cipro resistant isolates containing this mutation	Reference Genome Position*	% of reads contain this mutation
Hypothetical protein [FTL_0439] region(406452..408107)	G->T ATT <u>AGGAGG</u>	G-167->stop (G,Y,E,V,N,D)	16:10:2	406,950	>90%
DNA topoisomerase IV subunit A [FTL_0462] region(436126..436134)	C->A G <u>CTGCGATG</u>	A-120->E (A,S,Y,F,E,P,H)	5:8:3	436,130	55%
Phosphoglucomutase, [FTL_0484] region(465981..467615)	G->T A <u>ATGGTATA</u>	G-88->V (G,A,S,T,V,I)	14:6:5	466,243	66%
Hypothetical protein [FTL_0544] complement(527080..527889)	G->T T <u>CTTGTTCT</u>	Q-93->K (R,E,T,V,K,H,D,Q,Y)	23:2:4	527,613	>90%
dTDP-glucose 4,6-dehydratase [FTL_0592] region(578226..579962)	7 T insertion	-	23:2:4	578,478-84	>90%
RNA polymerase factor sigma-32 [FTL_0851] region(832559..833437)	A->T G <u>ATAATTTC</u>	N-227->I (N,Q,H,R,S,T,G,L,A,D,V,K,F,I)	23:2:4	833,238	>90%
Hypothetical protein [FTL_0872] region(851235..851582)	G->A G <u>CTCGTTTT</u>	S-41->S (S,V,L,R,T,A)	23:2:4	851,357	>90%
DNA gyrase subunit B [FTL_1547] complement(1476400..1478811)	A->C T <u>GAGAACCA</u>	S-465->A (S,N,A,Y,H,F)	23:2:4	1,477,419	>90%
50S ribosomal protein L11 [FTL_1748] complement(1683387..1683821)	A->C T <u>AATAGCTT</u>	A-8->A (G,A,K,T,Q)	1:1:5	1,683,798	64%

Supplementary Table 5. *F. tularensis* ciprofloxacin multiple drug resistance testing


Francisella tularensis LVS Ciprofloxacin Resistant Isolates																							
F. tularensis LVS Wild Type	AmC	Am10	CB100	CIP5	D30	E15	GM10	NA30	RA5	S10	VA30	AmC	Am10	CIP5	TZ	D30	E15	RA5					
	S	S	S	S	S	R	S	S	S	S	S	2	3	0.023	U	U	>256	U					
C1:1:2	S	R	S	R	S	R	S	M	S	S	R	12	>256	12	U	U	U	U					
C1:1:3	R	R	S	R	S	R	S	M	S	S	R	96	>256	12	U	U	U	U					
C1:1:5	R	R	S	R	S	R	S	R	S	S	R	32	>256	>32	U	U	U	U					
C2:1:1	R	R	S	M	S	R	S	M	S	S	M	6	32	U	U	U	U	U					
C2:1:2	M	R	S	M	S	R	S	M	S	S	S	3	16	U	U	U	U	U					
C2:1:3	R	R	M	R	S	R	S	M	S	S	M	4	6	U	U	U	U	U					
C2:1:4	M	R	S	M	S	R	S	M	S	S	S	4	96	U	U	U	U	U					
C2:1:5	M	R	S	M	S	R	S	M	S	S	S	3	12	U	U	U	U	U					
C2:1:6	R	R	M	M	S	R	S	M	S	S	M	6	12	U	U	U	U	U					
C2:4:1	M	R	M	R	S	R	S	M	S	S	M	8	256	U	U	U	U	U					
C2:4:4	R	R	S	R	S	R	S	R	S	S	R	16	>256	U	U	U	U	U					
C2:4:6	R	R	R	R	S	R	S	R	S	S	R	32	>256	U	U	U	U	U					
C2:5:1	R	R	R	R	S	R	S	R	S	S	M	24	>256	U	U	U	U	U					
C2:5:2	M	R	S	M	S	R	S	M	S	S	S	4	8	U	U	U	U	U					
C2:5:3	S	S	S	S	S	R	S	M	S	S	M	2	3	U	U	U	U	U					
C2:5:4	M	R	S	M	S	R	S	M	S	S	S	2	6	U	U	U	U	U					
C2:5:5	R	R	M	R	S	R	S	M	S	S	M	64	>256	U	U	U	U	U					
C2:5:6	R	R	M	R	S	R	S	M	S	S	R	48	>256	U	U	U	U	U					
C2:6:6	R	R	M	R	S	R	S	M	S	S	M	4	>256	U	U	U	U	U					
C3:3:2	R	R	M	R	S	R	S	R	S	S	R	24	>256	U	U	U	U	U					
C3:3:1	R	R	R	R	S	R	S	R	S	S	R	16	>256	U	U	U	U	U					
C3:3:3	R	R	M	R	S	R	S	M	S	S	R	24	>256	U	U	U	U	U					
C3:3:4	R	R	M	R	S	R	S	M	S	S	M	12	>256	U	U	U	U	U					
C3:3:5	R	R	S	M	S	R	S	M	S	S	S	48	>256	U	U	U	U	U					
C3:3:6	R	R	M	M	S	R	S	M	S	S	S	U	U	U	U	U	U	U					
C3:5:1	R	R	M	R	S	R	S	M	S	S	R	16	>256	U	U	U	U	U					
C3:5:2	R	R	R	R	S	M	S	R	S	S	R	16	>256	U	U	U	U	U					
C3:5:3	R	R	S	R	S	R	S	R	S	S	R	16	>256	U	U	U	U	U					
C3:5:4	R	R	R	R	S	R	S	R	S	S	R	12	96	U	U	U	U	U					
C3:5:5	R	R	M	R	S	R	S	M	S	S	R	8	128	U	U	U	U	U					
C3:5:6	R	R	M	R	S	R	S	R	S	S	R	4	12	U	U	U	U	U					
C3:6:1	R	R	R	R	S	R	S	R	S	S	R	24	>256	U	U	U	U	U					
C3:6:2	R	R	S	R	S	R	S	R	S	S	R	16	>256	U	U	U	U	U					
C3:6:3	R	R	M	R	S	R	S	R	S	S	R	32	>256	U	U	U	U	U					
C3:6:6	R	S	S	R	S	R	S	R	S	M	R	12	>256	U	U	U	U	U					
C5:1:2	S	M	S	M	S	R	S	M	S	S	S	1.5	1.5	8	U	U	U	U					
C5:1:3	S	M	S	M	S	R	S	M	S	S	S	3	48	6	U	U	U	U					
C5:1:5	S	M	S	M	S	R	S	M	S	S	S	2	3	12	U	U	U	U					
C5:1:6	M	M	S	M	S	R	S	M	S	S	S	1.5	4	12	U	U	U	U					
C5:2:2	M	R	S	M	S	R	S	M	S	S	S	1.5	3	32	U	U	U	U					
C5:2:3	M	M	S	M	S	R	S	M	S	S	S	2	6	12	U	U	U	U					


C5:2:4	S	M	S	M	S	R	S	M	S	S	S	2	2	24	U	U	U	U
C5:2:5	S	M	S	M	S	R	S	M	S	S	S	3	4	16	U	U	U	U
C5:2:6	S	M	S	M	S	R	S	M	S	S	S	2	6	12	U	U	U	U
C5:3:1	S	M	S	M	S	R	S	M	S	S	S	2	3	32	U	U	U	U
C5:3:2	S	S	S	R	S	R	S	M	S	S	S	4	8	32	U	U	U	U
C5:3:3	S	M	S	M	S	R	S	M	S	S	S	3	4	12	U	U	U	U
C5:3:4	S	S	S	M	S	R	S	M	S	S	S	2	3	32	U	U	U	U
C5:3:5	S	S	S	M	S	R	S	M	S	S	S	3	4	>32	U	U	U	U
C5:3:6	S	M	S	M	S	R	S	M	S	S	S	4	8	24	U	U	U	U
C5:4:1	R	R	M	R	S	R	S	R	S	S	R	8	128	>32	U	U	U	U
C5:4:2	M	R	M	R	S	R	S	R	S	S	S	8	48	>32	U	U	U	U
C5:4:3	R	R	M	M	S	R	S	R	S	S	S	8	32	8	U	U	U	U
C5:4:4	S	R	S	R	S	R	S	R	S	S	S	48	>256	>32	U	U	U	U
C5:4:5	R	R	M	R	S	R	S	R	S	S	R	12	>256	32	U	U	U	U
C5:4:6	M	R	M	R	S	R	S	M	S	S	S	3	16	12	U	U	>256	U
C5:5:2	R	R	M	R	S	R	S	M	S	S	R	4	24	12	U	U	U	U
C5:5:3	M	S	S	M	S	R	S	R	S	S	S	4	24	12	U	U	U	U
C5:5:5	R	R	R	R	S	R	S	R	S	S	R	4	12	12	U	U	U	U
C5:6:2	R	R	S	M	S	R	S	R	S	S	S	3	16	16	U	U	U	U
C5:6:3	R	R	M	R	S	R	S	R	S	S	R	4	>256	12	U	U	U	U
C5:6:5	R	R	M	R	S	R	S	R	S	S	R	12	>256	12	U	U	U	U
C5:6:6	R	R	M	R	S	R	S	R	S	S	R	3	6	24	U	U	U	U
C5:7:1	S	S	S	M	S	R	S	M	S	S	R	6	64	>32	U	U	U	U
C5:7:3	R	R	M	M	S	R	S	R	S	S	R	3	24	24	U	U	U	U
C5:7:5	S	S	S	M	S	R	S	R	S	S	S	8	>256	12	U	U	U	U
C5:7:6	S	S	S	M	S	R	S	M	S	S	S	8	64	8	U	U	U	U
C5:8:1	R	R	M	R	S	R	S	R	S	S	R	6	96	6	U	U	U	U
C5:8:2	R	R	S	M	S	R	S	R	S	S	S	4	32	12	U	U	U	U
C5:8:3	M	R	M	R	S	R	S	R	S	S	S	6	48	>32	U	U	U	U
C5:8:4	M	R	M	R	S	R	S	R	S	S	S	4	32	16	U	U	U	U
C5:8:5	R	R	S	M	S	R	S	M	S	S	R	6	>256	32	U	U	U	U
C5:8:6	M	R	S	R	S	R	S	R	S	S	S	4	128	>32	U	U	U	U
C5:9:2	M	R	S	R	S	R	S	M	S	S	S	1.5	4	24	U	U	U	U
C5:9:5	R	R	S	R	S	R	S	R	S	S	S	2	4	32	U	U	U	U
C5:10:2	R	R	M	R	S	R	S	M	S	S	R	4	8	8	U	U	U	U
C5:10:5	R	R	S	M	S	R	S	M	S	S	R	8	64	8	U	U	U	U
C8:2:1	R	R	M	R	S	R	S	R	S	S	R	24	>256	8	U	U	U	U
C8:2:3	R	R	S	R	S	R	S	M	S	S	R	24	>256	12	U	U	U	U
C8:2:4	R	R	M	R	S	R	S	R	S	S	R	12	>256	12	U	U	U	U
C8:2:5	R	R	M	R	S	R	S	R	S	S	R	12	>256	12	U	U	U	U
C8:2:6	R	R	R	R	S	R	S	R	S	S	R	32	>256	16	U	U	U	U
C8:7:2	R	R	S	R	S	R	S	R	S	S	R	12	>256	24	U	U	U	U
C8:7:3	R	R	M	R	S	R	S	R	S	S	R	12	>256	8	U	U	U	U
C8:7:5	R	R	S	R	S	R	S	R	S	S	R	24	>256	12	U	U	U	U
C8:7:6	R	R	M	R	S	R	S	R	S	S	R	16	>256	32	U	U	U	U
C11:3:1	R	R	S	R	S	R	S	R	S	S	R	8	48	>32	U	U	U	U
C11:3:2	R	R	M	R	S	R	S	R	S	S	R	8	192	>32	U	U	U	U

C11:3:3	R	R	S	R	S	R	S	R	S	S	R	6	24	>32	U	U	U	U
C11:3:4	R	R	S	R	S	R	S	R	S	S	M	8	128	>32	U	U	U	U
C11:3:5	R	R	M	R	S	R	S	R	S	S	R	4	12	>32	U	U	U	U
C11:3:6	R	R	S	R	S	R	S	R	S	S	R	6	32	>32	U	U	U	U
C11:4:3	M	R	M	R	S	R	S	R	S	S	S	8	64	32	U	U	U	U
C11:7:2	R	R	M	R	S	R	S	R	S	S	R	8	>256	32	U	U	U	U
C11:10:1	R	R	S	M	S	R	S	M	S	S	S	4	12	8	U	U	U	U
C11:10:2	R	R	S	M	S	R	S	R	S	S	S	4	24	12	U	U	U	U
C11:10:4	S	R	S	R	S	R	S	R	S	S	S	4	24	8	U	U	U	U
C11:10:5	M	R	S	R	S	R	S	R	S	S	M	2	6	12	U	U	U	U
C12:2:2	R	R	S	R	S	R	S	R	S	S	M	16	>256	>32	U	U	U	U
C12:2:3	R	R	M	R	S	R	S	R	S	S	R	24	>256	>32	U	U	U	U
C12:3:1	M	R	M	R	S	R	S	R	S	S	R	12	>256	>32	U	U	U	U
C12:3:2	M	R	S	R	S	R	S	R	S	S	R	16	>256	>32	U	U	U	U
C12:3:4	R	R	S	R	S	R	S	R	S	S	R	8	>256	>32	U	U	U	U
C12:3:6	R	R	R	R	S	R	S	R	S	S	R	24	>256	>32	U	U	U	U
C12:8:5	M	R	S	R	S	R	S	R	S	S	R	12	>256	>32	U	U	U	U
C14:6:1	R	R	M	R	S	R	S	R	S	S	R	16	>256	32	U	U	U	U
C14:6:5	R	R	M	R	S	R	S	R	S	S	R	8	>256	32	U	U	U	U
C14:7:4	R	R	M	R	S	R	S	R	S	S	R	24	>256	16	U	U	U	U
C14:10:1	R	R	M	R	S	R	S	R	S	S	M	6	>256	32	U	U	U	U
C14:10:4	R	R	M	R	S	R	S	R	S	S	R	U	U	12	U	U	U	U
C15:4:6	M	R	S	R	S	R	S	R	S	S	R	U	U	>32	U	U	U	U
C15:6:2	R	R	M	R	S	R	S	R	S	S	S	U	U	U	U	U	U	U
C15:6:3	R	R	M	R	S	R	S	R	S	S	R	>256	>256	U	U	U	U	U
C15:6:4	M	R	S	R	S	R	S	M	S	S	S	8	64	U	U	U	U	U
C15:6:5	R	R	R	R	S	R	S	R	S	S	R	>256	>256	U	U	U	U	U
C16:3:2	R	R	M	R	S	R	S	R	S	S	R	48	>256	U	U	U	U	U
C16:3:6	R	R	M	R	S	R	S	R	S	S	M	>256	>256	U	U	U	U	U
C16:4:1	M	R	M	R	S	R	S	R	S	S	R	12	>256	U	U	U	U	U
C16:7:2	R	R	M	R	S	R	S	R	S	S	M	>256	>256	U	U	U	U	U
C16:7:3	M	R	S	R	S	R	S	R	S	S	M	>256	>256	U	U	U	U	U
C16:7:4	R	R	M	R	S	R	S	R	S	S	M	>256	>256	U	U	U	U	U
C16:7:5	R	R	R	R	S	R	S	R	S	S	R	>256	>256	U	U	U	U	U
C16:7:6	S	R	M	R	S	R	S	M	S	S	R	>256	>256	U	U	U	U	U
C16:8:3	S	R	S	R	S	R	S	M	S	S	R	12	>256	U	U	U	U	U
C16:8:5	S	R	S	R	S	R	S	M	S	S	R	12	>256	U	U	U	U	U
C16:8:6	S	R	S	M	S	R	S	M	S	S	S	8	>256	U	U	U	U	U
C16:9:1	R	R	S	R	S	R	S	R	S	S	R	16	>256	U	U	U	U	U
C16:9:2	M	R	S	R	S	R	S	R	S	S	M	8	>256	U	U	U	U	U
C16:10:2	R	R	S	R	S	R	S	R	S	S	R	>256	>256	U	U	U	>256	U
C16:10:4	S	R	S	R	S	R	S	R	S	S	R	12	>256	U	U	U	U	U
C16:10:5	R	R	S	R	S	R	S	R	S	S	M	12	>256	U	U	U	U	U
C16:10:6	R	R	M	R	S	R	S	M	S	S	R	>256	>256	U	U	U	U	U
C17:8:6	R	R	M	R	S	R	S	R	S	S	R	>256	>256	U	U	U	U	U
C17:9:1	S	R	S	R	S	R	S	M	S	S	R	6	>256	U	U	U	U	U
C17:9:6	S	R	S	R	S	R	S	M	S	S	R	24	>256	U	U	U	U	U

C17:10:3	R	R	M	R	S	R	S	R	S	S	R	96	>256	U	U	U	U
C18:1:1	S	R	S	M	S	R	S	M	S	S	R	4	>256	U	U	U	U
C18:3:3	S	R	S	R	S	R	S	M	S	S	S	8	>256	U	U	U	U
C18:5:1	M	R	S	R	S	R	S	R	S	S	R	12	>256	U	U	U	U
C18:5:2	S	R	S	M	S	R	S	M	S	S	S	2	48	U	U	U	U
C18:5:3	R	R	S	R	S	R	S	R	S	S	R	>256	>256	U	U	U	U
C18:6:1	M	R	S	M	S	R	S	R	S	S	R	8	>256	U	U	U	U
C18:7:1	R	R	M	R	S	R	S	R	S	S	R	>256	>256	U	U	U	U
C21:8:2	R	R	R	R	S	R	S	R	S	S	R	24	>256	U	U	U	U
C22:1:1	S	R	S	R	S	R	S	R	S	S	S	>256	>256	U	U	U	U
C23:2:1	M	R	S	R	S	R	S	R	S	S	R	6	>256	U	U	U	U
C23:2:2	R	R	S	R	S	R	S	M	S	S	R	4	>256	U	U	U	U
C23:2:4	M	M	S	R	S	R	S	M	S	S	R	U	U	U	U	U	U
C23:4:2	S	M	S	M	S	R	S	M	S	S	R	U	U	U	U	U	U
Isolates =												102					
148	31	139	67	147		148		148									

AmC= Amoxicillin, Am10= Ampicillin, Cb100= Carbenicillin, CIP5= Ciprofloxacin, E15= Erythromycin, GM10= Gentamicin, D30= Doxycycline, VA30= Vancomycin, NA30= Nalidixic Acid, RA5= Rifampin, S10= Streptomycin
 S= Susceptible, I= Increased Sensitivity, M= Moderate, R= Resistant, U= Untested

