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Feedbacks of clouds on climate change strongly influence the magnitude of global
warming'>. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming*”®,
which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback
could deviate from the long-term cloud feedback!. Here we present climate model
simulations to show that the global mean cloud feedback in response to decadal
temperature fluctuations varies dramatically due to time variations in the spatial pattern of
sea surface temperature (SST). We find that cloud anomalies associated with these patterns
significantly modify the Earth’s energy budget. Specifically, the decadal cloud feedback
between the 1980s and 2000s is substantially more negative than the long-term cloud
feedback. This is a result of cooling in tropical regions where air descends, relative to
warming in tropical ascent regions, which strengthens low-level atmospheric stability.
Under these conditions, low-level cloud cover and its reflection of solar radiation increase,
despite an increase in global mean surface temperature. These results suggest that SST

pattern-induced low cloud anomalies could have contributed to the period of reduced
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warming between 1998 and 2013, and offer a physical explanation of why climate

sensitivities estimated from recently observed trends are probably biased low*.

Clouds play a significant role in the earth’s climate system by reflecting incoming solar
radiation and reducing outgoing thermal radiation. As the earth’s surface warms, the net radiative

effect of clouds also changes, contributing a feedback to the climate system.

Recent studies suggest that the magnitude of climate feedbacks depend on surface warming
patterns*®. Therefore we expect that the magnitude of decadal cloud feedback deviates from the
long-term cloud feedback due to decadal variations in the spatial pattern of SST anomalies®, and
may play a non-negligible role in decadal climate variability'!’. In this study, we perform
idealized experiments to gain insight into the causes of decadal cloud variations over the last
century. We then test the robustness of our experimental results by examining cloud trends
during the satellite era in Coupled Model Intercomparison Project Phase 5 (CMIP5)!! -
Atmospheric Model Intercomparison Project (AMIP) simulations, CMIP5-historical simulations,

and observations.

Our experiments employ the Community Earth System model V1.2.1- Community
Atmospheric Model 5.3 (CESM1.2.1-CAM5.3)'? with a resolution of 1.9° longitude by 2.5°
latitude. The control experiments (“AMIP-like”, two runs with different initial conditions) use
prescribed historical SST and climate forcings (aerosols, greenhouse gases, and solar radiation).
To isolate the SST-driven component of cloud changes, we run two idealized “AMIPFF”
experiments with historical SST but climate forcings fixed at pre-industrial and present day

2
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levels, respectively. To investigate the effect of spatial patterns of SST anomalies on clouds, two
patterned SST experiments are carried out (“PSST”). The PSST experiments are identical to the
AMIPFF experiments except that spatially uniform SST anomalies are subtracted from the
historical SST at each time step to keep the global surface temperature roughly constant (see
Methods). Historical sea ice is prescribed in all simulations. Confidence in CAM’s simulation
comes from its consistency with observations for the sensitivities of low cloud cover (LCC) to
SST and estimated inversion strength (EIS)" and the recent evolution of cloud controlling

factors and cloud-induced radiation anomalies (Supplementary Figures 1-3).

Our analysis begins with the decadal net feedback (climate feedback parameter), which is
calculated as the regression slope of annual global TOA net flux anomalies against annual global
surface temperature anomalies in AMIPFF simulations over 30-year windows. Figure 1(a)
indicates that the 30-year feedback parameter varies dramatically and is significantly more
negative than the long-term net feedback (see Methods) after 1980. This is consistent with
HadGEM2A/HadCM3A simulations carried out by Gregory and Andrews* and with experiments
we have conducted with CAM4 (Supplementary Figure 4), indicating that the decadal variations

of net feedback are robust.

The variation of decadal net feedback is primarily induced by clouds (Fig. 1b, Supplementary
Figure 5). Decadal cloud-induced radiation anomalies (ARcioud, sSee Methods) vary dramatically
throughout the AMIPFF simulations while the global surface temperature increases relatively
steadily (Fig. 2a), resulting in variations of decadal cloud feedback (Fig. 1b) and the
corresponding net feedback. To understand the causes of decadal Rcioud variations, we

decompose the cloud induced radiation anomalies using the following equation
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AR,y = AAT, + AR, + AR, + ¢, (1)

cloud

where Ac is the magnitude of cloud feedback under uniform SST warming (see Methods), Ts is
global surface skin temperature, ARpsst is the cloud-induced radiation anomaly in response to
changes in SST pattern in absence of global mean temperature changes (= ARc¢ioua from PSST
simulation), ARcr is the rapid cloud radiative adjustment in response to changes in climate
forcings (zero in our fixed forcing experiments), and ¢ is the error term. ARcioud in the AMIPFF
simulation is well correlated (r=0.93) with the sum of A.ATs and ARpsst terms (Fig. 2a). These
results suggest that cloud feedback can be linearly decomposed into a fixed feedback under

uniform warming, plus a SST pattern-induced component.

Figure 2(b) shows the decadal anomalies in global low cloud cover (LCC), which are
primarily contributed from ALCC over the tropical oceans (Fig. 2c). The tropical marine ALCC
in AMIPFF simulations is well correlated with and contributes significantly to variability in the
global ARcioud (1=-0.77). These low clouds strongly cool the Earth’s climate system and play an

important role in determining the magnitude of cloud feedback!'*!>:16,

We explain tropical marine ALCC with cloud controlling factors. An increase in EIS or

decrease of SST would contribute positively to LCC!6-17:18.9

, so tropical ALCC can be explained
by the linear combination of tropical mean SST and EIS anomalies (Fig. 2c, r=0.76), with EIS
anomalies explaining more decadal variance in LCC. Furthermore, changes in EIS are well
explained (r=0.94) by a linear combination of the tropical mean SST' and the difference
between SST in tropical strong ascent regions and the tropical mean SST (AT(up,trp), see

Methods), with the latter explaining more decadal variance in EIS (Fig. 2d). Physically, EIS

increases with this SST difference because free-tropospheric temperatures throughout the tropics
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are controlled by the moist adiabat set by the SST in tropical ascent regions*’, whereas SSTs in
tropical descent regions only affect the temperature of boundary layer locally. As a result, LCC
variations over the 20" century are primarily induced by the SST pattern instead of changes in

tropical mean SST (Supplementary Text 1 and Supplementary Figure 6).

The above mechanism explains the abnormal decadal net feedback during the satellite era
(1979-present), when surface warming is most pronounced over tropical ascent regions where
deep convection occurs, with cooling over tropical descent regions, particularly in the Eastern
Pacific where low clouds are common (Supplementary Figure 7). The pronounced warming in
the tropical ascent regions causes the tropical troposphere to warm, and in the absence of
equivalent warming in descent regions, causes the tropical EIS to increase significantly (Fig. 2d),
contributing positively to the LCC trend. Meanwhile, the SST-induced LCC reduction over the
broader tropical oceans is not strong enough to compensate the EIS induced LCC increase (Fig.
2¢). Altogether, the positive tropical mean LCC trend results in a negative Reioud trend (Fig. 2a),
and hence a negative decadal cloud feedback during this period (Fig. 1b) because the negative
Reioud trend happens concurrently with a positive global mean surface temperature trend. SST,
EIS, LCC, and Rcioud trends also exhibit a clear spatial correspondence, confirming the physical
linkages among them (Supplementary Figure 8). As a result, the recent decadal feedback
parameter is significantly more negative than the values under uniform or patterned long-term

warming (Fig. 1a)*.

To further demonstrate the importance of the SST pattern in driving LCC trends, we compare
1980-2005 LCC trends in AMIP with those in CMIPS5-historical simulations (Supplementary
Table 1). This comparison is valid because historical climate forcings are identically prescribed

in both AMIP and CMIP5-historical simulations, meaning that differences are primarily the
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result of differing patterns of SST change between AMIP and CMIP5-historical simulations. In
AMIP simulations, where the SST is the same as observations by design, there is significant
LCC increase in the Eastern Pacific Ocean, Southern Indian Ocean, and Southern Atlantic Ocean
(Fig. 3a, c), qualitatively consistent with artifact-corrected satellite observations*'** (Fig. 3e,
Supplementary Figure 9). In contrast, SST warming is distributed more uniformly in CMIP5-
historical (Fig. 3b, Supplementary Figure 10), and the model ensemble mean LCC trend is
negative over much of the tropical regions (Fig. 3d). Averaging tropically or globally (Fig. 3f),
the model ensemble mean LCC trend is positive in AMIP simulations, consistent with our
CAMS.3 simulations, and negative in CMIP5-historical simulations, consistent with LCC
changes under uniform and patterned long-term global warming (Supplementary Figure 11).
These differences hold for individual models as well: Compared to historical simulations, the
AT(up,trp) trend is systematically larger and the SST trend in descent regions is systematically
smaller in AMIP simulations (Supplementary Figure 12), leading to systematically more positive
EIS and LCC trends in AMIP than in historical simulations (Fig. 3f). Examination of climate
model control simulations suggests that these systematic differences may not be explained purely
by lack of synchronization between internally-generated trends in coupled historical simulations
and those occurring in nature (Supplementary Text 2 and Supplementary Figure 13). If so, the
1980-2005 SST trend pattern is likely to be partly forced, with a potentially important role for
aerosols*>?*, On the other hand, if models collectively underestimate internal variability on
decadal timescale, the possibility remains that the pattern was an unusual natural fluctuation that

coupled models do not simulate.

The average SST pattern-induced component of ARcioud is -0.35 W/m? during the 2000s (Fig.

2a), which is comparable to current TOA net flux anomaly (~0.6 W/m?)?*. To the extent that the
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global warming rate is affected by the TOA net flux imbalance®®, SST pattern-induced negative

2728 __

Reioud anomalies -- together with oceanic heat storage at depth®® and aerosol forcing are

likely to have contributed to the global warming hiatus in the 2000s.

In conclusion, SST pattern-induced cloud anomalies have an important impact on the Earth’s
energy budget. Until the signal of greenhouse gas induced warming dominates over the noise of
internal variability, the SST pattern-induced cloud radiation anomalies will be at least as large as
those that are due to global surface warming. Indeed, SST pattern-induced enhancements in
cloud cooling have dominated over the past several decades in CAMS.3 despite it having a
positive cloud feedback under long-term warming. The SST trend pattern over the last three
decades exhibits much greater warming in tropical ascent regions relative to the broader tropics,
in contrast to the more uniform warming that characterizes observed long-term (1871-2005) SST
trends, nearly all historical simulations between 1980 and 2005, and future projections of CO»-
induced climate change (Supplementary Figure 7 and 10). Therefore, both the cloud feedback
and net feedback computed from recent trends are much more negative than in response to long-
term warming, indicating that climate sensitivity estimated from recent climate changes is likely

to be underestimated if SST pattern-induced cloud anomalies are not accounted for.
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Figure Captions

a 30-year net feedback b 30-year cloud feedback
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Figure 1. Evolution of decadal net and cloud feedbacks from CAMS5.3 simulations. (a) 30-year
net feedback estimates from AMIPFF simulations, plotted at the mid-point of each 30-year
period. Thin black lines are calculated from individual runs, and thick black lines are calculated
from ensemble mean values. Horizontal solid lines denote the long-term cloud feedbacks
computed from uniform (orange) and patterned (red) future warming experiments (see Methods).
Dashed red/orange lines and grey shading denote 2c uncertainty intervals. (b) Same as (a), but

for the cloud feedback.
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Figure 2. Evolution of selected 9-year moving averaged quantities from CAMS.3 simulations. (a)
Global cloud-induced radiation anomaly in AMIPFF simulations (blue), its components due to
anomalies in SST pattern (red) and global mean surface temperature (orange), and their sum
(black). (b) Global low cloud cover anomalies (ALCC) in all simulations. (c¢) Tropical marine
ALCC in AMIPFF simulations (blue), its components due to estimated inversion strength
anomalies (AEIS) (purple), ASST (orange), and their sum (black). (d) Tropical marine AEIS in
AMIPFF simulations (purple), its components due to AT(up,trp) (red, see Methods), ASST

(orange), and their sum (black).
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Figure 3. Comparison of recent Ts and LCC trends in AMIP (1980-2005), CMIP5-historical
(1980-2005), and satellite observations (1983-2005). (a-d) Ensemble mean surface temperature
and LCC trend in AMIP and historical simulations. (¢) LCC trend calculated from artifact-
corrected ISCCP satellite data®'*%. Note that the color bar of (e) is different from (c-d). (f) AMIP
LCC trends plotted against CMIP5-historical LCC trends, for tropical (red) and global (black)
averages, respectively (%/30yrs). The solid black line is the equal-value line, and crosses denote

model ensemble mean values.
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Methods

To carry out the PSST experiment, we first calculate the monthly global surface skin
temperature anomalies ATs(t) in AMIPFF experiments. In our uniform warming experiment, 1K
of uniform SST warming would increase the global surface temperature by ~1.1K in CAMS.3, so
we subtract ATs(t)/1.1 from the historical SST for each month and each location, and use the
modified SST as boundary conditions. Then AT;s in the PSST experiment is near zero over the
whole period (Supplementary Figure 14), but the SST pattern anomalies are identical to those in

the AMIP simulations.

Additional experiments are designed to calculate cloud feedback under uniform and patterned
long-term global warming. First, we fix the SST and climate forcings at year 2000, and run for
16 years. Then we increase the SST by 4K uniformly and reset the initial conditions, and run for
another 16 years. Then the cloud feedback under uniform warming (A) was calculated as the
ARcioud difference normalized by surface temperature difference between the latter 15 years of
the two simulations. A¢ is close to the cloud feedback under patterned long-term warming (Fig.
1b), which is calculated with the same method, except that the SST of year 2000 is warmed by
the long-term warming pattern derived from the ensemble mean of abrupt4xCO2 simulations

(Supplementary Figure 7).

Cloud-induced radiation anomalies (ARcioud) are calculated by removing cloud masking effects
from cloud radiative effect anomalies using radiative kernels?’, where cloud radiative effect is
defined as the difference in upwelling radiation between clear- and all-sky scenes. LCC in
CAMS.3 simulations is calculated by the model using the model’s level-by-level cloud fraction

field and its cloud overlap assumption. For AMIP and CMIPS5-historical simulations, LCC is

15
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approximated as the maximum cloud fraction between the surface and 680 hPa, which is useful

for qualitative comparisons®®*.

To calculate decadal anomalies, we first calculate annual anomalies by removing the
climatological mean from annual mean values. Then a 9-year moving average is applied to filter

out interannual signals.

In Fig. 2, AT(up,trp) is calculated as the surface temperature difference between SST averaged
over tropical strong ascent regions and SST averaged over the entire tropics at each time step.
Tropical strong ascent regions are defined as those with monthly 500 hPa vertical velocity
magnitude |®s00| exceeding the median |®seo0| in regions with ws00<0. The coefficients of AEIS
and ASST in Fig. 2(c) and of AT(up,trp) and ASST in Fig. 2(d) are derived from multiple linear

regression.

Data and code availability. The CESM1.2.1-CAMS.3 source code was downloaded from the

CESM official website http:/www2.cesm.ucar.edu/. The CAMS5.3 simulation results and code

used for the analyses of this study are available from the corresponding author upon request. The
CMIP5-historical/ AMIP data is available from the Earth System Grid - Center for Enabling

Technologies (ESG-CET) website, http://pcmdi9.lInl.gov.
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Supplementary Figure 1. Diagnosis of marine LCC sensitivity to major low cloud controling
factors in CAMS5.3 AMIPFF simulation. (a) Relationship between tropical mean annual
anomalies in marine EIS! and marine LCC between March 2000 and February 2013. In both
CAMS5.3 AMIPFF simulation (blue) and observations (red), tropical marine EIS anomalies are
positively correlated with marine LCC anomalies. Observational EIS is calculated from ERA-
interim data® using equation (3) of Qu et al. 2014, and LCC is calculated from Terra MODIS
level 3 data®. (b) Relationship between tropical mean annual anomalies in SST and marine LCC.
(c) Sensitivity of LCC to EIS and SST in 5 subtropical low cloud regions defined by Qu et al.
2014°. The sensitivities are calculated from multiple linear regression, and the boxes denote the
uncertainty intervals calculated from observations. Since the artifacts of ISCCP and PATMOS-x
are large during the 1980s and 1990s°2!, values calcuated from the full period of ISCCP and
PATMOS-x are marked with dashed boxes, and the solid boxes for ISCCP and PATMOS-x are
values calculated using data after 1996 and 1997, respectively. These observational values are
from Qu et al. 20157. (d) LCC sensitivity to EIS and SST over the whole tropical ocean,
calculated from multiple linear regression of tropical marine LCC annual anomalies against
marine EIS and SST annual anomalies. Based on these plots, we conclude that marine LCC
sensitivities calculated from CAMS.3 are generally within the uncertainty interval of
observations.
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347  Supplementary Figure 2. Comparison of 9-year smoothed tropical marine EIS anomalies in
348  ERA-20C reanalysis®, 20CR reanalysis’, AMIP-GISS simulations (the only AMIP model
349  covering the whole 20" century), and our CAM5.3 AMIP-like simulations. The base period to
350 calculate anomalies is 1980-2010. We conclude CAM’s simulation of increasing EIS trend
351  during the satellite era (1979-present) is in agreement with that of other available models. Prior
352  to the satellite era, EIS does not vary by more than by 0.2 K in 3 out of 4 available estimates
353  including that of CAMS.3.
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Supplementary Figure 3. Comparison of detrended ARcioud in observations and CAMS.3
AMIPFF simulations. The cloud masking effect in CERES cloud radiative effect is removed with
ERA-Interim data and radiative kernels?® following Dessler 2013'!. Thin black lines are
calculated from individual runs, and thick black lines are calculated from ensemble mean values.
Correlation coefficients between the CERES and CAMS5.3 ARcioud time series and the ratio of
their standard deviations are displayed in the lower left corner of the plots. We conclude that
CAM’s simulation of interannual ARcioud 1S in reasonable agreement with the satellite
observations.
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Supplementary Figure 4. Comparison of 30-year net feedback paramters in CAM4 and CAMS.3.
Black solid line is calculated from the net TOA radiation and Ts anomalies averaged over the
AMIPFF simulations, which is same as the black line in Fig. 1(a). Red line represents results
calculated from an independent CAM4 AMIP{2000 experiment. CAM4!? differs markedly from
CAMS5" in nearly all of its physical parameterizations and thus can be considered to be the result
of a mostly independent model. Although not perfect, there is general agreement between CAM4

and CAMS5.3 on the decadal variations in the net feedback, particularly for its more negative
values after 1980.
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Supplementary Figure 5. Evolution of decadal cloud feedback and non-cloud feedbacks. (a) 30-
year cloud feedback estimates from AMIPFF simulations. (b) Sum of Planck, lapse rate, water
vapor, and surface albedo feedbacks. (c) Comparison of the sum of feedbacks calculated from
kernels (black) and the net feedback calculated from TOA fluxes (red). (d) Difference between
the net feedback calculated from TOA fluxes and the sum of feedbacks calculated from kernels.
The residual term includes kernel errors, cross-field correlations. Clearly, the variance of cloud
feedback is much larger than the non-cloud feedbacks, indicating the importance of decadal
cloud feedback in driving variations in decadal net feedback.
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Supplementary Figure 6. Relationship between tropical marine ALCC (blue), AT(up,trp) (red)
and tropical ASST (orange), and the linear combination of AT(up,trp) and ASST (black). All
time series are ensemble mean values of 9-year moving averages from individual runs. The
coefficients of AT(up,trp) and ASST (black) are calculated by substituting the regression for EIS
(Fig. 2d) as a function of AT(up,trp) and ASST into the regression equation for ALCC (Fig. 2c¢).
In doing so, one arrives at a relationship between ALCC and ASST and AT(up,trp), that allows
one to explore the relative influences on low cloud cover of the mean SST and the difference in
SST between tropical ascent and descent regions. ALCC is well correlated with the linear
combination of AT(up,trp) and ASST (black) (r=0.77), moderately correlated with AT(up,trp)
(r=0.51), and poorly correlated with ASST (r=-0.06). Therefore, the decadal changes in ALCC
are controlled by both AT(up,trp) and ASST, with the former playing the more important role.
Please see Supplementary Text 1 for further discussion.
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Supplementary Figure 7. Normalized surface temperature trend from the (a) AMIP-like
simulation over the period 1980-2005, (b) AMIP-like simulation over the period 1871-2005, (c)
ensemble mean CMIP5-abrupt4xCO; simulations over years 1 to 150 of the experiment, and (d)
ensemble mean difference between AMIPFuture (AMIP plus a patterned future warming) and
AMIP simulations. The local surface temperature anomalies are normalized by the global mean
surface temperature change for better comparison, so the units are K/K. The spatial pattern of
warming observed in the recent past (panel a) is significantly more spatially inhomogeneous than
that expected for global warming over the next century (panels ¢ and d).
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417

418  Supplementary Figure 8. Spatial correspondence among trends in cloud-controlling factors, low
419  cloud cover, and cloud-induced radiation anomalies. Trends in (a) surface temperature, (b) EIS,
420 (c) LCC and (d) Reioud in the AMIPFF experiment between 1980 and 2005. In regions where EIS
421  increases, LCC increases and Reioud decreases, supporting our physical mechanism.
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424  Supplementary Figure 9. LCC trend for the years 1983-2005 calculated from corrected
425  PATMOS-x data>*!. Although not in perfect agreement, PATMOS-x and ISCCP (Figure 3¢) data
426  agree on the increases in LCC over the tropical Eastern Pacific, Southern Indian and Southern
427  Atlantic oceans.
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431  Supplementary Figure 10. Surface temperature trend in CMIP5-historical simulations during
432 1980-2005, divided by the global mean surface temperature trend (K/30yrs). None of these
433 coupled models show as strong temperature decrease in the tropical Eastern Pacific Ocean as in
434  AMIP simulations.
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Supplementary Figure 11. Responses of global mean LCC to changes in global mean surface
temperature, in AMIP, AMIP-Future and AMIP4K simulations. Left column is calculated from
AMIP trend (1980-2005), middle column is calculated from the difference between AMIP-future
(AMIP plus a patterned future warming) and AMIP, and right column is calculated from the
difference between AMIP-4K (AMIP plus a 4K uniform warming) and AMIP. LCC is calculated
from the ISCCP simulator'*"> LCC=Ceso-1000npa/(1-Co-630npa). LCC calculated from ISCCP
simulator is more accurate than the maximum value of cloud fraction between 680 and surface,
but ISCCP simulator results are only available for a small subset of CMIP5-historical models, so
we use the latter method in Fig. 3'®?. Models generally predict increased LCC in response to the
warming pattern of the last 30 years in contrast to that predicted for global warming.
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Supplementary Figure 12. Comparison of trends over the period 1980-2005 in AMIP and
CMIP5-historical simulations. (a) SST difference between tropical ascent regions and the
tropical mean values. (b) Tropical marine EIS trend. (c¢) SST trend in tropical descent regions,
defined as those with monthly 500 hPa vertical velocity magnitude |wsoo| exceeding the median
|®s00| in regions with ®s500>0. (d) Trends in (red) AT(up,trp), (blue) EIS, and (black) Tdown in
CMIPS5-historical simulations plotted against those in AMIP simulations. EIS and AT(up,trp)
changes in AMIP simulations are systematically larger than those in CMIPS5-historical
simulations, and Taown changes in AMIP simulations are smaller than those in CMIP5-historical
simulations in most models. Therefore, the LCC trend in AMIP is systematically larger than in
CMIPS5-historical.
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Supplementary Figure 13. Comparing modeled and observed tropical SST trends. Histogram of
AT(up,trp) trends from all overlapping 26-year periods in piControl simulations. Dashed gray
lines indicate the 2.5th and 97.5th percentiles. The 1980-2005 AT(up,trp) trends determined
using AMIP SSTs and wseo from ERA Interim (green), from ERA-20C (blue), from CAMS
AMIPFF simulations (red), and from CMIP5 AMIP simulations (black, averaged over all
simulations) are within but on the extreme tail of the piControl trend distribution. Please see
Supplementary Text 2 for further discussion.
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Supplementary Figure 14. 9-year smoothed global surface temperature anomalies. The surface
temperature in AMIP-like and AMIPFF simulations increases significantly, but remains roughly
unchanged in the PSST simulation. ATs in AMIP-like is consistent with HadCRUT4
observations'®. ATs in AMIPFF simulations increases less than in AMIP-like simulations
because the CO» concentration remains unchanged in AMIPFF simulations.
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Supplementary Table 1. List of models used in AMIP and CMIP5-historical simulations

Climate Center CMIPS5-historical CMIP5-AMIP
ACCESS ACCESSI1-0 ACCESSI1-0
ACCESS ACCESSI1-3 ACCESSI1-3
BCC bee-csml-1 bee-csm1-1%*
GCESS/BNU BNU-ESM BNU-ESM

CCC CanESM2 CanAM4*
NCAR CCSM4 CCSM4*
CSIRO/QCCCE CSIRO-Mk3-6-0 CSIRO-Mk3-6-0
LASG/IAP FGOALS-g2 FGOALS-g2
GISS GISS-E2-R GISS-E2-R
GFDL GFDL-CM3 GFDL-CM3
MOHC HadGEM2-ES HadGEM2-A*
INM inmem4 inmem4

IPSL IPSL-CM5A-LR IPSL-CM5A-LR
MIROC MIROC5 MIROC5

MPI MPI-ESM-LR MPI-ESM-LR*
NCC NorESM1-M NorESM1-M
MRI MRI-CGCM3*

Note: The first ensemble member (rlilpl) from each model is used, except that we use r7ilpl
from AMIP-CCSM4 because it is first member with clisccp output available.

The sign * denotes models used in Supplementary Figure 11.
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Supplementary Text 1. Physical Mechanisms Driving Decadal Changes in Low Cloud
Cover

Here we present in greater detail the physical mechanisms that drive the changes in tropical
low cloud cover (LCC) over the 20 century.

Variations in LCC over the subsidence regions of the tropical oceans on seasonal and inter-
annual time-scales have been observed to be highly sensitive to changes in the strength of the
temperature inversion that caps the planetary boundary layer'”!. This sensitivity arises physically
because a stronger temperature inversion limits the rate of mixing between the boundary layer
and the free troposphere above. With less mixing, the drying and warming effects of mixing in
free-tropospheric air are reduced with the consequence that the boundary layer is colder, moister,
and hence more cloudy. Large-eddy simulations have confirmed the mechanisms of this
observed sensitivity?*2!. Thus, it is expected that LCC variations on decadal time-scales would
also be sensitive to inversion strength®. The tropical inversion strength essentially measures the
warmth of free tropospheric temperatures relative to that of the boundary layer; thus, it is
essential to understand what controls these temperatures and their relationships to tropical SST.

To a first approximation, free tropospheric temperatures throughout the tropics are most
sensitive to SST in tropical ascent (i.e., deep convective) regions. This is because the moist
adiabat of the tropical free troposphere is controlled by the moist static energy of the rising air in
deep convective clouds of tropical ascent regions and this moist static energy is closely related to
the local SST. Thus, if SST in tropical ascent regions increases, there will be free tropospheric
warming in tropical ascent regions which atmospheric dynamics will spread to free tropospheric
descent regions through the “weak-temperature gradient” approximation®”. In absence of SST
changes in the tropical descent regions, the increase in free tropospheric temperatures will
increase the lower tropospheric inversion strength in the tropical descent regions and hence
increase LCC in tropical descent regions. On the other hand, if SST in tropical descent regions
decreases without any change in SST in tropical ascent regions, the boundary layer air in tropical
descent regions will cool without any changes to free tropospheric temperatures. In this situation,
the inversion strength increases causing LCC to increase. And if difference between SST in the
tropical ascent and descent regions remains fixed, then there would be no change in inversion
strength — following directly from the definition of EIS'- and hence LCC would remain fixed.
This is the primary physical mechanism by which LCC is so very sensitive to variations in the
SST patterns, or more specifically the difference in SST between tropical ascent and descent
regions.

While this is the primary mechanism at work relating variations in the SST pattern with the
tropical inversion strength and LCC, we account for two additional secondary effects that happen
when the mean SST in the tropics changes but the SST difference between the tropical ascent
and descent regions remains fixed. First, as shown by LES studies’*?! and supported by

3,7,24

observational analyses™’”*, LCC decreases when SST increases and EIS remains fixed.
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Physically, this is usually explained as more efficient drying of the boundary layer as the
temperature rises by circulations at either turbulent'® or larger'® scales. This is why our study —
following past studies®’?* — predicts LCC variations with a multi-linear model involving two
parameters, EIS and SST (Fig. 2c). We note that CAM is consistent with the observed
sensitivities of LCC to EIS and SST (Supplementary Figure 1). Second, for reasons that are not
yet clear, climate models simulate free tropospheric warming that is slightly greater than that
predicted from moist adiabatic warming in tropical ascent regions. (Note that “moist adiabatic
warming” here is defined as that resulting from an increase in surface air moist static energy that
comes purely from an air temperature increase identical to that of the underlying SST with no
change in relative humidity.) This enhanced free tropospheric warming was shown to be a
robust, but unexplained feature, of climate models by Qu et al.?’ in their analysis of aqua-planet
experiments with uniform warming. This is why we include the mean SST as an additional
predictor in the explanation of EIS variations (Fig. 2d). We find that EIS increases with the mean
SST, like that found in the models analyzed by Qu et al.?’. Inclusion of these secondary effects
does not change the dominance of the SST difference between tropical ascent and descent
regions in driving decadal variations in EIS and LCC, although the inclusion of a dependency on
the mean temperature induces a general decrease in LCC and a slight increase in EIS over the
20" century (Supplementary Figure 6 and Fig. 2d).

Thus, these secondary effects, while helpful in quantitatively explaining the century time-scale
variations in EIS and LCC, do not alter the main explanation. To repeat the main explanation,
fluctuations in the pattern of warming — or more specifically the difference in warming between
tropical ascent and descent regions — causes fluctuations in inversion strength and LCC and
hence the radiation budget, which leads to fluctuations in the decadal cloud (and total) feedback.
Because the recent warming pattern is distinctly non-uniform, with greater warming in tropical
ascent regions and relative cooling in tropical descent regions, the decadal cloud feedback over
the period 1980-2005 is negative and deviates strongly from the positive feedback under long-
term warming pattern.

Supplementary Text 2. Assessing the Ability of Coupled Climate Models to Simulate the
SST Trends Observed over 1980-2005

An important question is whether the systematic differences shown in Figure 3f arise because
coupled models are incapable of simulating a warming pattern like that observed between 1980-
2005 or because they can, but just didn’t happen to do it in years 1980-2005 of the historical
runs.

The observed SST trend pattern over the 26-year period 1980-2005 is an unknown
combination of forced and unforced changes. Our null hypothesis is that the trend pattern is
dominated by internal variability. An alternative hypothesis is that the SST trend pattern is
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primarily forced and that coupled climate models cannot reproduce it because of model
deficiencies and/or incorrect imposed forcing.

While it is not possible to rule out forcing as contributing to the observed pattern, we can
determine whether unforced coupled models are capable of simulating the observed pattern. To
do so, we compute all possible 26-year SST trends in fully coupled piControl runs of CMIP5
models. If we could find trends that match those observed between 1980 and 2005, we could
conclude that (1) models are capable of reproducing the observed SST trends but they just
happened to not do so during the AMIP period and (2) that the trend can emerge solely due to
internal variability and does not require forcing.

Because it is the primary driver of tropical mean EIS anomalies and hence LCC anomalies
(Fig. 2d), we compare modeled and observed trends in AT(up,trp) — the difference between the
SST in tropical ascent regions and the tropical mean SST. In Supplementary Figure 13, we show
the histogram of AT(up,trp) trends from all overlapping 26-year periods in all available piControl
simulations with the necessary output. The 1980-2005 AT (up,trp) trends determined using AMIP
SSTs and wsoo from ERA Interim (green), ERA-20C (blue),from CAMS AMIPFF simulations
(red), and from CMIP5 AMIP simulations (black, averaged over all simulations) are within but
clearly on the tail of the distribution, exceeding the 97.5" percentile of all possible piControl
trends. Specifically, out of 15,186 total piControl AT(up,trp) trends, only 1 exceeds the AMIP
trend derived using wsoo from ERA-20C or CAMS5 AMIPFF, 8 exceed the AMIP trend derived
using mso0 from CMIP5 AMIP, and 214 exceed the AMIP trend derived using wsoo from ERA-
Interim. These results suggest that an increase in SST gradient between ascent regions and the
rest of the tropics that is as large as observed over 1980-2005 occurs very rarely (1% of the time
or less) in unforced simulations.

If the models accurately capture or overestimate unforced internal variability, then we
conclude that the observed trend pattern is largely incompatible with pure internal variability. In
this case, the observed pattern must be partly forced, and the systematic model-observation
differences in Figure 3f occur because of the models systematically having an incorrect forcing
or SST response to forcing. Even if the models had correct forcing and SST response to forcing,
internally-generated trends in coupled historical simulations could still occur asynchronously
with those in nature and lead to these systematic differences, but lack of synchronization alone
cannot account for the systematic differences.

If, however, the models collectively underestimate internal variability, then the possibility
remains that the observed SST trend is purely due to internal variability but that models are
incapable of simulating it. In this case, the systematic differences in Figure 3f occur because of
(a) the models systematically having an incorrect forcing or SST response to forcing, or (b)
internally-generated trends in coupled historical simulations being of insufficient magnitude
compared with those in nature, or (c) some combination of (a) and (b).
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In summary, unforced coupled models are largely incapable of reproducing the spatial pattern
of the observed SST trend during 1980-2005. Based on this analysis, we conclude that the
systematic differences in Figure 3f cannot be explained purely by lack of synchronization
between internally-generated trends in coupled historical simulations and those occurring in
nature. This implies that the 1980-2005 SST trend pattern is partly forced, with systematic
model-observation differences due to (a) errors the in prescribed external forcing in CMIPS5-
historical simulations, and/or (b) errors in the models’ responses to historical forcings. Highly
uncertain aerosol forcing, which has been shown to partially contribute to the SST trend pattern
during recent decades?®?*, may play a role in model-observation SST trend differences. If,
however, models collectively underestimate internal variability on this timescale, the possibility
remains that the pattern was an unusual natural fluctuation and that models are incapable of

simulating it.

Finally, we note that our paper’s conclusion regarding climate sensitivity does not depend on
whether the recent SST trend pattern is primarily induced by natural variability or by regional
climate forcings: Long-term feedback and climate sensitivity are defined with respect to CO»-
induced global warming (which is relatively spatially uniform according to climate models and
the observed SST trend during 1871-2013), so feedbacks and climate sensitivity calculated from
the recent period would still likely be biased despite being forced. Indeed, an alternative to
“forcing efficacies” for explaining the apparent dependence of warming on forcing agent could
be that different forcings actuate feedbacks of different strength because they induce different
surface temperature anomaly patterns.
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