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    Feedbacks of clouds on climate change strongly influence the magnitude of global 7

warming1-3. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming4-9,8

which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback 9

could deviate from the long-term cloud feedback4. Here we present climate model 10

simulations to show that the global mean cloud feedback in response to decadal 11

temperature fluctuations varies dramatically due to time variations in the spatial pattern of 12

sea surface temperature (SST). We find that cloud anomalies associated with these patterns 13

significantly modify the Earth’s energy budget. Specifically, the decadal cloud feedback 14

between the 1980s and 2000s is substantially more negative than the long-term cloud 15

feedback. This is a result of cooling in tropical regions where air descends, relative to 16

warming in tropical ascent regions, which strengthens low-level atmospheric stability. 17

Under these conditions, low-level cloud cover and its reflection of solar radiation increase, 18

despite an increase in global mean surface temperature. These results suggest that SST19

pattern-induced low cloud anomalies could have contributed to the period of reduced20
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warming between 1998 and 2013, and offer a physical explanation of why climate 21

sensitivities estimated from recently observed trends are probably biased low4.22

23

24

    Clouds play a significant role in the earth’s climate system by reflecting incoming solar 25

radiation and reducing outgoing thermal radiation. As the earth’s surface warms, the net radiative 26

effect of clouds also changes, contributing a feedback to the climate system.27

    Recent studies suggest that the magnitude of climate feedbacks depend on surface warming28

patterns4-9. Therefore we expect that the magnitude of decadal cloud feedback deviates from the 29

long-term cloud feedback due to decadal variations in the spatial pattern of SST anomalies4, and 30

may play a non-negligible role in decadal climate variability10. In this study, we perform31

idealized experiments to gain insight into the causes of decadal cloud variations over the last 32

century. We then test the robustness of our experimental results by examining cloud trends33

during the satellite era in Coupled Model Intercomparison Project Phase 5 (CMIP5)11 -34

Atmospheric Model Intercomparison Project (AMIP) simulations, CMIP5-historical simulations, 35

and observations. 36

    Our experiments employ the Community Earth System model V1.2.1- Community 37

Atmospheric Model 5.3 (CESM1.2.1-CAM5.3)12 with a resolution of 1.9° longitude by 2.5° 38

latitude. The control experiments (“AMIP-like”, two runs with different initial conditions) use 39

prescribed historical SST and climate forcings (aerosols, greenhouse gases, and solar radiation). 40

To isolate the SST-driven component of cloud changes, we run two idealized “AMIPFF” 41

experiments with historical SST but climate forcings fixed at pre-industrial and present day 42
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levels, respectively. To investigate the effect of spatial patterns of SST anomalies on clouds, two43

patterned SST experiments are carried out (“PSST”). The PSST experiments are identical to the 44

AMIPFF experiments except that spatially uniform SST anomalies are subtracted from the45

historical SST at each time step to keep the global surface temperature roughly constant (see 46

Methods). Historical sea ice is prescribed in all simulations. Confidence in CAM’s simulation 47

comes from its consistency with observations for the sensitivities of low cloud cover (LCC) to 48

SST and estimated inversion strength (EIS)13 and the recent evolution of cloud controlling 49

factors and cloud-induced radiation anomalies (Supplementary Figures 1-3). 50

    Our analysis begins with the decadal net feedback (climate feedback parameter), which is 51

calculated as the regression slope of annual global TOA net flux anomalies against annual global 52

surface temperature anomalies in AMIPFF simulations over 30-year windows. Figure 1(a) 53

indicates that the 30-year feedback parameter varies dramatically and is significantly more 54

negative than the long-term net feedback (see Methods) after 1980.  This is consistent with 55

HadGEM2A/HadCM3A simulations carried out by Gregory and Andrews4 and with experiments 56

we have conducted with CAM4 (Supplementary Figure 4), indicating that the decadal variations 57

of net feedback are robust. 58

    The variation of decadal net feedback is primarily induced by clouds (Fig. 1b, Supplementary 59

Figure 5). Decadal cloud-induced radiation anomalies (ΔRcloud, see Methods) vary dramatically 60

throughout the AMIPFF simulations while the global surface temperature increases relatively 61

steadily (Fig. 2a), resulting in variations of decadal cloud feedback (Fig. 1b) and the 62

corresponding net feedback. To understand the causes of decadal Rcloud variations, we 63

decompose the cloud induced radiation anomalies using the following equation  64



4

, (1)65

where λc is the magnitude of cloud feedback under uniform SST warming (see Methods), Ts is 66

global surface skin temperature, ΔRPSST is the cloud-induced radiation anomaly in response to 67

changes in SST pattern in absence of global mean temperature changes (= ΔRcloud from PSST 68

simulation), ΔRcf is the rapid cloud radiative adjustment in response to changes in climate 69

forcings (zero in our fixed forcing experiments), and ε is the error term. ΔRcloud in the AMIPFF 70

simulation is well correlated (r=0.93) with the sum of λcΔTs and ΔRPSST terms (Fig. 2a). These 71

results suggest that cloud feedback can be linearly decomposed into a fixed feedback under 72

uniform warming, plus a SST pattern-induced component. 73

    Figure 2(b) shows the decadal anomalies in global low cloud cover (LCC), which are 74

primarily contributed from ΔLCC over the tropical oceans (Fig. 2c). The tropical marine ΔLCC 75

in AMIPFF simulations is well correlated with and contributes significantly to variability in the 76

global ΔRcloud (r=-0.77). These low clouds strongly cool the Earth’s climate system and play an 77

important role in determining the magnitude of cloud feedback14,15,16,9.78

    We explain tropical marine ΔLCC with cloud controlling factors. An increase in EIS or 79

decrease of SST would contribute positively to LCC16,17,18,9, so tropical ΔLCC can be explained 80

by the linear combination of tropical mean SST and EIS anomalies (Fig. 2c, r=0.76), with EIS 81

anomalies explaining more decadal variance in LCC. Furthermore, changes in EIS are well 82

explained (r=0.94) by a linear combination of the tropical mean SST19 and the difference 83

between SST in tropical strong ascent regions and the tropical mean SST (ΔT(up,trp), see 84

Methods), with the latter explaining more decadal variance in EIS (Fig. 2d). Physically, EIS 85

increases with this SST difference because free-tropospheric temperatures throughout the tropics86

  cfPSSTsccloud RRTR
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are controlled by the moist adiabat set by the SST in tropical ascent regions20, whereas SSTs in 87

tropical descent regions only affect the temperature of boundary layer locally. As a result, LCC 88

variations over the 20th century are primarily induced by the SST pattern instead of changes in 89

tropical mean SST (Supplementary Text 1 and Supplementary Figure 6).90

    The above mechanism explains the abnormal decadal net feedback during the satellite era 91

(1979-present), when surface warming is most pronounced over tropical ascent regions where 92

deep convection occurs, with cooling over tropical descent regions, particularly in the Eastern 93

Pacific where low clouds are common (Supplementary Figure 7). The pronounced warming in 94

the tropical ascent regions causes the tropical troposphere to warm, and in the absence of 95

equivalent warming in descent regions, causes the tropical EIS to increase significantly (Fig. 2d), 96

contributing positively to the LCC trend. Meanwhile, the SST-induced LCC reduction over the 97

broader tropical oceans is not strong enough to compensate the EIS induced LCC increase (Fig. 98

2c). Altogether, the positive tropical mean LCC trend results in a negative Rcloud trend (Fig. 2a), 99

and hence a negative decadal cloud feedback during this period (Fig. 1b) because the negative 100

Rcloud trend happens concurrently with a positive global mean surface temperature trend. SST, 101

EIS, LCC, and Rcloud trends also exhibit a clear spatial correspondence, confirming the physical 102

linkages among them (Supplementary Figure 8). As a result, the recent decadal feedback 103

parameter is significantly more negative than the values under uniform or patterned long-term 104

warming (Fig. 1a)4.105

    To further demonstrate the importance of the SST pattern in driving LCC trends, we compare 106

1980-2005 LCC trends in AMIP with those in CMIP5-historical simulations (Supplementary 107

Table 1). This comparison is valid because historical climate forcings are identically prescribed 108

in both AMIP and CMIP5-historical simulations, meaning that differences are primarily the 109
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result of differing patterns of SST change between AMIP and CMIP5-historical simulations. In 110

AMIP simulations, where the SST is the same as observations by design, there is significant 111

LCC increase in the Eastern Pacific Ocean, Southern Indian Ocean, and Southern Atlantic Ocean 112

(Fig. 3a, c), qualitatively consistent with artifact-corrected satellite observations21,22 (Fig. 3e, 113

Supplementary Figure 9). In contrast, SST warming is distributed more uniformly in CMIP5-114

historical (Fig. 3b, Supplementary Figure 10), and the model ensemble mean LCC trend is 115

negative over much of the tropical regions (Fig. 3d). Averaging tropically or globally (Fig. 3f),116

the model ensemble mean LCC trend is positive in AMIP simulations, consistent with our 117

CAM5.3 simulations, and negative in CMIP5-historical simulations, consistent with LCC 118

changes under uniform and patterned long-term global warming (Supplementary Figure 11). 119

These differences hold for individual models as well: Compared to historical simulations, the 120

∆T(up,trp) trend is systematically larger and the SST trend in descent regions is systematically 121

smaller in AMIP simulations (Supplementary Figure 12), leading to systematically more positive 122

EIS and LCC trends in AMIP than in historical simulations (Fig. 3f). Examination of climate 123

model control simulations suggests that these systematic differences may not be explained purely124

by lack of synchronization between internally-generated trends in coupled historical simulations 125

and those occurring in nature (Supplementary Text 2 and Supplementary Figure 13).  If so, the 126

1980-2005 SST trend pattern is likely to be partly forced, with a potentially important role for 127

aerosols23,24. On the other hand, if models collectively underestimate internal variability on 128

decadal timescale, the possibility remains that the pattern was an unusual natural fluctuation that 129

coupled models do not simulate.130

   The average SST pattern-induced component of ΔRcloud is -0.35 W/m2 during the 2000s (Fig. 131

2a), which is comparable to current TOA net flux anomaly (~0.6 W/m2)25. To the extent that the 132
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global warming rate is affected by the TOA net flux imbalance26, SST pattern-induced negative 133

Rcloud anomalies -- together with oceanic heat storage at depth23 and aerosol forcing27,28 -- are 134

likely to have contributed to the global warming hiatus in the 2000s. 135

    In conclusion, SST pattern-induced cloud anomalies have an important impact on the Earth’s 136

energy budget. Until the signal of greenhouse gas induced warming dominates over the noise of 137

internal variability, the SST pattern-induced cloud radiation anomalies will be at least as large as 138

those that are due to global surface warming. Indeed, SST pattern-induced enhancements in 139

cloud cooling have dominated over the past several decades in CAM5.3 despite it having a 140

positive cloud feedback under long-term warming. The SST trend pattern over the last three141

decades exhibits much greater warming in tropical ascent regions relative to the broader tropics, 142

in contrast to the more uniform warming that characterizes observed long-term (1871-2005) SST 143

trends, nearly all historical simulations between 1980 and 2005, and future projections of CO2-144

induced climate change (Supplementary Figure 7 and 10). Therefore, both the cloud feedback 145

and net feedback computed from recent trends are much more negative than in response to long-146

term warming, indicating that climate sensitivity estimated from recent climate changes is likely 147

to be underestimated if SST pattern-induced cloud anomalies are not accounted for.148

149

150
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Figure Captions236

237

Figure 1. Evolution of decadal net and cloud feedbacks from CAM5.3 simulations. (a) 30-year 238

net feedback estimates from AMIPFF simulations, plotted at the mid-point of each 30-year 239

period. Thin black lines are calculated from individual runs, and thick black lines are calculated 240

from ensemble mean values. Horizontal solid lines denote the long-term cloud feedbacks 241

computed from uniform (orange) and patterned (red) future warming experiments (see Methods). 242

Dashed red/orange lines and grey shading denote 2σ uncertainty intervals. (b) Same as (a), but 243

for the cloud feedback.244

245
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246

Figure 2. Evolution of selected 9-year moving averaged quantities from CAM5.3 simulations. (a) 247

Global cloud-induced radiation anomaly in AMIPFF simulations (blue), its components due to 248

anomalies in SST pattern (red) and global mean surface temperature (orange), and their sum 249

(black). (b) Global low cloud cover anomalies (∆LCC) in all simulations. (c) Tropical marine 250

∆LCC in AMIPFF simulations (blue), its components due to estimated inversion strength251

anomalies (∆EIS) (purple), ∆SST (orange), and their sum (black). (d) Tropical marine ∆EIS in 252

AMIPFF simulations (purple), its components due to ∆T(up,trp) (red, see Methods), ∆SST 253

(orange), and their sum (black).254
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255

256

Figure 3. Comparison of recent Ts and LCC trends in AMIP (1980-2005), CMIP5-historical257

(1980-2005), and satellite observations (1983-2005). (a-d) Ensemble mean surface temperature 258

and LCC trend in AMIP and historical simulations. (e) LCC trend calculated from artifact-259

corrected ISCCP satellite data21,22. Note that the color bar of (e) is different from (c-d). (f) AMIP 260

LCC trends plotted against CMIP5-historical LCC trends, for tropical (red) and global (black)261

averages, respectively (%/30yrs). The solid black line is the equal-value line, and crosses denote 262

model ensemble mean values.263

264
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Methods265

    To carry out the PSST experiment, we first calculate the monthly global surface skin266

temperature anomalies ΔTs(t) in AMIPFF experiments. In our uniform warming experiment, 1K 267

of uniform SST warming would increase the global surface temperature by ~1.1K in CAM5.3, so 268

we subtract ΔTs(t)/1.1 from the historical SST for each month and each location, and use the 269

modified SST as boundary conditions. Then ΔTs in the PSST experiment is near zero over the 270

whole period (Supplementary Figure 14), but the SST pattern anomalies are identical to those in 271

the AMIP simulations.272

    Additional experiments are designed to calculate cloud feedback under uniform and patterned 273

long-term global warming. First, we fix the SST and climate forcings at year 2000, and run for 274

16 years. Then we increase the SST by 4K uniformly and reset the initial conditions, and run for 275

another 16 years. Then the cloud feedback under uniform warming (λc) was calculated as the 276

ΔRcloud difference normalized by surface temperature difference between the latter 15 years of 277

the two simulations. λc is close to the cloud feedback under patterned long-term warming (Fig. 278

1b), which is calculated with the same method, except that the SST of year 2000 is warmed by 279

the long-term warming pattern derived from the ensemble mean of abrupt4xCO2 simulations 280

(Supplementary Figure 7). 281

    Cloud-induced radiation anomalies (ΔRcloud) are calculated by removing cloud masking effects 282

from cloud radiative effect anomalies using radiative kernels29, where cloud radiative effect is 283

defined as the difference in upwelling radiation between clear- and all-sky scenes. LCC in 284

CAM5.3 simulations is calculated by the model using the model’s level-by-level cloud fraction 285

field and its cloud overlap assumption. For AMIP and CMIP5-historical simulations, LCC is 286
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approximated as the maximum cloud fraction between the surface and 680 hPa, which is useful 287

for qualitative comparisons30,9.288

    To calculate decadal anomalies, we first calculate annual anomalies by removing the 289

climatological mean from annual mean values.  Then a 9-year moving average is applied to filter 290

out interannual signals.291

    In Fig. 2, ΔT(up,trp) is calculated as the surface temperature difference between SST averaged 292

over tropical strong ascent regions and SST averaged over the entire tropics at each time step.  293

Tropical strong ascent regions are defined as those with monthly 500 hPa vertical velocity 294

magnitude |ω500| exceeding the median |ω500| in regions with ω500<0. The coefficients of ΔEIS 295

and ΔSST in Fig. 2(c) and of ΔT(up,trp) and ΔSST in Fig. 2(d) are derived from multiple linear 296

regression.  297

    Data and code availability. The CESM1.2.1-CAM5.3 source code was downloaded from the 298

CESM official website http://www2.cesm.ucar.edu/. The CAM5.3 simulation results and code 299

used for the analyses of this study are available from the corresponding author upon request. The 300

CMIP5-historical/AMIP data is available from the Earth System Grid - Center for Enabling 301

Technologies (ESG-CET) website, http://pcmdi9.llnl.gov.302

303
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324

325

Supplementary Figure 1. Diagnosis of marine LCC sensitivity to major low cloud controling 326

factors in CAM5.3 AMIPFF simulation. (a) Relationship between tropical mean annual 327

anomalies in marine EIS1 and marine LCC between March 2000 and February 2013. In both 328

CAM5.3 AMIPFF simulation (blue) and observations (red), tropical marine EIS anomalies are 329

positively correlated with marine LCC anomalies. Observational EIS is calculated from ERA-330

interim data2 using equation (3) of Qu et al. 20143, and LCC is calculated from Terra MODIS 331

level 3 data4. (b) Relationship between tropical mean annual anomalies in SST and marine LCC. 332

(c) Sensitivity of LCC to EIS and SST in 5 subtropical low cloud regions defined by Qu et al. 333

20143. The sensitivities are calculated from multiple linear regression, and the boxes denote the 334

uncertainty intervals calculated from observations. Since the artifacts of ISCCP and PATMOS-x 335

are large during the 1980s and 1990s5,21, values calcuated from the full period of ISCCP and 336

PATMOS-x are marked with dashed boxes, and the solid boxes for ISCCP and PATMOS-x are 337

values calculated using data after 1996 and 1997, respectively. These observational values are 338

from Qu et al. 20157. (d) LCC sensitivity to EIS and SST over the whole tropical ocean, 339

calculated from multiple linear regression of tropical marine LCC annual anomalies against 340

marine EIS and SST annual anomalies. Based on these plots, we conclude that marine LCC 341

sensitivities calculated from CAM5.3 are generally within the uncertainty interval of 342

observations. 343

344
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345

346

Supplementary Figure 2. Comparison of 9-year smoothed tropical marine EIS anomalies in 347

ERA-20C reanalysis8, 20CR reanalysis9, AMIP-GISS simulations (the only AMIP model 348

covering the whole 20th century), and our CAM5.3 AMIP-like simulations. The base period to 349

calculate anomalies is 1980-2010. We conclude CAM’s simulation of increasing EIS trend 350

during the satellite era (1979-present) is in agreement with that of other available models. Prior 351

to the satellite era, EIS does not vary by more than by 0.2 K in 3 out of 4 available estimates 352

including that of CAM5.3.353

354
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355

356

Supplementary Figure 3. Comparison of detrended ΔRcloud in observations and CAM5.3 357

AMIPFF simulations. The cloud masking effect in CERES cloud radiative effect is removed with 358

ERA-Interim data and radiative kernels29 following Dessler 201311. Thin black lines are 359

calculated from individual runs, and thick black lines are calculated from ensemble mean values.  360

Correlation coefficients between the CERES and CAM5.3 ∆Rcloud time series and the ratio of 361

their standard deviations are displayed in the lower left corner of the plots. We conclude that 362

CAM’s simulation of interannual ∆Rcloud is in reasonable agreement with the satellite 363

observations.  364

365

366
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367

Supplementary Figure 4. Comparison of 30-year net feedback paramters in CAM4 and CAM5.3. 368

Black solid line is calculated from the net TOA radiation and Ts anomalies averaged over the 369

AMIPFF simulations, which is same as the black line in Fig. 1(a). Red line represents results 370

calculated from an independent CAM4 AMIPf2000 experiment. CAM412 differs markedly from 371

CAM513 in nearly all of its physical parameterizations and thus can be considered to be the result 372

of a mostly independent model. Although not perfect, there is general agreement between CAM4 373

and CAM5.3 on the decadal variations in the net feedback, particularly for its more negative 374

values after 1980.375

376
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377

Supplementary Figure 5. Evolution of decadal cloud feedback and non-cloud feedbacks. (a) 30-378

year cloud feedback estimates from AMIPFF simulations. (b) Sum of Planck, lapse rate, water 379

vapor, and surface albedo feedbacks. (c) Comparison of the sum of feedbacks calculated from 380

kernels (black) and the net feedback calculated from TOA fluxes (red). (d) Difference between 381

the net feedback calculated from TOA fluxes and the sum of feedbacks calculated from kernels. 382

The residual term includes kernel errors, cross-field correlations. Clearly, the variance of cloud 383

feedback is much larger than the non-cloud feedbacks, indicating the importance of decadal 384

cloud feedback in driving variations in decadal net feedback.385

386

387

388
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389
390

Supplementary Figure 6. Relationship between tropical marine ΔLCC (blue), ΔT(up,trp) (red) 391

and tropical ΔSST (orange), and the linear combination of ΔT(up,trp) and ΔSST (black). All 392

time series are ensemble mean values of 9-year moving averages from individual runs.  The 393

coefficients of ΔT(up,trp) and ΔSST (black) are calculated by substituting the regression for EIS 394

(Fig. 2d) as a function of ΔT(up,trp) and ΔSST into the regression equation for ΔLCC (Fig. 2c). 395

In doing so, one arrives at a relationship between ΔLCC and ΔSST and ΔT(up,trp), that allows 396

one to explore the relative influences on low cloud cover of the mean SST and the difference in 397

SST between tropical ascent and descent regions.  ΔLCC is well correlated with the linear 398

combination of ΔT(up,trp) and ΔSST (black) (r=0.77), moderately correlated with ΔT(up,trp) 399

(r=0.51), and poorly correlated with ΔSST (r=-0.06). Therefore, the decadal changes in ΔLCC 400

are controlled by both ΔT(up,trp) and ΔSST, with the former playing the more important role.  401

Please see Supplementary Text 1 for further discussion.402

403

404

405

406



25

407

408

Supplementary Figure 7. Normalized surface temperature trend from the (a) AMIP-like409

simulation over the period 1980-2005, (b) AMIP-like simulation over the period 1871-2005, (c) 410

ensemble mean CMIP5-abrupt4xCO2 simulations over years 1 to 150 of the experiment, and (d) 411

ensemble mean difference between AMIPFuture (AMIP plus a patterned future warming) and 412

AMIP simulations. The local surface temperature anomalies are normalized by the global mean 413

surface temperature change for better comparison, so the units are K/K.   The spatial pattern of 414

warming observed in the recent past (panel a) is significantly more spatially inhomogeneous than 415

that expected for global warming over the next century (panels c and d).416
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417

Supplementary Figure 8. Spatial correspondence among trends in cloud-controlling factors, low 418

cloud cover, and cloud-induced radiation anomalies. Trends in (a) surface temperature, (b) EIS, 419

(c) LCC and (d) Rcloud in the AMIPFF experiment between 1980 and 2005. In regions where EIS 420

increases, LCC increases and Rcloud decreases, supporting our physical mechanism.421

422
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423

Supplementary Figure 9. LCC trend for the years 1983-2005 calculated from corrected 424

PATMOS-x data5,21. Although not in perfect agreement, PATMOS-x and ISCCP (Figure 3e) data 425

agree on the increases in LCC over the tropical Eastern Pacific, Southern Indian and Southern 426

Atlantic oceans.427

428
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429

430

Supplementary Figure 10. Surface temperature trend in CMIP5-historical simulations during 431

1980-2005, divided by the global mean surface temperature trend (K/30yrs). None of these 432

coupled models show as strong temperature decrease in the tropical Eastern Pacific Ocean as in 433

AMIP simulations.434

435
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443

Supplementary Figure 11. Responses of global mean LCC to changes in global mean surface 444

temperature, in AMIP, AMIP-Future and AMIP4K simulations. Left column is calculated from 445

AMIP trend (1980-2005), middle column is calculated from the difference between AMIP-future446

(AMIP plus a patterned future warming) and AMIP, and right column is calculated from the 447

difference between AMIP-4K (AMIP plus a 4K uniform warming) and AMIP. LCC is calculated 448

from the ISCCP simulator14,15
, LCC=C680-1000hPa/(1-C0-680hPa). LCC calculated from ISCCP 449

simulator is more accurate than the maximum value of cloud fraction between 680 and surface, 450

but ISCCP simulator results are only available for a small subset of CMIP5-historical models, so 451

we use the latter method in Fig. 316,9. Models generally predict increased LCC in response to the 452

warming pattern of the last 30 years in contrast to that predicted for global warming. 453

454

455

456

457
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458

Supplementary Figure 12. Comparison of trends over the period 1980-2005 in AMIP and 459

CMIP5-historical simulations. (a) SST difference between tropical ascent regions and the 460

tropical mean values. (b) Tropical marine EIS trend. (c) SST trend in tropical descent regions, 461

defined as those with monthly 500 hPa vertical velocity magnitude |ω500| exceeding the median 462

|ω500| in regions with ω500>0. (d) Trends in (red) ∆T(up,trp), (blue) EIS, and (black) Tdown in 463

CMIP5-historical simulations plotted against those in AMIP simulations. EIS and ∆T(up,trp) 464

changes in AMIP simulations are systematically larger than those in CMIP5-historical 465

simulations, and Tdown changes in AMIP simulations are smaller than those in CMIP5-historical 466

simulations in most models. Therefore, the LCC trend in AMIP is systematically larger than in 467

CMIP5-historical.  468

469

470

471
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472

Supplementary Figure 13. Comparing modeled and observed tropical SST trends.  Histogram of 473

∆T(up,trp) trends from all overlapping 26-year periods in piControl simulations.  Dashed gray 474

lines indicate the 2.5th and 97.5th percentiles. The 1980-2005 ∆T(up,trp) trends determined 475

using AMIP SSTs and ω500 from ERA Interim (green), from ERA-20C (blue), from CAM5 476

AMIPFF simulations (red), and from CMIP5 AMIP simulations (black, averaged over all 477

simulations) are within but on the extreme tail of the piControl trend distribution. Please see 478

Supplementary Text 2 for further discussion.479

480
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481

482

Supplementary Figure 14. 9-year smoothed global surface temperature anomalies. The surface 483

temperature in AMIP-like and AMIPFF simulations increases significantly, but remains roughly 484

unchanged in the PSST simulation. ΔTs in AMIP-like is consistent with HadCRUT4 485

observations18. ΔTs in AMIPFF simulations increases less than in AMIP-like simulations 486

because the CO2 concentration remains unchanged in AMIPFF simulations.487

488

489
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Supplementary Table 1. List of models used in AMIP and CMIP5-historical simulations490

Climate Center CMIP5-historical CMIP5-AMIP

ACCESS ACCESS1-0 ACCESS1-0
ACCESS ACCESS1-3 ACCESS1-3
BCC bcc-csm1-1 bcc-csm1-1*
GCESS/BNU BNU-ESM BNU-ESM
CCC CanESM2 CanAM4*
NCAR CCSM4 CCSM4*
CSIRO/QCCCE CSIRO-Mk3-6-0 CSIRO-Mk3-6-0
LASG/IAP FGOALS-g2 FGOALS-g2
GISS GISS-E2-R GISS-E2-R

GFDL GFDL-CM3 GFDL-CM3
MOHC HadGEM2-ES HadGEM2-A*
INM inmcm4 inmcm4
IPSL IPSL-CM5A-LR IPSL-CM5A-LR
MIROC MIROC5 MIROC5
MPI MPI-ESM-LR MPI-ESM-LR*
NCC NorESM1-M NorESM1-M
MRI MRI-CGCM3*
Note: The first ensemble member (r1i1p1) from each model is used, except that we use r7i1p1 491

from AMIP-CCSM4 because it is first member with clisccp output available.492

    The sign * denotes models used in Supplementary Figure 11.  493

494

495

496
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Supplementary Text 1. Physical Mechanisms Driving Decadal Changes in Low Cloud 498

Cover499

    Here we present in greater detail the physical mechanisms that drive the changes in tropical 500

low cloud cover (LCC) over the 20th century. 501

    Variations in LCC over the subsidence regions of the tropical oceans on seasonal and inter-502

annual time-scales have been observed to be highly sensitive to changes in the strength of the 503

temperature inversion that caps the planetary boundary layer19,1. This sensitivity arises physically 504

because a stronger temperature inversion limits the rate of mixing between the boundary layer 505

and the free troposphere above. With less mixing, the drying and warming effects of mixing in 506

free-tropospheric air are reduced with the consequence that the boundary layer is colder, moister, 507

and hence more cloudy. Large-eddy simulations have confirmed the mechanisms of this 508

observed sensitivity20,21. Thus, it is expected that LCC variations on decadal time-scales would 509

also be sensitive to inversion strength22. The tropical inversion strength essentially measures the 510

warmth of free tropospheric temperatures relative to that of the boundary layer; thus, it is 511

essential to understand what controls these temperatures and their relationships to tropical SST.512

    To a first approximation, free tropospheric temperatures throughout the tropics are most 513

sensitive to SST in tropical ascent (i.e., deep convective) regions. This is because the moist 514

adiabat of the tropical free troposphere is controlled by the moist static energy of the rising air in 515

deep convective clouds of tropical ascent regions and this moist static energy is closely related to 516

the local SST. Thus, if SST in tropical ascent regions increases, there will be free tropospheric 517

warming in tropical ascent regions which atmospheric dynamics will spread to free tropospheric 518

descent regions through the “weak-temperature gradient” approximation20. In absence of SST 519

changes in the tropical descent regions, the increase in free tropospheric temperatures will 520

increase the lower tropospheric inversion strength in the tropical descent regions and hence 521

increase LCC in tropical descent regions. On the other hand, if SST in tropical descent regions 522

decreases without any change in SST in tropical ascent regions, the boundary layer air in tropical 523

descent regions will cool without any changes to free tropospheric temperatures. In this situation, 524

the inversion strength increases causing LCC to increase. And if difference between SST in the 525

tropical ascent and descent regions remains fixed, then there would be no change in inversion 526

strength – following directly from the definition of EIS1– and hence LCC would remain fixed. 527

This is the primary physical mechanism by which LCC is so very sensitive to variations in the 528

SST patterns, or more specifically the difference in SST between tropical ascent and descent 529

regions.530

    While this is the primary mechanism at work relating variations in the SST pattern with the 531

tropical inversion strength and LCC, we account for two additional secondary effects that happen 532

when the mean SST in the tropics changes but the SST difference between the tropical ascent 533

and descent regions remains fixed. First, as shown by LES studies20,21 and supported by 534

observational analyses3,7,24, LCC decreases when SST increases and EIS remains fixed. 535
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Physically, this is usually explained as more efficient drying of the boundary layer as the 536

temperature rises by circulations at either turbulent18 or larger16 scales. This is why our study –537

following past studies3,7,24 – predicts LCC variations with a multi-linear model involving two 538

parameters, EIS and SST (Fig. 2c). We note that CAM is consistent with the observed 539

sensitivities of LCC to EIS and SST (Supplementary Figure 1). Second, for reasons that are not 540

yet clear, climate models simulate free tropospheric warming that is slightly greater than that 541

predicted from moist adiabatic warming in tropical ascent regions.  (Note that “moist adiabatic 542

warming” here is defined as that resulting from an increase in surface air moist static energy that 543

comes purely from an air temperature increase identical to that of the underlying SST with no 544

change in relative humidity.) This enhanced free tropospheric warming was shown to be a 545

robust, but unexplained feature, of climate models by Qu et al.27 in their analysis of aqua-planet 546

experiments with uniform warming. This is why we include the mean SST as an additional 547

predictor in the explanation of EIS variations (Fig. 2d). We find that EIS increases with the mean 548

SST, like that found in the models analyzed by Qu et al.27. Inclusion of these secondary effects 549

does not change the dominance of the SST difference between tropical ascent and descent 550

regions in driving decadal variations in EIS and LCC, although the inclusion of a dependency on 551

the mean temperature induces a general decrease in LCC and a slight increase in EIS over the 552

20th century (Supplementary Figure 6 and Fig. 2d). 553

    Thus, these secondary effects, while helpful in quantitatively explaining the century time-scale 554

variations in EIS and LCC, do not alter the main explanation. To repeat the main explanation, 555

fluctuations in the pattern of warming – or more specifically the difference in warming between 556

tropical ascent and descent regions – causes fluctuations in inversion strength and LCC and 557

hence the radiation budget, which leads to fluctuations in the decadal cloud (and total) feedback.  558

Because the recent warming pattern is distinctly non-uniform, with greater warming in tropical 559

ascent regions and relative cooling in tropical descent regions, the decadal cloud feedback over 560

the period 1980-2005 is negative and deviates strongly from the positive feedback under long-561

term warming pattern.562

563

Supplementary Text 2. Assessing the Ability of Coupled Climate Models to Simulate the 564

SST Trends Observed over 1980-2005565

    An important question is whether the systematic differences shown in Figure 3f arise because 566

coupled models are incapable of simulating a warming pattern like that observed between 1980-567

2005 or because they can, but just didn’t happen to do it in years 1980-2005 of the historical 568

runs.569

    The observed SST trend pattern over the 26-year period 1980-2005 is an unknown 570

combination of forced and unforced changes.  Our null hypothesis is that the trend pattern is 571

dominated by internal variability. An alternative hypothesis is that the SST trend pattern is 572
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primarily forced and that coupled climate models cannot reproduce it because of model 573

deficiencies and/or incorrect imposed forcing.574

    While it is not possible to rule out forcing as contributing to the observed pattern, we can 575

determine whether unforced coupled models are capable of simulating the observed pattern. To 576

do so, we compute all possible 26-year SST trends in fully coupled piControl runs of CMIP5 577

models. If we could find trends that match those observed between 1980 and 2005, we could 578

conclude that (1) models are capable of reproducing the observed SST trends but they just 579

happened to not do so during the AMIP period and (2) that the trend can emerge solely due to 580

internal variability and does not require forcing.581

    Because it is the primary driver of tropical mean EIS anomalies and hence LCC anomalies 582

(Fig. 2d), we compare modeled and observed trends in ∆T(up,trp) – the difference between the 583

SST in tropical ascent regions and the tropical mean SST. In Supplementary Figure 13, we show 584

the histogram of ∆T(up,trp) trends from all overlapping 26-year periods in all available piControl 585

simulations with the necessary output. The 1980-2005 ∆T(up,trp) trends determined using AMIP 586

SSTs and ω500 from ERA Interim (green), ERA-20C (blue),from CAM5 AMIPFF simulations 587

(red), and from CMIP5 AMIP simulations (black, averaged over all simulations) are within but 588

clearly on the tail of the distribution, exceeding the 97.5th percentile of all possible piControl 589

trends. Specifically, out of 15,186 total piControl ∆T(up,trp) trends, only 1 exceeds the AMIP 590

trend derived using ω500 from ERA-20C or CAM5 AMIPFF, 8 exceed the AMIP trend derived 591

using ω500 from CMIP5 AMIP, and 214 exceed the AMIP trend derived using ω500 from ERA-592

Interim. These results suggest that an increase in SST gradient between ascent regions and the 593

rest of the tropics that is as large as observed over 1980-2005 occurs very rarely (1% of the time 594

or less) in unforced simulations.595

    If the models accurately capture or overestimate unforced internal variability, then we 596

conclude that the observed trend pattern is largely incompatible with pure internal variability. In 597

this case, the observed pattern must be partly forced, and the systematic model-observation 598

differences in Figure 3f occur because of the models systematically having an incorrect forcing 599

or SST response to forcing. Even if the models had correct forcing and SST response to forcing, 600

internally-generated trends in coupled historical simulations could still occur asynchronously 601

with those in nature and lead to these systematic differences, but lack of synchronization alone 602

cannot account for the systematic differences.603

    If, however, the models collectively underestimate internal variability, then the possibility 604

remains that the observed SST trend is purely due to internal variability but that models are 605

incapable of simulating it. In this case, the systematic differences in Figure 3f occur because of 606

(a) the models systematically having an incorrect forcing or SST response to forcing, or (b) 607

internally-generated trends in coupled historical simulations being of insufficient magnitude 608

compared with those in nature, or (c) some combination of (a) and (b).609
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    In summary, unforced coupled models are largely incapable of reproducing the spatial pattern 610

of the observed SST trend during 1980-2005. Based on this analysis, we conclude that the 611

systematic differences in Figure 3f cannot be explained purely by lack of synchronization 612

between internally-generated trends in coupled historical simulations and those occurring in 613

nature. This implies that the 1980-2005 SST trend pattern is partly forced, with systematic 614

model-observation differences due to (a) errors the in prescribed external forcing in CMIP5-615

historical simulations, and/or (b) errors in the models’ responses to historical forcings. Highly 616

uncertain aerosol forcing, which has been shown to partially contribute to the SST trend pattern 617

during recent decades28,24, may play a role in model-observation SST trend differences. If, 618

however, models collectively underestimate internal variability on this timescale, the possibility 619

remains that the pattern was an unusual natural fluctuation and that models are incapable of 620

simulating it.621

    Finally, we note that our paper’s conclusion regarding climate sensitivity does not depend on 622

whether the recent SST trend pattern is primarily induced by natural variability or by regional 623

climate forcings: Long-term feedback and climate sensitivity are defined with respect to CO2-624

induced global warming (which is relatively spatially uniform according to climate models and 625

the observed SST trend during 1871-2013), so feedbacks and climate sensitivity calculated from 626

the recent period would still likely be biased despite being forced. Indeed, an alternative to 627

“forcing efficacies” for explaining the apparent dependence of warming on forcing agent could 628

be that different forcings actuate feedbacks of different strength because they induce different 629

surface temperature anomaly patterns.630

631

References for supplementary632

1. Wood, R., Bretherton C. S. On the relationship between stratiform low cloud cover and 633

lower-tropospheric stability. J. Clim. 19, 6425–6432 (2006).634

2. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data 635

assimilation system. Quarterly Journal of the Royal Meteorological Society 137, 553-597 636

(2011).637

3. Qu, X., Hall, A., Klein, S. A., & Caldwell, P. M. On the spread of changes in marine low 638

cloud cover in climate model simulations of the 21st century. Clim Dyn 42, 2603–2626639

(2014).640

4. Platnick, S. et al. The MODIS cloud products: Algorithms and examples from Terra. 641

IEEE Trans. Geosci. Remote Sens. 41, 459–473 (2003).642

5. Norris, J. R. & Evan, A. T. Empirical Removal of Artifacts from the ISCCP and 643

PATMOS-x Satellite Cloud Records. Journal of Atmospheric and Oceanic Technology 644

32, 691-702 (2015).645

6. Seethala, C., Norris, J. R., & Myers, T. A. How Has Subtropical Stratocumulus and 646

Associated Meteorology Changed since the 1980s? J. Climate 28, 8396-8410 (2015).647



38

7. Qu, X., Hall, A., Klein, S. A. & DeAngelis, A. M. Positive tropical marine low-cloud 648

cover feedback inferred from cloud-controlling factors. Geophysical Research Letters 42, 649

7767-7775 (2015).650

8. http://www.ecmwf.int/en/research/climate-reanalysis/era-20c/651

9. Compo, G.P. et al. The Twentieth Century Reanalysis Project. Quarterly J. Roy. 652

Meteorol. Soc. 137, 1-28 (2011). 653

10. Soden, B. J. et al. Quantifying climate feedbacks using radiative kernels. J. Clim. 21, 654

3504–3520 (2008).655

11. Dessler, A. E. Observations of Climate Feedbacks over 2000-10 and Comparisons to 656

Climate Models. Journal of Climate 26, 333-342 (2013).657

12. Neale, R. B. et al. The Mean Climate of the Community Atmosphere Model (CAM4) in 658

Forced SST and Fully Coupled Experiments. J. Clim. 26, 5150-5168 (2013).659

13. Neale, R. B. et al. (2010), Description of the NCAR Community Atmosphere Model (CAM 660

5.0), NCAR Tech. Note NCAR/TN-486+STR, 282 pp., (Natl. Cent. for Atmos. Res., 661

Boulder, Colo., 2010).662

14. Klein, S. A. & Jakob, C. Validation and sensitivities of frontal clouds simulated by the 663

ECMWF model. Monthly Weather Review 127, 2514-2531 (1999).664

15. Webb, M., Senior, C., Bony, S. & Morcrette, J. J. Combining ERBE and ISCCP data to 665

assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models. 666

Climate Dynamics 17, 905-922 (2001).667

16. Noda, A. T., & Satoh, M. Intermodel variances of subtropical stratocumulus 668

environments simulated in CMIP5 models, Geophys. Res. Lett. 41, 7754–7761 (2014).669

17. Zhou, C., Zelinka, M. D., Dessler, A. E. & Klein, S. A. The relationship between 670

interannual and long-term cloud feedbacks. Geophys. Res. Lett. 42, 10463–10469 (2015).671

18. Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. Quantifying uncertainties in 672

global and regional temperature change using an ensemble of observational estimates: 673

The HadCRUT4 data set. J. Geophys. Res. 117, D08101 (2012).674

19. Klein, S. A. & Hartmann D. L. The seasonal cycle of low stratiform clouds. J. Clim. 6, 675

1587-1606 (1993).676

20. Bretherton, C. S., Blossey, P. N. & Jones, C. R. Mechanisms of marine low cloud 677

sensitivity to idealized climate perturbations: A single-LES exploration extending the 678

CGILS cases. J. Adv. Model. Earth Syst. 5, 1942-2466 (2013).679

21. van der Dussen, J. J., de Roode, S. R., Gesso, S. Dal & Siebesma, A. P. An LES model 680

study of the influence of the free tropospheric thermodynamic conditions on the 681

stratocumulus response to a climate perturbation. J. Adv. Model. Earth Syst. 7, 1942-2466682

(2015).683

22. Clement, A. C., Burgman, R. & Norris, J. R. Observational and Model Evidence for 684

Positive Low-Level Cloud Feedback. Science 325, 460-464 (2009).685



39

23. Sobel, A. H., Nilsson, J. & Polvani, L. M., The Weak Temperature Gradient 686

Approximation and Balanced Tropical Moisture Waves. Journal of Atmospheric Sciences 687

58, 3650-3665 (2001).688

24. Myers, T. A. & Norris, J. R. Reducing the uncertainty in subtropical cloud feedback. 689

Geophys. Res. Lett. 43, 2144–2148 (2016).690

25. Bretherton, C. S. & Blossey, P. N. Low cloud reduction in a greenhouse-warmed climate: 691

Results from Lagrangian LES of a subtropical marine cloudiness transition. J. Adv. 692

Model. Earth Syst. 6, 91–114 (2014).693

26. Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity traced to 694

atmospheric convective mixing. Nature 505, 37-42 (2014).695

27. Qu, X., Hall, A., Klein, S. A. & Caldwell P. M., The strength of the tropical inversion 696

and its response to climate change in 18 CMIP5 models. Clim Dyn 45, 375-396 (2015).697

28. Watanabe, M. et al. Contribution of natural decadal variability to global warming 698

acceleration and hiatus. Nature Climate Change 4, 893-897 (2014).699

29. Takahashi C. & Watanabe M. Pacific trade winds accelerated by aerosol forcing over the 700

past two decades. Nature Climate Change 6, 768-772 (2016).701

702

703

704

705


