

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-692260

Impact of Decadal Cloud Variations on the Earth's Energy Budget

C. Zhou, M. D. Zelinka, S. A. Klein

May 17, 2016

Nature-geoscience

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1

2 **Impact of decadal cloud variations on the Earth's energy budget**

3 Chen Zhou*, Mark D. Zelinka, and Stephen A. Klein

4 Lawrence Livermore National Laboratory, Livermore, CA, USA

5 *zhou8@llnl.gov

6

7 **Feedbacks of clouds on climate change strongly influence the magnitude of global**
8 **warming¹⁻³. Cloud feedbacks, in turn, depend on the spatial patterns of surface warming⁴⁻⁹,**
9 **which vary on decadal timescales. Therefore, the magnitude of the decadal cloud feedback**
10 **could deviate from the long-term cloud feedback⁴. Here we present climate model**
11 **simulations to show that the global mean cloud feedback in response to decadal**
12 **temperature fluctuations varies dramatically due to time variations in the spatial pattern of**
13 **sea surface temperature (SST). We find that cloud anomalies associated with these patterns**
14 **significantly modify the Earth's energy budget. Specifically, the decadal cloud feedback**
15 **between the 1980s and 2000s is substantially more negative than the long-term cloud**
16 **feedback. This is a result of cooling in tropical regions where air descends, relative to**
17 **warming in tropical ascent regions, which strengthens low-level atmospheric stability.**
18 **Under these conditions, low-level cloud cover and its reflection of solar radiation increase,**
19 **despite an increase in global mean surface temperature. These results suggest that SST**
20 **pattern-induced low cloud anomalies could have contributed to the period of reduced**

21 **warming between 1998 and 2013, and offer a physical explanation of why climate**
22 **sensitivities estimated from recently observed trends are probably biased low⁴.**

23

24

25 Clouds play a significant role in the earth's climate system by reflecting incoming solar
26 radiation and reducing outgoing thermal radiation. As the earth's surface warms, the net radiative
27 effect of clouds also changes, contributing a feedback to the climate system.

28 Recent studies suggest that the magnitude of climate feedbacks depend on surface warming
29 patterns⁴⁻⁹. Therefore we expect that the magnitude of decadal cloud feedback deviates from the
30 long-term cloud feedback due to decadal variations in the spatial pattern of SST anomalies⁴, and
31 may play a non-negligible role in decadal climate variability¹⁰. In this study, we perform
32 idealized experiments to gain insight into the causes of decadal cloud variations over the last
33 century. We then test the robustness of our experimental results by examining cloud trends
34 during the satellite era in Coupled Model Intercomparison Project Phase 5 (CMIP5)¹¹ -
35 Atmospheric Model Intercomparison Project (AMIP) simulations, CMIP5-historical simulations,
36 and observations.

37 Our experiments employ the Community Earth System model V1.2.1- Community
38 Atmospheric Model 5.3 (CESM1.2.1-CAM5.3)¹² with a resolution of 1.9° longitude by 2.5°
39 latitude. The control experiments (“AMIP-like”, two runs with different initial conditions) use
40 prescribed historical SST and climate forcings (aerosols, greenhouse gases, and solar radiation).
41 To isolate the SST-driven component of cloud changes, we run two idealized “AMIPFF”
42 experiments with historical SST but climate forcings fixed at pre-industrial and present day

43 levels, respectively. To investigate the effect of spatial patterns of SST anomalies on clouds, two
44 patterned SST experiments are carried out (“PSST”). The PSST experiments are identical to the
45 AMIPFF experiments except that spatially uniform SST anomalies are subtracted from the
46 historical SST at each time step to keep the global surface temperature roughly constant (see
47 Methods). Historical sea ice is prescribed in all simulations. Confidence in CAM’s simulation
48 comes from its consistency with observations for the sensitivities of low cloud cover (LCC) to
49 SST and estimated inversion strength (EIS)¹³ and the recent evolution of cloud controlling
50 factors and cloud-induced radiation anomalies (Supplementary Figures 1-3).

51 Our analysis begins with the decadal net feedback (climate feedback parameter), which is
52 calculated as the regression slope of annual global TOA net flux anomalies against annual global
53 surface temperature anomalies in AMIPFF simulations over 30-year windows. Figure 1(a)
54 indicates that the 30-year feedback parameter varies dramatically and is significantly more
55 negative than the long-term net feedback (see Methods) after 1980. This is consistent with
56 HadGEM2A/HadCM3A simulations carried out by Gregory and Andrews⁴ and with experiments
57 we have conducted with CAM4 (Supplementary Figure 4), indicating that the decadal variations
58 of net feedback are robust.

59 The variation of decadal net feedback is primarily induced by clouds (Fig. 1b, Supplementary
60 Figure 5). Decadal cloud-induced radiation anomalies (ΔR_{cloud} , see Methods) vary dramatically
61 throughout the AMIPFF simulations while the global surface temperature increases relatively
62 steadily (Fig. 2a), resulting in variations of decadal cloud feedback (Fig. 1b) and the
63 corresponding net feedback. To understand the causes of decadal R_{cloud} variations, we
64 decompose the cloud induced radiation anomalies using the following equation

65 $\Delta R_{\text{cloud}} = \lambda_c \Delta T_s + \Delta R_{\text{PSST}} + \Delta R_{\text{cf}} + \varepsilon , \quad (1)$

66 where λ_c is the magnitude of cloud feedback under uniform SST warming (see Methods), T_s is
67 global surface skin temperature, ΔR_{PSST} is the cloud-induced radiation anomaly in response to
68 changes in SST pattern in absence of global mean temperature changes ($= \Delta R_{\text{cloud}}$ from PSST
69 simulation), ΔR_{cf} is the rapid cloud radiative adjustment in response to changes in climate
70 forcings (zero in our fixed forcing experiments), and ε is the error term. ΔR_{cloud} in the AMIPFF
71 simulation is well correlated ($r=0.93$) with the sum of $\lambda_c \Delta T_s$ and ΔR_{PSST} terms (Fig. 2a). These
72 results suggest that cloud feedback can be linearly decomposed into a fixed feedback under
73 uniform warming, plus a SST pattern-induced component.

74 Figure 2(b) shows the decadal anomalies in global low cloud cover (LCC), which are
75 primarily contributed from ΔLCC over the tropical oceans (Fig. 2c). The tropical marine ΔLCC
76 in AMIPFF simulations is well correlated with and contributes significantly to variability in the
77 global ΔR_{cloud} ($r=-0.77$). These low clouds strongly cool the Earth's climate system and play an
78 important role in determining the magnitude of cloud feedback^{14,15,16,9}.

79 We explain tropical marine ΔLCC with cloud controlling factors. An increase in EIS or
80 decrease of SST would contribute positively to LCC^{16,17,18,9}, so tropical ΔLCC can be explained
81 by the linear combination of tropical mean SST and EIS anomalies (Fig. 2c, $r=0.76$), with EIS
82 anomalies explaining more decadal variance in LCC. Furthermore, changes in EIS are well
83 explained ($r=0.94$) by a linear combination of the tropical mean SST¹⁹ and the difference
84 between SST in tropical strong ascent regions and the tropical mean SST ($\Delta T(\text{up, trp})$, see
85 Methods), with the latter explaining more decadal variance in EIS (Fig. 2d). Physically, EIS
86 increases with this SST difference because free-tropospheric temperatures throughout the tropics

87 are controlled by the moist adiabat set by the SST in tropical ascent regions²⁰, whereas SSTs in
88 tropical descent regions only affect the temperature of boundary layer locally. As a result, LCC
89 variations over the 20th century are primarily induced by the SST pattern instead of changes in
90 tropical mean SST (Supplementary Text 1 and Supplementary Figure 6).

91 The above mechanism explains the abnormal decadal net feedback during the satellite era
92 (1979-present), when surface warming is most pronounced over tropical ascent regions where
93 deep convection occurs, with cooling over tropical descent regions, particularly in the Eastern
94 Pacific where low clouds are common (Supplementary Figure 7). The pronounced warming in
95 the tropical ascent regions causes the tropical troposphere to warm, and in the absence of
96 equivalent warming in descent regions, causes the tropical EIS to increase significantly (Fig. 2d),
97 contributing positively to the LCC trend. Meanwhile, the SST-induced LCC reduction over the
98 broader tropical oceans is not strong enough to compensate the EIS induced LCC increase (Fig.
99 2c). Altogether, the positive tropical mean LCC trend results in a negative R_{cloud} trend (Fig. 2a),
100 and hence a negative decadal cloud feedback during this period (Fig. 1b) because the negative
101 R_{cloud} trend happens concurrently with a positive global mean surface temperature trend. SST,
102 EIS, LCC, and R_{cloud} trends also exhibit a clear spatial correspondence, confirming the physical
103 linkages among them (Supplementary Figure 8). As a result, the recent decadal feedback
104 parameter is significantly more negative than the values under uniform or patterned long-term
105 warming (Fig. 1a)⁴.

106 To further demonstrate the importance of the SST pattern in driving LCC trends, we compare
107 1980-2005 LCC trends in AMIP with those in CMIP5-historical simulations (Supplementary
108 Table 1). This comparison is valid because historical climate forcings are identically prescribed
109 in both AMIP and CMIP5-historical simulations, meaning that differences are primarily the

110 result of differing patterns of SST change between AMIP and CMIP5-historical simulations. In
111 AMIP simulations, where the SST is the same as observations by design, there is significant
112 LCC increase in the Eastern Pacific Ocean, Southern Indian Ocean, and Southern Atlantic Ocean
113 (Fig. 3a, c), qualitatively consistent with artifact-corrected satellite observations^{21,22} (Fig. 3e,
114 Supplementary Figure 9). In contrast, SST warming is distributed more uniformly in CMIP5-
115 historical (Fig. 3b, Supplementary Figure 10), and the model ensemble mean LCC trend is
116 negative over much of the tropical regions (Fig. 3d). Averaging tropically or globally (Fig. 3f),
117 the model ensemble mean LCC trend is positive in AMIP simulations, consistent with our
118 CAM5.3 simulations, and negative in CMIP5-historical simulations, consistent with LCC
119 changes under uniform and patterned long-term global warming (Supplementary Figure 11).
120 These differences hold for individual models as well: Compared to historical simulations, the
121 $\Delta T(\text{up, trp})$ trend is systematically larger and the SST trend in descent regions is systematically
122 smaller in AMIP simulations (Supplementary Figure 12), leading to systematically more positive
123 EIS and LCC trends in AMIP than in historical simulations (Fig. 3f). Examination of climate
124 model control simulations suggests that these systematic differences may not be explained purely
125 by lack of synchronization between internally-generated trends in coupled historical simulations
126 and those occurring in nature (Supplementary Text 2 and Supplementary Figure 13). If so, the
127 1980-2005 SST trend pattern is likely to be partly forced, with a potentially important role for
128 aerosols^{23,24}. On the other hand, if models collectively underestimate internal variability on
129 decadal timescale, the possibility remains that the pattern was an unusual natural fluctuation that
130 coupled models do not simulate.

131 The average SST pattern-induced component of ΔR_{cloud} is -0.35 W/m^2 during the 2000s (Fig.
132 2a), which is comparable to current TOA net flux anomaly ($\sim 0.6 \text{ W/m}^2$)²⁵. To the extent that the

133 global warming rate is affected by the TOA net flux imbalance²⁶, SST pattern-induced negative
134 R_{cloud} anomalies -- together with oceanic heat storage at depth²³ and aerosol forcing^{27,28} -- are
135 likely to have contributed to the global warming hiatus in the 2000s.

136 In conclusion, SST pattern-induced cloud anomalies have an important impact on the Earth's
137 energy budget. Until the signal of greenhouse gas induced warming dominates over the noise of
138 internal variability, the SST pattern-induced cloud radiation anomalies will be at least as large as
139 those that are due to global surface warming. Indeed, SST pattern-induced enhancements in
140 cloud cooling have dominated over the past several decades in CAM5.3 despite it having a
141 positive cloud feedback under long-term warming. The SST trend pattern over the last three
142 decades exhibits much greater warming in tropical ascent regions relative to the broader tropics,
143 in contrast to the more uniform warming that characterizes observed long-term (1871-2005) SST
144 trends, nearly all historical simulations between 1980 and 2005, and future projections of CO₂-
145 induced climate change (Supplementary Figure 7 and 10). Therefore, both the cloud feedback
146 and net feedback computed from recent trends are much more negative than in response to long-
147 term warming, indicating that climate sensitivity estimated from recent climate changes is likely
148 to be underestimated if SST pattern-induced cloud anomalies are not accounted for.

149

150

151 **References**

152 1. Dufresne, J.-L. & Bony, S. An assessment of the primary sources of spread of global
153 warming estimates from coupled atmosphere-ocean models. *Journal of Climate* **21**, 5135-
154 5144 (2008).

155 2. Webb, M. J. *et al.* On the contribution of local feedback mechanisms to the range of
156 climate sensitivity in two GCM ensembles. *Clim. Dyn.* **27**, 17–38 (2006).

157 3. Caldwell, P. M., Zelinka, M. D., Taylor, K. E. & Marvel, K. Quantifying the Sources of
158 Intermodel Spread in Equilibrium Climate Sensitivity. *Journal of Climate* **29**, 513-524
159 (2016).

160 4. Gregory J. M. & Andrews, T. Variation in climate sensitivity and feedback parameters
161 during the historical period. *Geophys. Res. Lett.* **43**, 3911-3920 (2016).

162 5. Xie, S.-P., Kosaka, Y. & Okumura, Y. M. Distinct energy budgets for anthropogenic and
163 natural changes during global warming hiatus. *Nature Geoscience* **9**, 29-33 (2016).

164 6. Armour, K. C., Bitz, C. M. & Roe, G. H. Time-varying climate sensitivity from regional
165 feedbacks. *J. Climate* **26**, 4518-4534 (2013).

166 7. Andrews, T. Using an AGCM to Diagnose Historical Effective Radiative Forcing and
167 Mechanisms of Recent Decadal Climate Change. *Journal of Climate* **27**, 1193-1209
168 (2014).

169 8. Andrews, T., Gregory, J. M. & Webb, M. J. The Dependence of Radiative Forcing and
170 Feedback on Evolving Patterns of Surface Temperature Change in Climate Models.
171 *Journal of Climate* **28**, 1630-1648 (2015).

172 9. Zhou, C., Zelinka, M. D., Dessler, A. E. & Klein, S. A. The relationship between
173 interannual and long-term cloud feedbacks. *Geophys. Res. Lett.* **42**, 10463–10469 (2015).

174 10. Brown, P. T., Li, W., Li, L., & Ming, Y. Top-of-atmosphere radiative contribution to
175 unforced decadal global temperature variability in climate models. *Geophys. Res. Lett.*
176 **41**, 5175–5183 (2014).

177 11. Taylor K. E., Stouffer, R. J. & G. A. Meehl, G. A. An overview of CMIP5 and the
178 experiment design. *Bull. Am. Meteorol. Soc.* **93**, 485–498 (2012).

179 12. <http://www2.cesm.ucar.edu/>

180 13. Wood, R., Bretherton C. S. On the relationship between stratiform low cloud cover and
181 lower-tropospheric stability. *J. Clim.* **19**, 6425–6432 (2006).

182 14. Bony, S., & Dufresne, J. L. Marine boundary layer clouds at the heart of tropical cloud
183 feedback uncertainties in climate models. *Geophys. Res. Lett.* **32**, L20806 (2005).

184 15. Soden, B. J. & Vecchi, G. A. The vertical distribution of cloud feedback in coupled
185 ocean-atmosphere models. *Geophys. Res. Lett.* **38**, L12704 (2011).

186 16. Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity traced to
187 atmospheric convective mixing. *Nature* **505**, 37-42 (2014).

188 17. Qu, X., Hall, A., Klein, S. A. & DeAngelis, A. M. Positive tropical marine low-cloud
189 cover feedback inferred from cloud-controlling factors. *Geophys. Res. Lett.* **42**, 7767-
190 7775 (2015).

191 18. Bretherton, C. S. & Blossey, P. N. Low cloud reduction in a greenhouse-warmed climate:
192 Results from Lagrangian LES of a subtropical marine cloudiness transition. *J. Adv.*
193 *Model. Earth Syst.* **6**, 91–114 (2014).

194 19. Qu, X., Hall, A., Klein, S. A. & Caldwell P. M., The strength of the tropical inversion
195 and its response to climate change in 18 CMIP5 models. *Clim Dyn* **45**, 375-396 (2015).

196 20. Sobel, A. H., Nilsson, J. & Polvani, L. M., The Weak Temperature Gradient
197 Approximation and Balanced Tropical Moisture Waves. *Journal of Atmospheric Sciences*
198 **58**, 3650-3665 (2001).

199 21. Seethala, C., Norris, J. R., & Myers, T. A. How Has Subtropical Stratocumulus and
200 Associated Meteorology Changed since the 1980s? *J. Climate* **28**, 8396-8410 (2015).

201 22. Norris, J. R. & Evan, A. T. Empirical Removal of Artifacts from the ISCCP and
202 PATMOS-x Satellite Cloud Records. *Journal of Atmospheric and Oceanic Technology*
203 **32**, 691-702 (2015).

204 23. Watanabe, M. *et al.* Contribution of natural decadal variability to global warming
205 acceleration and hiatus. *Nature Climate Change* **4**, 893-897 (2014).

206 24. Takahashi C. & Watanabe M. Pacific trade winds accelerated by aerosol forcing over the
207 past two decades. *Nature Climate Change* **6**, 768-772 (2016).

208 25. Stephens, G. L. *et al.* An update on Earth's energy balance in light of the latest global
209 observations. *Nature Geoscience* **5**, 691-696 (2012).

210 26. Smith, D. M., Allan, R. P., Coward, A. C., Eade, R., Hyder, P., Liu, C., Loeb, N. G.,
211 Palmer, M. D., Roberts, C. D. and Scaife, A. A. (2015), Earth's energy imbalance since
212 1960 in observations and CMIP5 models. *Geophys. Res. Lett.*, **42**: 1205-1213. doi:
213 10.1002/2014GL062669.

214 27. Santer, B. D. *et al.* Volcanic contribution to decadal changes in tropospheric temperature.
215 *Nature Geoscience* **7**, 185-189 (2014).

216 28. Estrada, F., Perron, P. & Martinez-Lopez, B. Statistically derived contributions of diverse
217 human influences to twentieth-century temperature changes. *Nature Geoscience* **6**, 1050-
218 1055 (2013).

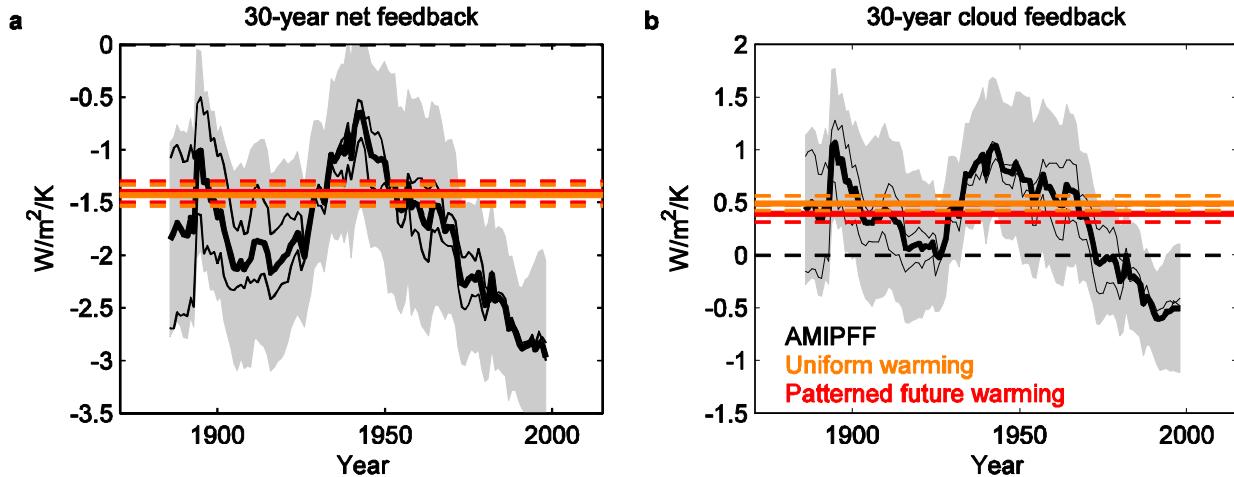
219

220

221

222 **Acknowledgements:**

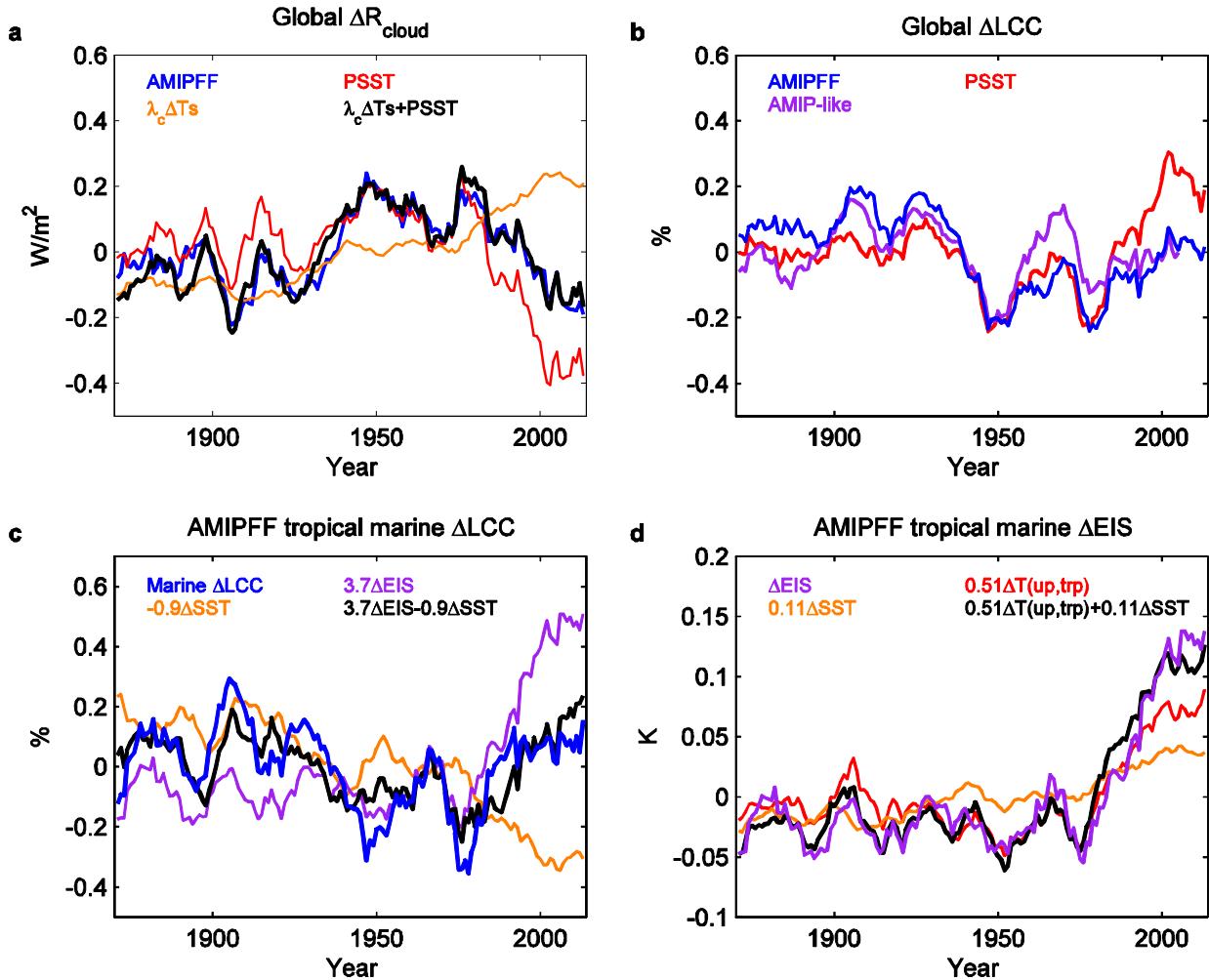
223 The authors thank Dr. J. Norris for providing the corrected ISCCP and PATMOS-x data, and
224 thank Drs. J. Gregory, A. Dessler, A. Hall, H. Su, X. Qu, C. Terai, and A. DeAngelis for
225 valuable discussions. This work was supported by the Regional and Global Climate Modeling
226 Program of the Office of Science at the U. S. Department of Energy (DOE) under the project
227 “Identifying Robust Cloud Feedbacks in Observations and Models” and was performed under the
228 auspices of DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-
229 07NA27344. IM Release #LLNL-JRNL-692260.


230 **Author contributions**

231 C. Z. performed the analysis. C. Z. and M. D. Z. designed the experiments. S. A. K. proposed
232 the cloud analyses. The paper was discussed and written by all authors.

233 **Competing financial interests**

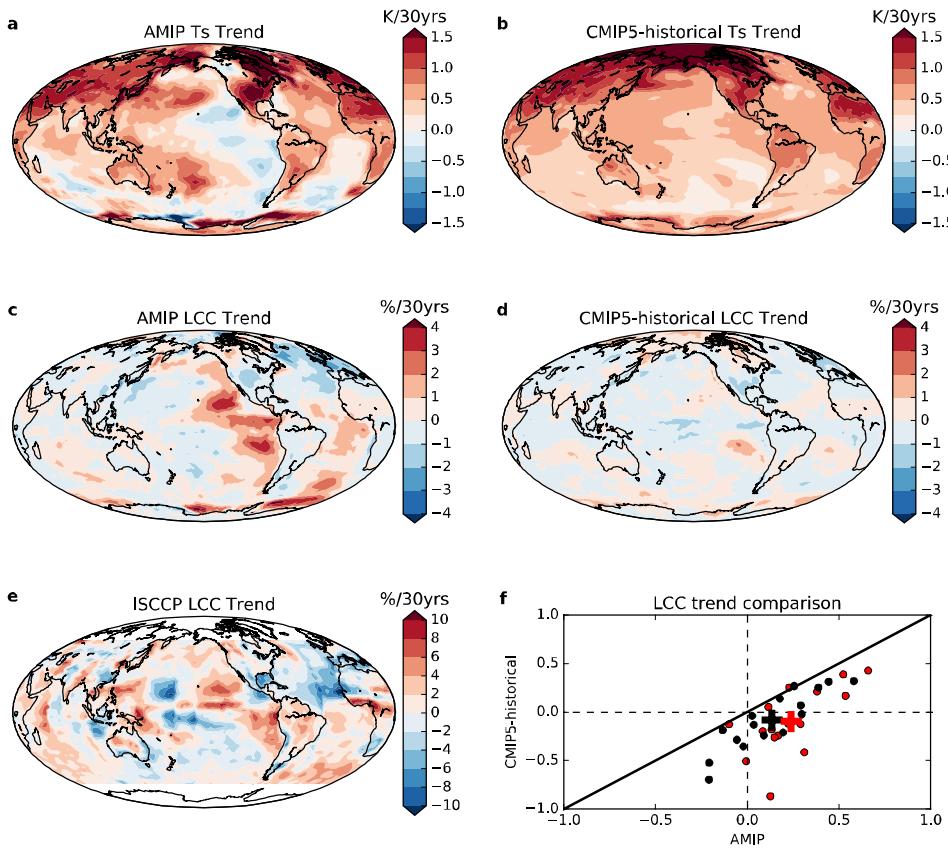
234 The authors declare no competing financial interests.


235

236 **Figure Captions**

237

238 Figure 1. Evolution of decadal net and cloud feedbacks from CAM5.3 simulations. (a) 30-year
 239 net feedback estimates from AMIPFF simulations, plotted at the mid-point of each 30-year
 240 period. Thin black lines are calculated from individual runs, and thick black lines are calculated
 241 from ensemble mean values. Horizontal solid lines denote the long-term cloud feedbacks
 242 computed from uniform (orange) and patterned (red) future warming experiments (see Methods).
 243 Dashed red/orange lines and grey shading denote 2σ uncertainty intervals. (b) Same as (a), but
 244 for the cloud feedback.


245

246

247 Figure 2. Evolution of selected 9-year moving averaged quantities from CAM5.3 simulations. (a)
 248 Global cloud-induced radiation anomaly in AMIPFF simulations (blue), its components due to
 249 anomalies in SST pattern (red) and global mean surface temperature (orange), and their sum
 250 (black). (b) Global low cloud cover anomalies (ΔLCC) in all simulations. (c) Tropical marine
 251 ΔLCC in AMIPFF simulations (blue), its components due to estimated inversion strength
 252 anomalies (ΔEIS) (purple), ΔSST (orange), and their sum (black). (d) Tropical marine ΔEIS in
 253 AMIPFF simulations (purple), its components due to $\Delta T(\text{up,trp})$ (red, see Methods), ΔSST
 254 (orange), and their sum (black).

255

256

257 Figure 3. Comparison of recent T_s and LCC trends in AMIP (1980-2005), CMIP5-historical
 258 (1980-2005), and satellite observations (1983-2005). (a-d) Ensemble mean surface temperature
 259 and LCC trend in AMIP and historical simulations. (e) LCC trend calculated from artifact-
 260 corrected ISCCP satellite data^{21,22}. Note that the color bar of (e) is different from (c-d). (f) AMIP
 261 LCC trends plotted against CMIP5-historical LCC trends, for tropical (red) and global (black)
 262 averages, respectively (%/30yrs). The solid black line is the equal-value line, and crosses denote
 263 model ensemble mean values.

264

265 **Methods**

266 To carry out the PSST experiment, we first calculate the monthly global surface skin
267 temperature anomalies $\Delta T_s(t)$ in AMIPFF experiments. In our uniform warming experiment, 1K
268 of uniform SST warming would increase the global surface temperature by ~ 1.1 K in CAM5.3, so
269 we subtract $\Delta T_s(t)/1.1$ from the historical SST for each month and each location, and use the
270 modified SST as boundary conditions. Then ΔT_s in the PSST experiment is near zero over the
271 whole period (Supplementary Figure 14), but the SST pattern anomalies are identical to those in
272 the AMIP simulations.

273 Additional experiments are designed to calculate cloud feedback under uniform and patterned
274 long-term global warming. First, we fix the SST and climate forcings at year 2000, and run for
275 16 years. Then we increase the SST by 4K uniformly and reset the initial conditions, and run for
276 another 16 years. Then the cloud feedback under uniform warming (λ_c) was calculated as the
277 ΔR_{cloud} difference normalized by surface temperature difference between the latter 15 years of
278 the two simulations. λ_c is close to the cloud feedback under patterned long-term warming (Fig.
279 1b), which is calculated with the same method, except that the SST of year 2000 is warmed by
280 the long-term warming pattern derived from the ensemble mean of abrupt4xCO₂ simulations
281 (Supplementary Figure 7).

282 Cloud-induced radiation anomalies (ΔR_{cloud}) are calculated by removing cloud masking effects
283 from cloud radiative effect anomalies using radiative kernels²⁹, where cloud radiative effect is
284 defined as the difference in upwelling radiation between clear- and all-sky scenes. LCC in
285 CAM5.3 simulations is calculated by the model using the model's level-by-level cloud fraction
286 field and its cloud overlap assumption. For AMIP and CMIP5-historical simulations, LCC is

287 approximated as the maximum cloud fraction between the surface and 680 hPa, which is useful
288 for qualitative comparisons^{30,9}.

289 To calculate decadal anomalies, we first calculate annual anomalies by removing the
290 climatological mean from annual mean values. Then a 9-year moving average is applied to filter
291 out interannual signals.

292 In Fig. 2, $\Delta T(\text{up, trp})$ is calculated as the surface temperature difference between SST averaged
293 over tropical strong ascent regions and SST averaged over the entire tropics at each time step.
294 Tropical strong ascent regions are defined as those with monthly 500 hPa vertical velocity
295 magnitude $|\omega_{500}|$ exceeding the median $|\omega_{500}|$ in regions with $\omega_{500} < 0$. The coefficients of ΔEIS
296 and ΔSST in Fig. 2(c) and of $\Delta T(\text{up, trp})$ and ΔSST in Fig. 2(d) are derived from multiple linear
297 regression.

298 Data and code availability. The CESM1.2.1-CAM5.3 source code was downloaded from the
299 CESM official website <http://www2.cesm.ucar.edu/>. The CAM5.3 simulation results and code
300 used for the analyses of this study are available from the corresponding author upon request. The
301 CMIP5-historical/AMIP data is available from the Earth System Grid - Center for Enabling
302 Technologies (ESG-CET) website, <http://pcmdi9.llnl.gov>.

303

304 **References**

305 29. Soden, B. J. *et al.* Quantifying climate feedbacks using radiative kernels. *J. Climate* **21**,
306 3504–3520 (2008).

307 30. Noda, A. T., & Satoh, M. Intermodel variances of subtropical stratocumulus
308 environments simulated in CMIP5 models, *Geophys. Res. Lett.* **41**, 7754–7761 (2014).

309

310

311

312

313

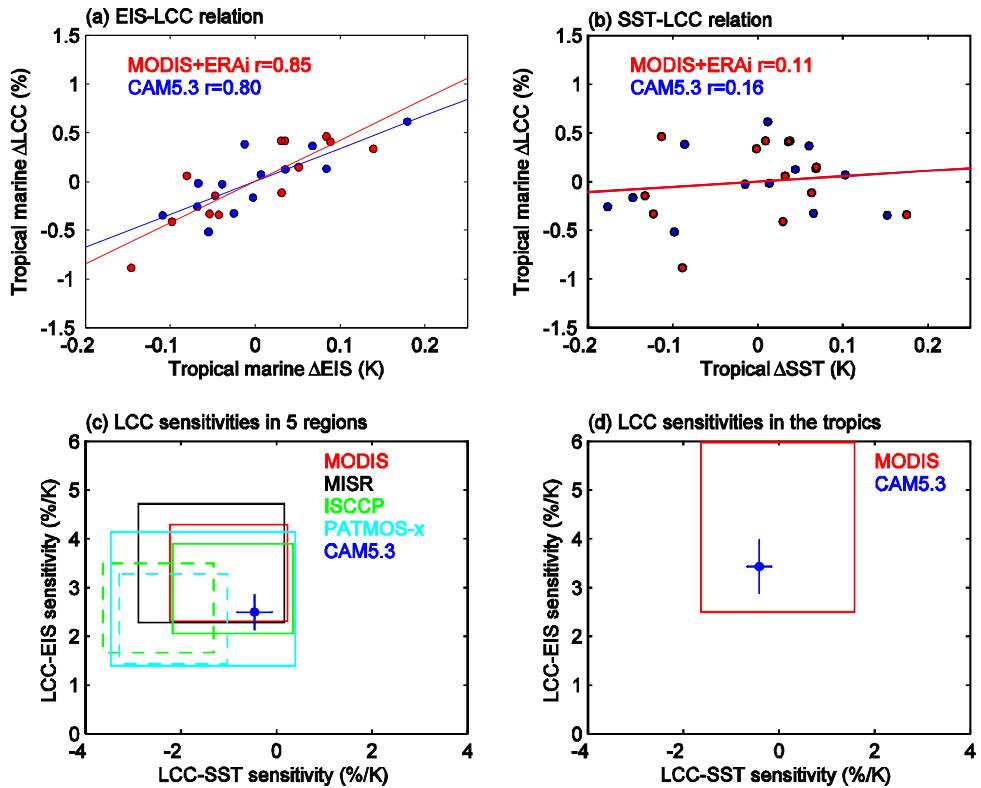
314

315 **Supplementary Information**

316 for

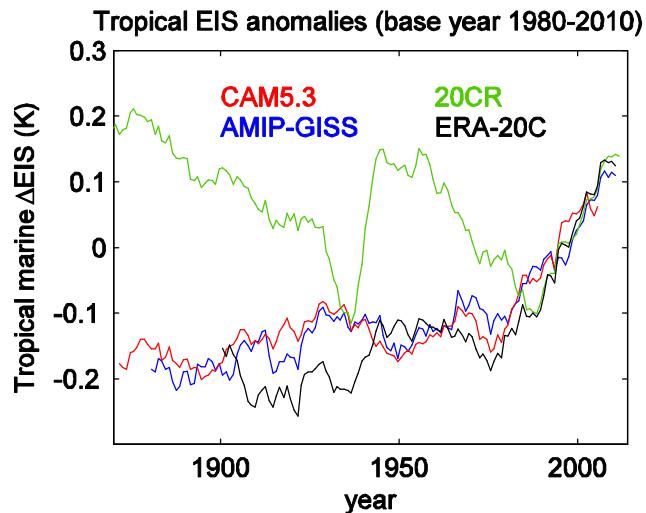
317 **Impact of decadal cloud variations on the Earth's energy budget**

318


319 Chen Zhou*, Mark D. Zelinka, and Stephen A. Klein

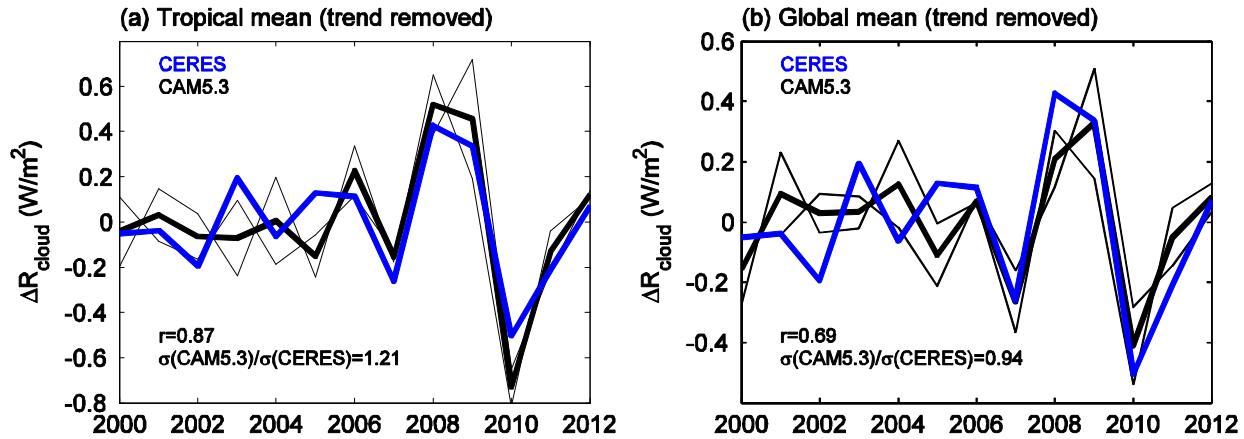
320 Lawrence Livermore National Laboratory, Livermore, CA, USA

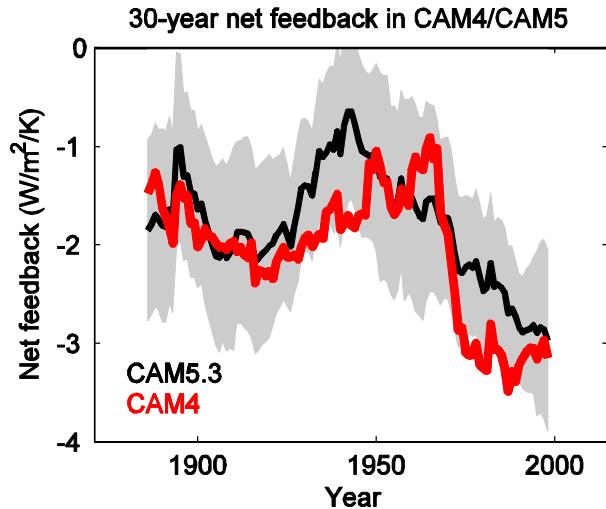
321 *zhou8@llnl.gov


322

323

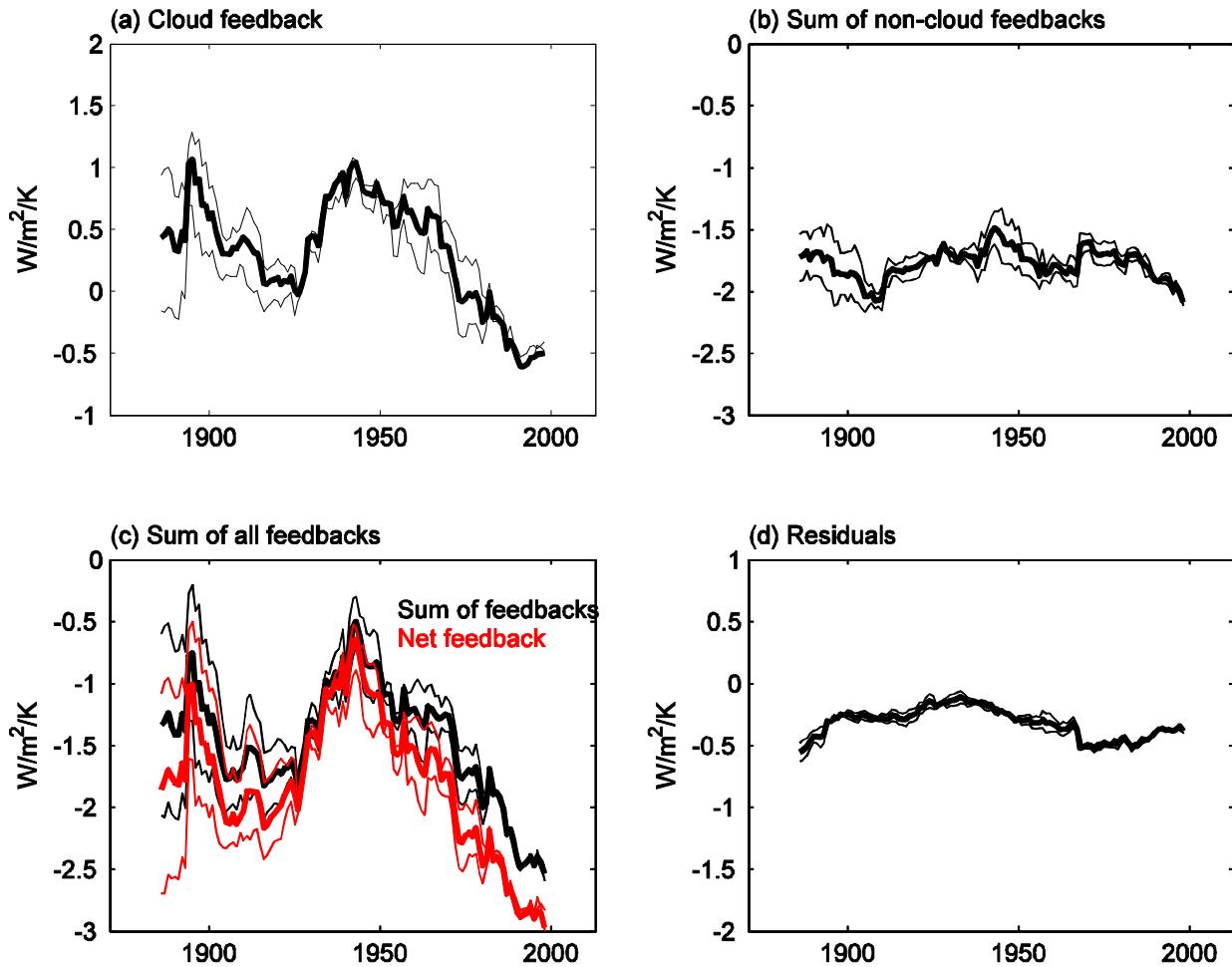
326 Supplementary Figure 1. Diagnosis of marine LCC sensitivity to major low cloud controlling
 327 factors in CAM5.3 AMIPFF simulation. (a) Relationship between tropical mean annual
 328 anomalies in marine EIS¹ and marine LCC between March 2000 and February 2013. In both
 329 CAM5.3 AMIPFF simulation (blue) and observations (red), tropical marine EIS anomalies are
 330 positively correlated with marine LCC anomalies. Observational EIS is calculated from ERA-
 331 interim data² using equation (3) of Qu et al. 2014³, and LCC is calculated from Terra MODIS
 332 level 3 data⁴. (b) Relationship between tropical mean annual anomalies in SST and marine LCC.
 333 (c) Sensitivity of LCC to EIS and SST in 5 subtropical low cloud regions defined by Qu et al.
 334 2014³. The sensitivities are calculated from multiple linear regression, and the boxes denote the
 335 uncertainty intervals calculated from observations. Since the artifacts of ISCCP and PATMOS-x
 336 are large during the 1980s and 1990s^{5,21}, values calculated from the full period of ISCCP and
 337 PATMOS-x are marked with dashed boxes, and the solid boxes for ISCCP and PATMOS-x are
 338 values calculated using data after 1996 and 1997, respectively. These observational values are
 339 from Qu et al. 2015⁷. (d) LCC sensitivity to EIS and SST over the whole tropical ocean,
 340 calculated from multiple linear regression of tropical marine LCC annual anomalies against
 341 marine EIS and SST annual anomalies. Based on these plots, we conclude that marine LCC
 342 sensitivities calculated from CAM5.3 are generally within the uncertainty interval of
 343 observations.


345


346

347 Supplementary Figure 2. Comparison of 9-year smoothed tropical marine EIS anomalies in
348 ERA-20C reanalysis⁸, 20CR reanalysis⁹, AMIP-GISS simulations (the only AMIP model
349 covering the whole 20th century), and our CAM5.3 AMIP-like simulations. The base period to
350 calculate anomalies is 1980-2010. We conclude CAM's simulation of increasing EIS trend
351 during the satellite era (1979-present) is in agreement with that of other available models. Prior
352 to the satellite era, EIS does not vary by more than by 0.2 K in 3 out of 4 available estimates
353 including that of CAM5.3.

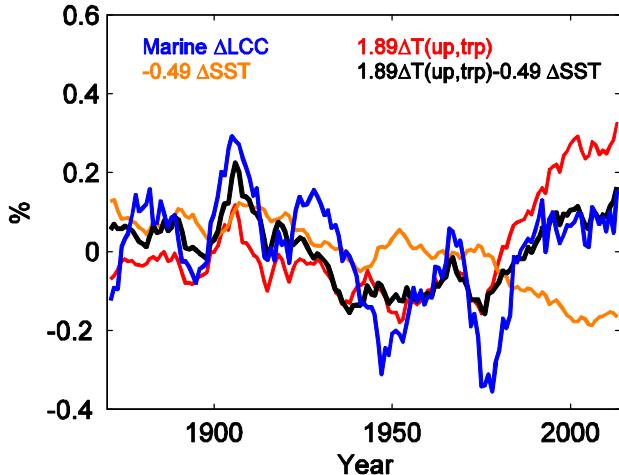
354


357 Supplementary Figure 3. Comparison of detrended ΔR_{cloud} in observations and CAM5.3
 358 AMIPFF simulations. The cloud masking effect in CERES cloud radiative effect is removed with
 359 ERA-Interim data and radiative kernels²⁹ following Dessler 2013¹¹. Thin black lines are
 360 calculated from individual runs, and thick black lines are calculated from ensemble mean values.
 361 Correlation coefficients between the CERES and CAM5.3 ΔR_{cloud} time series and the ratio of
 362 their standard deviations are displayed in the lower left corner of the plots. We conclude that
 363 CAM's simulation of interannual ΔR_{cloud} is in reasonable agreement with the satellite
 364 observations.

367

368 Supplementary Figure 4. Comparison of 30-year net feedback parameters in CAM4 and CAM5.3.
 369 Black solid line is calculated from the net TOA radiation and T_s anomalies averaged over the
 370 AMIPFF simulations, which is same as the black line in Fig. 1(a). Red line represents results
 371 calculated from an independent CAM4 AMIPf2000 experiment. CAM4¹² differs markedly from
 372 CAM5¹³ in nearly all of its physical parameterizations and thus can be considered to be the result
 373 of a mostly independent model. Although not perfect, there is general agreement between CAM4
 374 and CAM5.3 on the decadal variations in the net feedback, particularly for its more negative
 375 values after 1980.

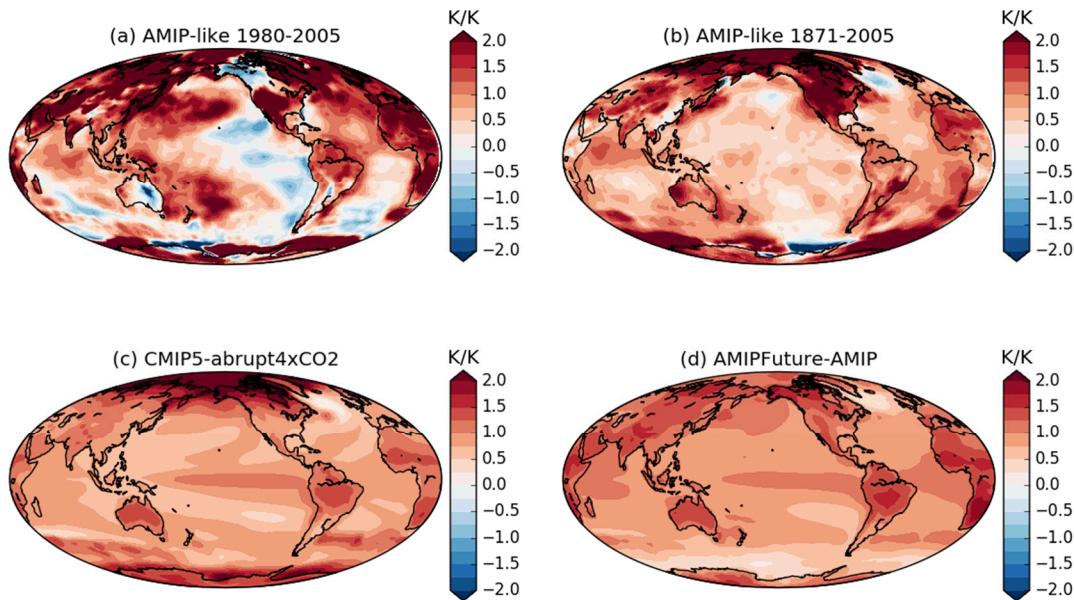
376

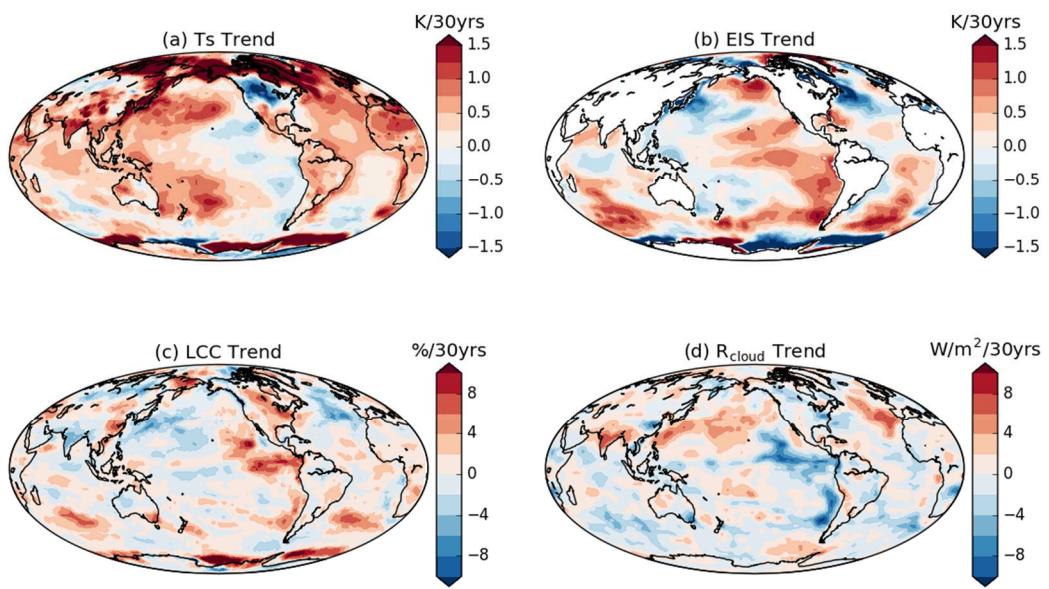

377

378 Supplementary Figure 5. Evolution of decadal cloud feedback and non-cloud feedbacks. (a) 30-
 379 year cloud feedback estimates from AMIPFF simulations. (b) Sum of Planck, lapse rate, water
 380 vapor, and surface albedo feedbacks. (c) Comparison of the sum of feedbacks calculated from
 381 kernels (black) and the net feedback calculated from TOA fluxes (red). (d) Difference between
 382 the net feedback calculated from TOA fluxes and the sum of feedbacks calculated from kernels.
 383 The residual term includes kernel errors, cross-field correlations. Clearly, the variance of cloud
 384 feedback is much larger than the non-cloud feedbacks, indicating the importance of decadal
 385 cloud feedback in driving variations in decadal net feedback.

386

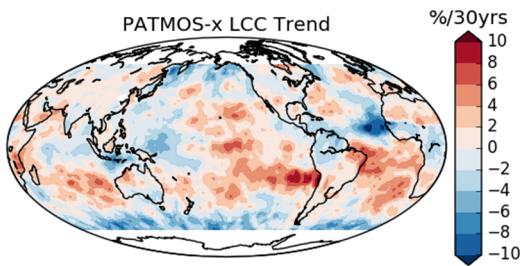
387


388


389
390

391 Supplementary Figure 6. Relationship between tropical marine ΔLCC (blue), $\Delta T(\text{up,trp})$ (red)
 392 and tropical ΔSST (orange), and the linear combination of $\Delta T(\text{up,trp})$ and ΔSST (black). All
 393 time series are ensemble mean values of 9-year moving averages from individual runs. The
 394 coefficients of $\Delta T(\text{up,trp})$ and ΔSST (black) are calculated by substituting the regression for EIS
 395 (Fig. 2d) as a function of $\Delta T(\text{up,trp})$ and ΔSST into the regression equation for ΔLCC (Fig. 2c).
 396 In doing so, one arrives at a relationship between ΔLCC and ΔSST and $\Delta T(\text{up,trp})$, that allows
 397 one to explore the relative influences on low cloud cover of the mean SST and the difference in
 398 SST between tropical ascent and descent regions. ΔLCC is well correlated with the linear
 399 combination of $\Delta T(\text{up,trp})$ and ΔSST (black) ($r=0.77$), moderately correlated with $\Delta T(\text{up,trp})$
 400 ($r=0.51$), and poorly correlated with ΔSST ($r=-0.06$). Therefore, the decadal changes in ΔLCC
 401 are controlled by both $\Delta T(\text{up,trp})$ and ΔSST , with the former playing the more important role.
 402 Please see Supplementary Text 1 for further discussion.

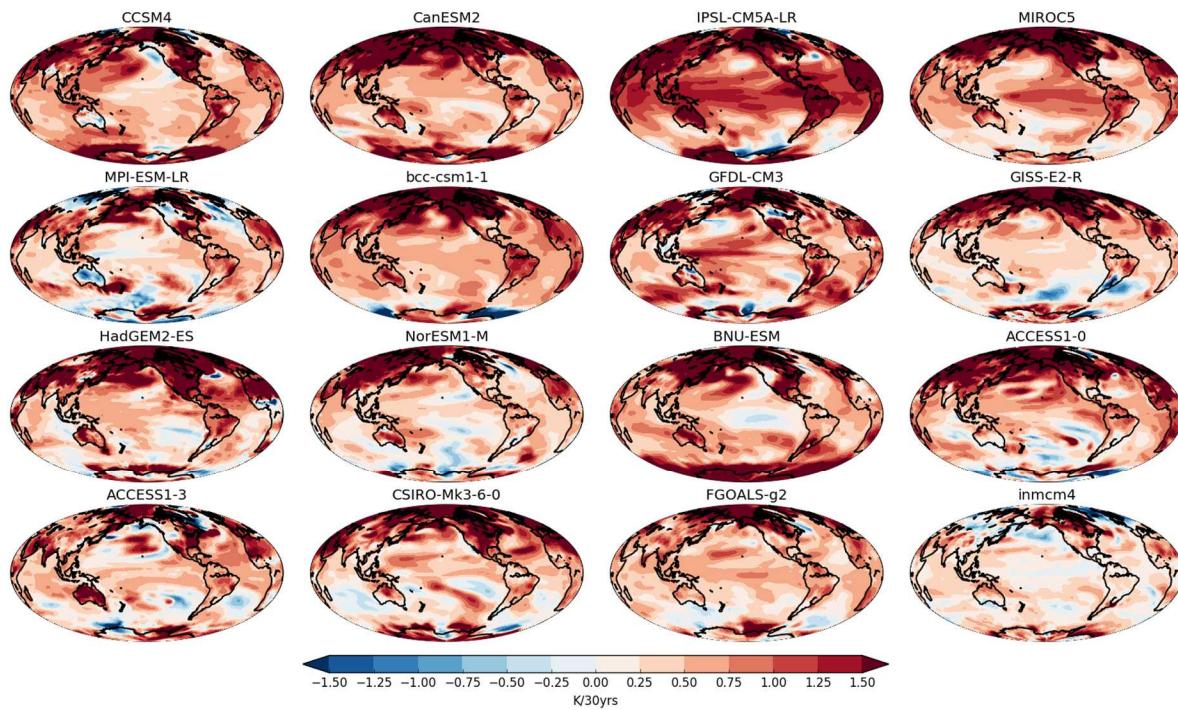
403
404
405
406


409 Supplementary Figure 7. Normalized surface temperature trend from the (a) AMIP-like
 410 simulation over the period 1980-2005, (b) AMIP-like simulation over the period 1871-2005, (c)
 411 ensemble mean CMIP5-abrupt4xCO₂ simulations over years 1 to 150 of the experiment, and (d)
 412 ensemble mean difference between AMIPFuture (AMIP plus a patterned future warming) and
 413 AMIP simulations. The local surface temperature anomalies are normalized by the global mean
 414 surface temperature change for better comparison, so the units are K/K. The spatial pattern of
 415 warming observed in the recent past (panel a) is significantly more spatially inhomogeneous than
 416 that expected for global warming over the next century (panels c and d).

417

418 Supplementary Figure 8. Spatial correspondence among trends in cloud-controlling factors, low
 419 cloud cover, and cloud-induced radiation anomalies. Trends in (a) surface temperature, (b) EIS,
 420 (c) LCC and (d) R_{cloud} in the AMIPFF experiment between 1980 and 2005. In regions where EIS
 421 increases, LCC increases and R_{cloud} decreases, supporting our physical mechanism.

422



423

424 Supplementary Figure 9. LCC trend for the years 1983-2005 calculated from corrected
425 PATMOS-x data^{5,21}. Although not in perfect agreement, PATMOS-x and ISCCP (Figure 3e) data
426 agree on the increases in LCC over the tropical Eastern Pacific, Southern Indian and Southern
427 Atlantic oceans.

428

429

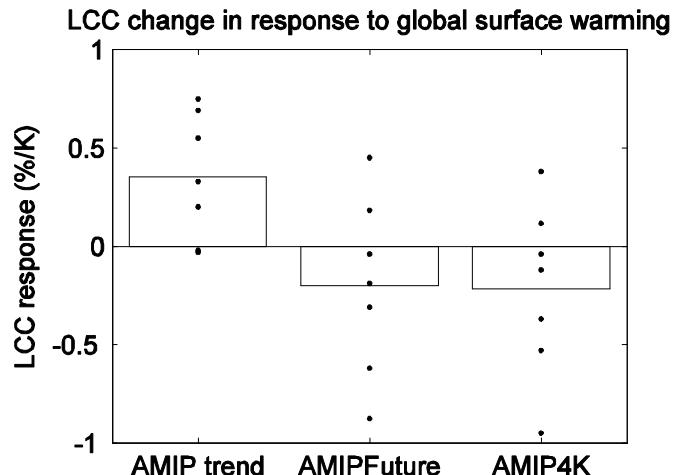
430

431 Supplementary Figure 10. Surface temperature trend in CMIP5-historical simulations during
 432 1980-2005, divided by the global mean surface temperature trend (K/30yrs). None of these
 433 coupled models show as strong temperature decrease in the tropical Eastern Pacific Ocean as in
 434 AMIP simulations.

435

436

437


438

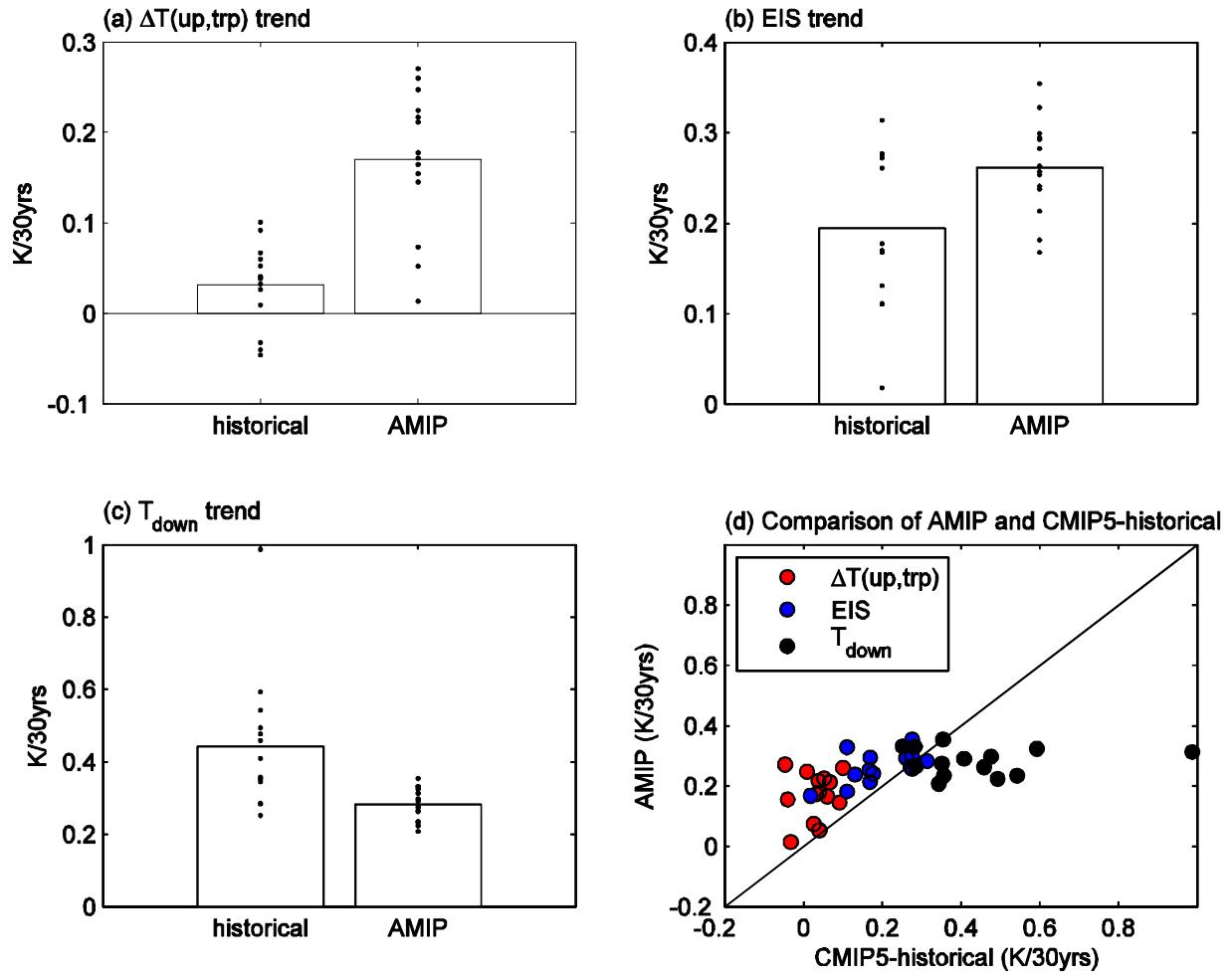
439

440

441

442

443

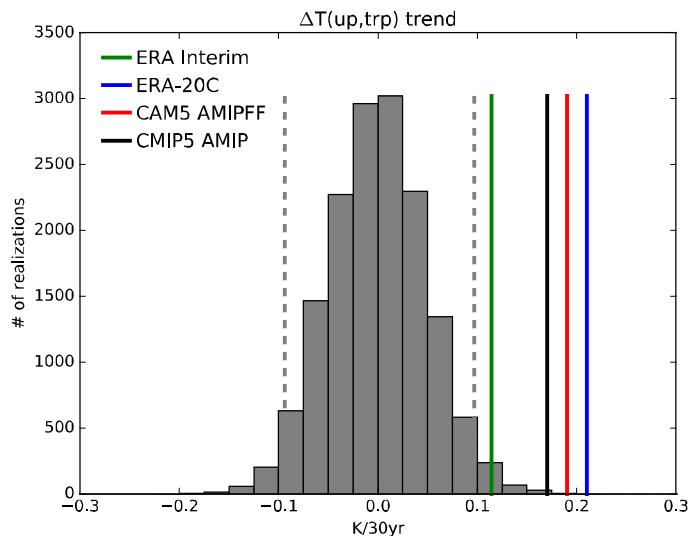

444 Supplementary Figure 11. Responses of global mean LCC to changes in global mean surface
 445 temperature, in AMIP, AMIP-Future and AMIP4K simulations. Left column is calculated from
 446 AMIP trend (1980-2005), middle column is calculated from the difference between AMIP-future
 447 (AMIP plus a patterned future warming) and AMIP, and right column is calculated from the
 448 difference between AMIP-4K (AMIP plus a 4K uniform warming) and AMIP. LCC is calculated
 449 from the ISCCP simulator^{14,15}, $LCC = C_{680-1000\text{hPa}} / (1 - C_{0-680\text{hPa}})$. LCC calculated from ISCCP
 450 simulator is more accurate than the maximum value of cloud fraction between 680 and surface,
 451 but ISCCP simulator results are only available for a small subset of CMIP5-historical models, so
 452 we use the latter method in Fig. 3^{16,9}. Models generally predict increased LCC in response to the
 453 warming pattern of the last 30 years in contrast to that predicted for global warming.

454

455

456

457

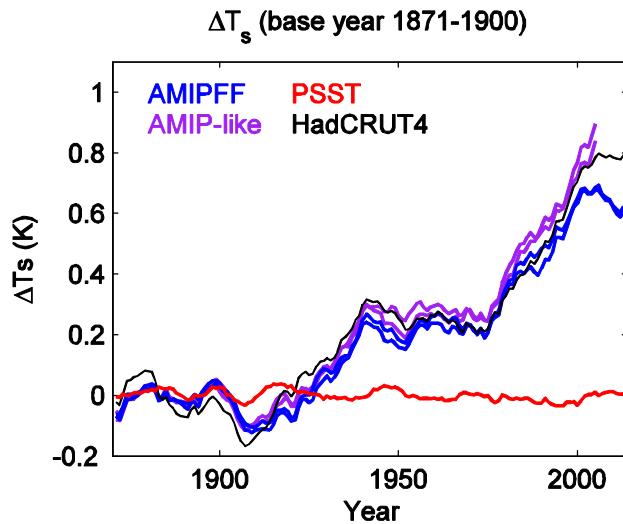

458

459 Supplementary Figure 12. Comparison of trends over the period 1980-2005 in AMIP and
 460 CMIP5-historical simulations. (a) SST difference between tropical ascent regions and the
 461 tropical mean values. (b) Tropical marine EIS trend. (c) SST trend in tropical descent regions,
 462 defined as those with monthly 500 hPa vertical velocity magnitude $|\omega_{500}|$ exceeding the median
 463 $|\omega_{500}|$ in regions with $\omega_{500}>0$. (d) Trends in (red) $\Delta T(\text{up,trp})$, (blue) EIS, and (black) T_{down} in
 464 CMIP5-historical simulations plotted against those in AMIP simulations. EIS and $\Delta T(\text{up,trp})$
 465 changes in AMIP simulations are systematically larger than those in CMIP5-historical
 466 simulations, and T_{down} changes in AMIP simulations are smaller than those in CMIP5-historical
 467 simulations in most models. Therefore, the LCC trend in AMIP is systematically larger than in
 468 CMIP5-historical.

469

470

471



472

473 Supplementary Figure 13. Comparing modeled and observed tropical SST trends. Histogram of
 474 $\Delta T(\text{up,trp})$ trends from all overlapping 26-year periods in piControl simulations. Dashed gray
 475 lines indicate the 2.5th and 97.5th percentiles. The 1980-2005 $\Delta T(\text{up,trp})$ trends determined
 476 using AMIP SSTs and ω_{500} from ERA Interim (green), from ERA-20C (blue), from CAM5
 477 AMIPFF simulations (red), and from CMIP5 AMIP simulations (black, averaged over all
 478 simulations) are within but on the extreme tail of the piControl trend distribution. Please see
 479 Supplementary Text 2 for further discussion.

480

481

482

483 Supplementary Figure 14. 9-year smoothed global surface temperature anomalies. The surface
484 temperature in AMIP-like and AMIPFF simulations increases significantly, but remains roughly
485 unchanged in the PSST simulation. ΔT_s in AMIP-like is consistent with HadCRUT4
486 observations¹⁸. ΔT_s in AMIPFF simulations increases less than in AMIP-like simulations
487 because the CO₂ concentration remains unchanged in AMIPFF simulations.

488

489

490 Supplementary Table 1. List of models used in AMIP and CMIP5-historical simulations

Climate Center	CMIP5-historical	CMIP5-AMIP
ACCESS	ACCESS1-0	ACCESS1-0
ACCESS	ACCESS1-3	ACCESS1-3
BCC	bcc-csm1-1	bcc-csm1-1*
GCESS/BNU	BNU-ESM	BNU-ESM
CCC	CanESM2	CanAM4*
NCAR	CCSM4	CCSM4*
CSIRO/QCCCE	CSIRO-Mk3-6-0	CSIRO-Mk3-6-0
LASG/IAP	FGOALS-g2	FGOALS-g2
GISS	GISS-E2-R	GISS-E2-R
GFDL	GFDL-CM3	GFDL-CM3
MOHC	HadGEM2-ES	HadGEM2-A*
INM	inmcm4	inmcm4
IPSL	IPSL-CM5A-LR	IPSL-CM5A-LR
MIROC	MIROC5	MIROC5
MPI	MPI-ESM-LR	MPI-ESM-LR*
NCC	NorESM1-M	NorESM1-M
MRI		MRI-CGCM3*

491 Note: The first ensemble member (r1i1p1) from each model is used, except that we use r7i1p1
492 from AMIP-CCSM4 because it is first member with *clisccp* output available.

493 The sign * denotes models used in Supplementary Figure 11.

494

495

496

497

498 **Supplementary Text 1. Physical Mechanisms Driving Decadal Changes in Low Cloud**
499 **Cover**

500 Here we present in greater detail the physical mechanisms that drive the changes in tropical
501 low cloud cover (LCC) over the 20th century.

502 Variations in LCC over the subsidence regions of the tropical oceans on seasonal and inter-
503 annual time-scales have been observed to be highly sensitive to changes in the strength of the
504 temperature inversion that caps the planetary boundary layer^{19,1}. This sensitivity arises physically
505 because a stronger temperature inversion limits the rate of mixing between the boundary layer
506 and the free troposphere above. With less mixing, the drying and warming effects of mixing in
507 free-tropospheric air are reduced with the consequence that the boundary layer is colder, moister,
508 and hence more cloudy. Large-eddy simulations have confirmed the mechanisms of this
509 observed sensitivity^{20,21}. Thus, it is expected that LCC variations on decadal time-scales would
510 also be sensitive to inversion strength²². The tropical inversion strength essentially measures the
511 warmth of free tropospheric temperatures relative to that of the boundary layer; thus, it is
512 essential to understand what controls these temperatures and their relationships to tropical SST.

513 To a first approximation, free tropospheric temperatures throughout the tropics are most
514 sensitive to SST in tropical ascent (i.e., deep convective) regions. This is because the moist
515 adiabat of the tropical free troposphere is controlled by the moist static energy of the rising air in
516 deep convective clouds of tropical ascent regions and this moist static energy is closely related to
517 the local SST. Thus, if SST in tropical ascent regions increases, there will be free tropospheric
518 warming in tropical ascent regions which atmospheric dynamics will spread to free tropospheric
519 descent regions through the “weak-temperature gradient” approximation²⁰. In absence of SST
520 changes in the tropical descent regions, the increase in free tropospheric temperatures will
521 increase the lower tropospheric inversion strength in the tropical descent regions and hence
522 increase LCC in tropical descent regions. On the other hand, if SST in tropical descent regions
523 decreases without any change in SST in tropical ascent regions, the boundary layer air in tropical
524 descent regions will cool without any changes to free tropospheric temperatures. In this situation,
525 the inversion strength increases causing LCC to increase. And if difference between SST in the
526 tropical ascent and descent regions remains fixed, then there would be no change in inversion
527 strength – following directly from the definition of EIS¹ – and hence LCC would remain fixed.
528 This is the primary physical mechanism by which LCC is so very sensitive to variations in the
529 SST patterns, or more specifically the difference in SST between tropical ascent and descent
530 regions.

531 While this is the primary mechanism at work relating variations in the SST pattern with the
532 tropical inversion strength and LCC, we account for two additional secondary effects that happen
533 when the mean SST in the tropics changes but the SST difference between the tropical ascent
534 and descent regions remains fixed. First, as shown by LES studies^{20,21} and supported by
535 observational analyses^{3,7,24}, LCC decreases when SST increases and EIS remains fixed.

536 Physically, this is usually explained as more efficient drying of the boundary layer as the
537 temperature rises by circulations at either turbulent¹⁸ or larger¹⁶ scales. This is why our study –
538 following past studies^{3,7,24} – predicts LCC variations with a multi-linear model involving two
539 parameters, EIS and SST (Fig. 2c). We note that CAM is consistent with the observed
540 sensitivities of LCC to EIS and SST (Supplementary Figure 1). Second, for reasons that are not
541 yet clear, climate models simulate free tropospheric warming that is slightly greater than that
542 predicted from moist adiabatic warming in tropical ascent regions. (Note that “moist adiabatic
543 warming” here is defined as that resulting from an increase in surface air moist static energy that
544 comes purely from an air temperature increase identical to that of the underlying SST with no
545 change in relative humidity.) This enhanced free tropospheric warming was shown to be a
546 robust, but unexplained feature, of climate models by Qu et al.²⁷ in their analysis of aqua-planet
547 experiments with uniform warming. This is why we include the mean SST as an additional
548 predictor in the explanation of EIS variations (Fig. 2d). We find that EIS increases with the mean
549 SST, like that found in the models analyzed by Qu et al.²⁷. Inclusion of these secondary effects
550 does not change the dominance of the SST difference between tropical ascent and descent
551 regions in driving decadal variations in EIS and LCC, although the inclusion of a dependency on
552 the mean temperature induces a general decrease in LCC and a slight increase in EIS over the
553 20th century (Supplementary Figure 6 and Fig. 2d).

554 Thus, these secondary effects, while helpful in quantitatively explaining the century time-scale
555 variations in EIS and LCC, do not alter the main explanation. To repeat the main explanation,
556 fluctuations in the pattern of warming – or more specifically the difference in warming between
557 tropical ascent and descent regions – causes fluctuations in inversion strength and LCC and
558 hence the radiation budget, which leads to fluctuations in the decadal cloud (and total) feedback.
559 Because the recent warming pattern is distinctly non-uniform, with greater warming in tropical
560 ascent regions and relative cooling in tropical descent regions, the decadal cloud feedback over
561 the period 1980-2005 is negative and deviates strongly from the positive feedback under long-
562 term warming pattern.

563

564 **Supplementary Text 2. Assessing the Ability of Coupled Climate Models to Simulate the**
565 **SST Trends Observed over 1980-2005**

566 An important question is whether the systematic differences shown in Figure 3f arise because
567 coupled models are incapable of simulating a warming pattern like that observed between 1980-
568 2005 or because they can, but just didn’t happen to do it in years 1980-2005 of the historical
569 runs.

570 The observed SST trend pattern over the 26-year period 1980-2005 is an unknown
571 combination of forced and unforced changes. Our null hypothesis is that the trend pattern is
572 dominated by internal variability. An alternative hypothesis is that the SST trend pattern is

573 primarily forced and that coupled climate models cannot reproduce it because of model
574 deficiencies and/or incorrect imposed forcing.

575 While it is not possible to rule out forcing as contributing to the observed pattern, we can
576 determine whether unforced coupled models are capable of simulating the observed pattern. To
577 do so, we compute all possible 26-year SST trends in fully coupled piControl runs of CMIP5
578 models. If we could find trends that match those observed between 1980 and 2005, we could
579 conclude that (1) models are capable of reproducing the observed SST trends but they just
580 happened to not do so during the AMIP period and (2) that the trend can emerge solely due to
581 internal variability and does not require forcing.

582 Because it is the primary driver of tropical mean EIS anomalies and hence LCC anomalies
583 (Fig. 2d), we compare modeled and observed trends in $\Delta T(\text{up, trp})$ – the difference between the
584 SST in tropical ascent regions and the tropical mean SST. In Supplementary Figure 13, we show
585 the histogram of $\Delta T(\text{up, trp})$ trends from all overlapping 26-year periods in all available piControl
586 simulations with the necessary output. The 1980-2005 $\Delta T(\text{up, trp})$ trends determined using AMIP
587 SSTs and ω_{500} from ERA Interim (green), ERA-20C (blue), from CAM5 AMIPFF simulations
588 (red), and from CMIP5 AMIP simulations (black, averaged over all simulations) are within but
589 clearly on the tail of the distribution, exceeding the 97.5th percentile of all possible piControl
590 trends. Specifically, out of 15,186 total piControl $\Delta T(\text{up, trp})$ trends, only 1 exceeds the AMIP
591 trend derived using ω_{500} from ERA-20C or CAM5 AMIPFF, 8 exceed the AMIP trend derived
592 using ω_{500} from CMIP5 AMIP, and 214 exceed the AMIP trend derived using ω_{500} from ERA-
593 Interim. These results suggest that an increase in SST gradient between ascent regions and the
594 rest of the tropics that is as large as observed over 1980-2005 occurs very rarely (1% of the time
595 or less) in unforced simulations.

596 If the models accurately capture or overestimate unforced internal variability, then we
597 conclude that the observed trend pattern is largely incompatible with pure internal variability. In
598 this case, the observed pattern must be partly forced, and the systematic model-observation
599 differences in Figure 3f occur because of the models systematically having an incorrect forcing
600 or SST response to forcing. Even if the models had correct forcing and SST response to forcing,
601 internally-generated trends in coupled historical simulations could still occur asynchronously
602 with those in nature and lead to these systematic differences, but lack of synchronization alone
603 cannot account for the systematic differences.

604 If, however, the models collectively underestimate internal variability, then the possibility
605 remains that the observed SST trend is purely due to internal variability but that models are
606 incapable of simulating it. In this case, the systematic differences in Figure 3f occur because of
607 (a) the models systematically having an incorrect forcing or SST response to forcing, or (b)
608 internally-generated trends in coupled historical simulations being of insufficient magnitude
609 compared with those in nature, or (c) some combination of (a) and (b).

610 In summary, unforced coupled models are largely incapable of reproducing the spatial pattern
611 of the observed SST trend during 1980-2005. Based on this analysis, we conclude that the
612 systematic differences in Figure 3f cannot be explained purely by lack of synchronization
613 between internally-generated trends in coupled historical simulations and those occurring in
614 nature. This implies that the 1980-2005 SST trend pattern is partly forced, with systematic
615 model-observation differences due to (a) errors in the prescribed external forcing in CMIP5-
616 historical simulations, and/or (b) errors in the models' responses to historical forcings. Highly
617 uncertain aerosol forcing, which has been shown to partially contribute to the SST trend pattern
618 during recent decades^{28,24}, may play a role in model-observation SST trend differences. If,
619 however, models collectively underestimate internal variability on this timescale, the possibility
620 remains that the pattern was an unusual natural fluctuation and that models are incapable of
621 simulating it.

622 Finally, we note that our paper's conclusion regarding climate sensitivity does not depend on
623 whether the recent SST trend pattern is primarily induced by natural variability or by regional
624 climate forcings: Long-term feedback and climate sensitivity are defined with respect to CO₂-
625 induced global warming (which is relatively spatially uniform according to climate models and
626 the observed SST trend during 1871-2013), so feedbacks and climate sensitivity calculated from
627 the recent period would still likely be biased despite being forced. Indeed, an alternative to
628 "forcing efficacies" for explaining the apparent dependence of warming on forcing agent could
629 be that different forcings actuate feedbacks of different strength because they induce different
630 surface temperature anomaly patterns.

631

632 **References for supplementary**

- 633 1. Wood, R., Bretherton C. S. On the relationship between stratiform low cloud cover and
634 lower-tropospheric stability. *J. Clim.* **19**, 6425–6432 (2006).
- 635 2. Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data
636 assimilation system. *Quarterly Journal of the Royal Meteorological Society* **137**, 553-597
637 (2011).
- 638 3. Qu, X., Hall, A., Klein, S. A., & Caldwell, P. M. On the spread of changes in marine low
639 cloud cover in climate model simulations of the 21st century. *Clim Dyn* **42**, 2603–2626
640 (2014).
- 641 4. Platnick, S. et al. The MODIS cloud products: Algorithms and examples from Terra.
642 *IEEE Trans. Geosci. Remote Sens.* **41**, 459–473 (2003).
- 643 5. Norris, J. R. & Evan, A. T. Empirical Removal of Artifacts from the ISCCP and
644 PATMOS-x Satellite Cloud Records. *Journal of Atmospheric and Oceanic Technology*
645 **32**, 691-702 (2015).
- 646 6. Seethala, C., Norris, J. R., & Myers, T. A. How Has Subtropical Stratocumulus and
647 Associated Meteorology Changed since the 1980s? *J. Climate* **28**, 8396-8410 (2015).

648 7. Qu, X., Hall, A., Klein, S. A. & DeAngelis, A. M. Positive tropical marine low-cloud
649 cover feedback inferred from cloud-controlling factors. *Geophysical Research Letters* **42**,
650 7767-7775 (2015).

651 8. <http://www.ecmwf.int/en/research/climate-reanalysis/era-20c/>

652 9. Compo, G.P. *et al.* The Twentieth Century Reanalysis Project. *Quarterly J. Roy.*
653 *Meteorol. Soc.* **137**, 1-28 (2011).

654 10. Soden, B. J. *et al.* Quantifying climate feedbacks using radiative kernels. *J. Clim.* **21**,
655 3504–3520 (2008).

656 11. Dessler, A. E. Observations of Climate Feedbacks over 2000-10 and Comparisons to
657 Climate Models. *Journal of Climate* **26**, 333-342 (2013).

658 12. Neale, R. B. *et al.* The Mean Climate of the Community Atmosphere Model (CAM4) in
659 Forced SST and Fully Coupled Experiments. *J. Clim.* **26**, 5150-5168 (2013).

660 13. Neale, R. B. *et al.* (2010), *Description of the NCAR Community Atmosphere Model (CAM*
661 *5.0)*, *NCAR Tech. Note NCAR/TN-486+STR*, 282 pp., (Natl. Cent. for Atmos. Res.,
662 Boulder, Colo., 2010).

663 14. Klein, S. A. & Jakob, C. Validation and sensitivities of frontal clouds simulated by the
664 ECMWF model. *Monthly Weather Review* **127**, 2514-2531 (1999).

665 15. Webb, M., Senior, C., Bony, S. & Morcrette, J. J. Combining ERBE and ISCCP data to
666 assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models.
667 *Climate Dynamics* **17**, 905-922 (2001).

668 16. Noda, A. T., & Satoh, M. Intermodel variances of subtropical stratocumulus
669 environments simulated in CMIP5 models, *Geophys. Res. Lett.* **41**, 7754–7761 (2014).

670 17. Zhou, C., Zelinka, M. D., Dessler, A. E. & Klein, S. A. The relationship between
671 interannual and long-term cloud feedbacks. *Geophys. Res. Lett.* **42**, 10463–10469 (2015).

672 18. Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. Quantifying uncertainties in
673 global and regional temperature change using an ensemble of observational estimates:
674 The HadCRUT4 data set. *J. Geophys. Res.* **117**, D08101 (2012).

675 19. Klein, S. A. & Hartmann D. L. The seasonal cycle of low stratiform clouds. *J. Clim.* **6**,
676 1587-1606 (1993).

677 20. Bretherton, C. S., Blossey, P. N. & Jones, C. R. Mechanisms of marine low cloud
678 sensitivity to idealized climate perturbations: A single-LES exploration extending the
679 CGILS cases. *J. Adv. Model. Earth Syst.* **5**, 1942-2466 (2013).

680 21. van der Dussen, J. J., de Roode, S. R., Gesso, S. Dal & Siebesma, A. P. An LES model
681 study of the influence of the free tropospheric thermodynamic conditions on the
682 stratocumulus response to a climate perturbation. *J. Adv. Model. Earth Syst.* **7**, 1942-2466
683 (2015).

684 22. Clement, A. C., Burgman, R. & Norris, J. R. Observational and Model Evidence for
685 Positive Low-Level Cloud Feedback. *Science* **325**, 460-464 (2009).

686 23. Sobel, A. H., Nilsson, J. & Polvani, L. M., The Weak Temperature Gradient
687 Approximation and Balanced Tropical Moisture Waves. *Journal of Atmospheric Sciences*
688 **58**, 3650-3665 (2001).

689 24. Myers, T. A. & Norris, J. R. Reducing the uncertainty in subtropical cloud feedback.
690 *Geophys. Res. Lett.* **43**, 2144–2148 (2016).

691 25. Bretherton, C. S. & Blossey, P. N. Low cloud reduction in a greenhouse-warmed climate:
692 Results from Lagrangian LES of a subtropical marine cloudiness transition. *J. Adv.*
693 *Model. Earth Syst.* **6**, 91–114 (2014).

694 26. Sherwood, S. C., Bony, S. & Dufresne, J.-L. Spread in model climate sensitivity traced to
695 atmospheric convective mixing. *Nature* **505**, 37-42 (2014).

696 27. Qu, X., Hall, A., Klein, S. A. & Caldwell P. M., The strength of the tropical inversion
697 and its response to climate change in 18 CMIP5 models. *Clim Dyn* **45**, 375-396 (2015).

698 28. Watanabe, M. *et al.* Contribution of natural decadal variability to global warming
699 acceleration and hiatus. *Nature Climate Change* **4**, 893-897 (2014).

700 29. Takahashi C. & Watanabe M. Pacific trade winds accelerated by aerosol forcing over the
701 past two decades. *Nature Climate Change* **6**, 768-772 (2016).

702

703

704

705