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Abstract: The value of improving wind power forecasting accuracy at different electricity 11 
market operation timescales was analyzed by simulating the IEEE 118-bus test system as 12 
modified to emulate the generation mixes of the Midcontinent, California, and New England 13 
independent system operator balancing authority areas. The wind power forecasting 14 
improvement methodology and error analysis for the data set were elaborated. Production cost 15 
simulation was conducted on the three emulated systems with a total of 480 scenarios 16 
considering the impacts of different generation technologies, wind penetration levels, and wind 17 
power forecasting improvement timescales. The static operational flexibility of the three systems 18 
was compared through the diversity of generation mix, the percentage of must-run base-load 19 
generators, as well as the available ramp rate and the minimum generation levels. The dynamic 20 
operational flexibility was evaluated by the real-time upward and downward ramp capacity. 21 
Simulation results show that the generation resource mix plays a crucial role in evaluating the 22 
value of improved wind power forecasting at different timescales. In addition, the changes in 23 
annual operational electricity generation costs were mostly influenced by the dominant resource 24 
in the system. Finally, the impacts of pumped-storage resources, generation ramp rates, and 25 
system minimum generation level requirements on the value of improved wind power 26 
forecasting were also analyzed. 27 
 28 
Keywords: Wind power integration; wind power forecasting; grid flexibility; ramp capability; 29 
operation timescales; storage 30 
 31 
 32 

1. Introduction 33 
 34 
The variability and uncertainty of wind power can require changes to power system operating 35 
procedures as increasing amounts of wind generation are incorporated into the generation mix 36 
[1]. With increased investments in wind power fueled by state renewable portfolio standards [2] 37 
and declining wind power costs [3, 4], the electric grids in the United States are starting to face 38 
operational challenges. One of the most efficient approaches to mitigating the negative impacts 39 
of wind power on system operations is to incorporate short-term wind power forecasting. With 40 
the application of new statistical and machine learning methodologies, as well as advancements 41 
in numerical weather prediction (NWP) models, the accuracy of wind power forecasting has 42 
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been improved significantly in recent years. For example, the day-ahead (DA in tables) wind 1 
power forecasting mean absolute error (MAE) for a 100-MW nameplate capacity wind power 2 
plant has been reduced from 12% in 2006 to 10% in 2015, and the hour-ahead wind power 3 
forecasting MAE of the same site has been reduced from 12% in 2006 to 7% in 2015 [5]. A 4 
general review of the state of the art in the short-term prediction of wind power is shown in [6]. 5 
 6 
A plethora of wind power forecasting techniques currently exist, including NWP models, 7 
statistical models, machine learning methods, and space–time trajectories [7–10]. The NWP 8 
approach is primarily used to forecast wind speeds multiple hours to days ahead for given sites, 9 
and the wind speed is converted to wind power based on the wind turbine’s power output curve 10 
[11–14]. The statistical models and machine learning methods attempt to adjust the relationships 11 
among a set of inputs, including the NWP model output and other meteorological data, and past 12 
measurements of the wind power output at a given location [15–17]. A recent trend in wind 13 
power forecasting is the emergence of probabilistic forecasting approaches, which are distinct 14 
from the traditional point forecasting approach in that the latter provides only a single estimated 15 
value (which is often the most likely outcome) for a given look-ahead horizon, whereas the 16 
former can provide probabilistic information about future events [18–20]. The trajectory method 17 
generalizes probabilistic forecasting by accounting for spatiotemporal dependencies [10]. In 18 
recent years, wind power ramp forecasting, which focuses on improving forecasts related to 19 
extreme events in the form of large power output variations, has attracted growing interest in the 20 
wind power forecasting community [21]. 21 
 22 
Recent research shows that standard wind power forecasts can be improved by 30% with 23 
advanced machine learning techniques [22], and the trend of expecting more accurate forecasts is 24 
expected to continue as wind power penetration rates increase; however, it is not clear how the 25 
improved accuracy will impact the operation of electric grids. It is difficult to precisely gauge the 26 
value attributed to a certain extent of wind forecast improvements because the relationship 27 
depends on multiple factors, such as market structure and size, wind penetration level, and 28 
forecasting timescales. Botterud et al. [23] reviewed the application of wind power forecasting in 29 
major U.S. electricity markets. Wang et al. [24] investigated the impacts of wind power 30 
forecasting uncertainty on the unit commitment process, but they did not measure the benefits 31 
from improved power forecasting. Hodge et al. [25] attempted to quantify the value of improved 32 
ultra-short-term wind power forecasting. A similar study also examined the value of day-ahead 33 
solar power forecasting improvements in the Independent System Operator New England (ISO-34 
NE) power system [26]. McGarrigle et al. [27] studied the value of improved wind energy 35 
forecasts in the 2020 Irish electricity system with a 33% wind penetration level. Nevertheless, 36 
the majority of these studies have attempted to quantify the value of wind power forecasting only 37 
at a single time horizon, and they did not consider the impacts of grid flexibility and the system’s 38 
ramp capability. The authors’ previous study [28] quantified the benefits of wind power 39 
forecasting improvement in terms of production costs as well as grid reliability. The major 40 
difference between this article and reference [28] is that this article extends the scope in [28] by 41 
considering the impacts of grid flexibility, ramp capability, and electricity market operation 42 
timescales. 43 
 44 
The techniques in this paper utilized the accuracy of wind power forecasts varied at different 45 
time horizons. For example, the MAE for 4-hour-ahead (4HA) forecasts is typically smaller than 46 
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that for day-ahead forecasts because the 4HA forecast horizon is closer to real time, and thus 1 
more recent information is available. Improving the wind power forecasting accuracy at different 2 
time horizons can bring different benefits to the electric grid. From a utility’s perspective, 3 
because the forecast accuracy and the resources required for the forecast vary at different 4 
timescales, there is a need to understand which timescale can bring the maximum benefits. This 5 
would guide investments in improving the forecast accuracy in day-ahead only, in intraday only, 6 
or in both day-ahead and intraday. In addition, the value of wind power forecasting improvement 7 
varies in systems with different flexibility levels and ramp capabilities. For instance, to date the 8 
California Independent System Operator (CAISO) power system has almost 20% renewable 9 
energy sources, and large ramp-up (and ramp-down) capability from the conventional generation 10 
fleet is required during the sunset (sunrise) period. This is illustrated by the “duck curve” [29], 11 
wherein the presence of solar energy makes the previous load shape (known as an “elephant 12 
curve”) change to show the net load (i.e., load minus variable renewables) in the shape of a duck. 13 
However, the Midcontinent Independent System Operator (MISO) power system has 14 
approximately only 10% renewable energy sources (mostly from wind power) and has more than 15 
60% coal [30]. Increasing the accuracy of wind power forecasting by the same amount in the two 16 
systems will incur different values. How to quantify the value of wind power forecasting 17 
improvements under different grid flexibility levels and ramp capabilities is a significant yet 18 
unresolved issue. To address these challenges, this article investigates the value of wind power 19 
forecasting improvements at different operation horizons as well as analyzes the impacts of grid 20 
flexibility and ramp capability. The study was performed by simulating the operation of an IEEE 21 
118-bus test system2 [31] as modified to emulate the generation mixes of the CAISO, ISO-NE, 22 
and MISO balancing authority areas (BAA). For each BAA, 10 wind power penetration levels 23 
and six wind power forecasting improvement scenarios are simulated. These scenarios are 24 
compared on an operational cost basis (called generation production costs) for all generators, 25 
including 1) start-up and showdown costs, 2) variable operation and maintenance (O&M) costs, 26 
and 3) fuel costs. The fixed O&M costs are not considered because they are generally used only 27 
for long-term generation capacity planning in PLEXOS. For the same reason, the levelized cost 28 
of electricity and the capital costs of generators are excluded when calculating the generation 29 
production costs. The impacts on wind power curtailment at different operation horizons are also 30 
compared. Moreover, operational impacts on conventional generators are analyzed. 31 
 32 
The rest of the paper is organized as follows. Section 2 describes the process of generating the 33 
wind power forecasting improvement data in the different scenarios. Section 3 presents the 34 
production cost simulation model and the input data sources for the model. Section 4 35 
demonstrates the study results. Finally, Section 5 concludes. 36 
 37 

2. Wind Power Forecasting Improvement Methodology and Error Analysis 38 
 39 
The National Renewable Energy Laboratory (NREL)’s Wind Integration National Dataset 40 
(WIND) Toolkit was the source of the wind power data used for different wind penetration 41 
scenarios. In the development of the tool kit, measured wind data sets served as reanalysis inputs 42 

2 The IEEE 118-bus test case represents a simple approximation of the American Electric Power system (in the U.S. 
Midwest) as of December 1962. The IEEE 118-bus system contains 54 generators, 186 transmission lines, and 91 
loads [31]. 
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to ensure realistic spatiotemporal correlations, ramping characteristics, and capacity factors of 1 
the simulated wind power plants. Further, these data are time synchronized with available load 2 
profiles. The WIND Toolkit is the most comprehensive publicly available data set that includes 3 
meteorological data, time series data of wind power production, and simulated forecasts. The 4 
data set was created using the Weather Research and Forecasting model run on an approximately 5 
2-km by 2-km grid at 5-minute resolution for the entire continental United States, with millions 6 
of meteorological data points narrowed down to 126,000 feasible land-based and offshore wind 7 
power production sites according to capacity factors and geographic information system 8 
exclusions [32].  9 
 10 
The site selection process was a major component of the wind power and forecast data 11 
generation process. Wind power data from the California BAA was used for all the simulations, 12 
as shown in the appendix, Figure A.1, including the identification of sites, Table A.1, and details 13 
on levels of aggregation for each scenario, Table A.2. The candidate wind sites were selected 14 
from within the available WIND Toolkit sites using a greedy algorithm that prioritized locations 15 
geographically near load centers. That is, it was necessary to establish the number of turbines, n 16 
(which refers to the number of wind turbines that constitute a “wind power plant”), composing 17 
each of the 10 “wind power plants” shown in the appendix. First, the top 10 load centers were 18 
identified within the 118-bus model. The algorithm then searched the WIND Toolkit for the 19 
wind power plants nearest the load center, with the highest capacity factor, until the desired 20 
capacity was reached. The plants were scaled slightly down to exactly match the desired wind 21 
capacity (equally distributed at each of the 10 locations) in the development of a given scenario; 22 
Appendix A details how individual wind turbines were successively aggregated. 23 
 24 
Once the set of wind power plants for a given scenario was identified, it was possible to simply 25 
query the database to obtain the day-ahead and 4HA forecast time series associated with each 26 
plant. These, too, were aggregated to create a balancing area level forecast time series, which 27 
could then be utilized in the power system models described below. For the concerns of this 28 
study, and because of the computational complexity of the power system models, it was decided 29 
that forecast improvements would be technology agnostic and in the fashion of uniform 30 
improvements. That is, irrespective of technologies currently available, it was assumed that wind 31 
power improvements of 20%, 40%, 60%, 80%, and 100% (perfect forecasts) at all points in the 32 
time series were possible, to assess the value of wind power forecasting improvements. Uniform 33 
improvements were chosen because how the timing of forecast improvements aligns with certain 34 
power system operational conditions can greatly impact their value. Obviously, improvements in 35 
forecasting methods will be greater during certain times or meteorological conditions than 36 
others. Although the timing of these improvements will have significance for the economics of 37 
the power system, the uniform improvement approach was adopted in this study because of the 38 
computational complexity of modeling the exact timing of the improvements. The uniform 39 
improvements provide a good indication of the economic improvements that could be expected 40 
from general forecasting improvements, without adding the computational complexity of 41 
specifying the times most likely to have forecast improvements. The benchmark case, 0% 42 
improvement (state-of-the-art forecasting), provides the reference for examining the possible 43 
improvements in production costs and reliability. As shown in Section 3.1, 10 wind penetration 44 
levels are simulated for each BAA, ranging from 5.87% to 51.64%. In the rest of this section, we 45 
select data from the 10 scenarios for demonstration. 46 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.

http://www.energy.gov/sites/prod/files/2014/08/f18/DOE_Public_Access%20Plan_FINAL.pdf


 1 
Figure 1 provides an example of the both day-ahead and 4HA forecast error distributions, with 2 
the illustration juxtaposing the extrema of both expected forecast errors and scenarios. That is, 3 
without regard to perfect forecasts, state-of-the-art day-ahead and 4HA forecasts with 80% 4 
improvement are most and least erroneous, respectively, and Scenario #1 and Scenario #10 have 5 
the least and most levels of wind penetration, respectively.  6 
 7 

 8 
 9 

Fig. 1. Distributions of day-ahead and 4HA wind power forecasting errors for, respectively, the extreme cases: wind 10 
scenarios (WS) with the least (#1) and greatest (#10) amount of installed capacity. In light of these low and high 11 
wind penetration scenarios, the juxtaposition of typically large (day-ahead) and small (4HA) forecasting errors 12 
illustrates the absolute versus relative trade-offs examined herein. Although normalized by installed wind capacity, 13 
shorter forecasting horizons are marked by leptokurtic behavior due to more frequent yet smaller errors. 14 
 15 
Three common error metrics [33]—MAE, mean bias error (MBE), and root mean square error 16 
(RMSE)—were used to compare the wind power forecasts. Figures 2–4 illustrate the distribution 17 
of the bulk MAE, MBE, and RMSE metrics (i.e., calculated annually and additively for each of 18 
the 10 wind power plants) as normalized by installed wind capacity for each level of wind 19 
forecasting improvement for all 10 scenarios. Each bin of the box plot contains the MAE, MBE, 20 
and RMSE metric for each scenario, i.e., 10 per bin. It is interesting to note that the 4HA box 21 
plots show more variability in this statistic; however, the error is less.  22 
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 1 
 2 
Fig. 2. Box plots of day-ahead and 4HA forecasting error metrics as normalized by installed wind capacity: average 3 

bulk MAE statistics (i.e., calculated annually with 10 scenarios per bin). 4 
 5 
 6 
 7 

 8 
 9 

Fig. 3. Box plots of day-ahead and 4HA forecasting error metrics as normalized by installed wind capacity: average 10 
bulk MBE statistics (i.e., calculated annually with 10 scenarios per bin). 11 

 12 
 13 
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 1 
 2 

Fig. 4. Box plots of day-ahead and 4HA forecasting error metrics as normalized by installed wind capacity: average 3 
bulk RMSE statistics (i.e., calculated annually with 10 scenarios per bin). 4 

 5 
Figure 5 shows the real-time, actual wind power output for Scenario #5 (27.69% wind 6 
penetration level), and five wind power forecasting improvement scenarios at the day-ahead 7 
timescale for a typical week from August 27 to September 2, 168 hours in total. The day-ahead 8 
forecasts are based on Weather Research and Forecasting forecasts in the WIND Toolkit [34]. In 9 
what follows, the 0% improvement curve corresponds to the state-of-the-art Weather Research 10 
and Forecasting model, whereas the 100% improvement curve (not shown in Figure 5) is 11 
identical to the real-time, actual wind power curve. Figure 5 shows that in some intervals the 12 
day-ahead wind power is over-forecasted (the red line is above the black line); whereas in other 13 
intervals the day-ahead wind power is under-forecasted (the red line is below the black line). 14 

 15 

 16 
 17 

Fig. 5. Example of the day-ahead wind power forecasting improvements 18 
 19 

3. Scenario Design and Production Cost Modeling 20 
 21 
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The value of wind power forecasting is related to many different factors. The key factors we 1 
examine are forecast timescale, wind penetration rate, and market structure. It is only by 2 
examining the interplay among these aspects that we can begin to estimate the value of wind 3 
power forecasting improvements in a particular region. In this study, instead of simulating an 4 
actual bulk grid, we conducted the design of the scenarios on a modified IEEE 118-bus system to 5 
emulate the generation mixes of three different BAAs. The benefits of designing the experiments 6 
in this manner are numerous. 1) It enables us to simulate all the scenarios within an acceptable 7 
amount of time. According to our scenario design, we have 10 wind penetration levels for each 8 
of the three BAAs and 6 wind power forecasting improvement scenarios. For each simulation, 9 
we need to conduct three runs: day-ahead forecast improvement only, 4HA forecast 10 
improvement only, and both day-ahead and 4HA forecast improvement. Thus, there are a total of 11 
480 runs, each performing a production cost simulation during 1 full year. Based on our previous 12 
experience, a typical 1-year simulation takes approximately 2 days on the ISO-NE bulk system 13 
[35], and it takes approximately 1 week on the Western Electricity Coordinating Council 14 
(WECC) system [36]. It would thus be time prohibitive to conduct the total 480 runs on an actual 15 
system such as ISO-NE or WECC. For our modified 118-bus system, it takes approximately 8 16 
hours for a typical run. The total 480 runs thus required approximately 3,840 hours. 2) Because 17 
we plan to compare the cost reduction rates in systems with similar generation mixes, changing 18 
only the generation mix while leaving all other parameters, the same provides a clearer 19 
comparison. Otherwise, various transmission, generation, meteorological, and operational 20 
aspects would change from one case to another, diminishing the ability to make a fair 21 
comparison and ascribe cost implications to forecasting improvements. Simulating 22 
representations of three different actual BAAs would not enable us to achieve this goal because 23 
economic impacts could be the result of transmission congestion, interchange limits, operational 24 
practices, or any number of other factors that differ among BAAs. 25 
 26 

3.1. Scenario Design to Emulate Three BAAs 27 
 28 
The current generation resource mix data from CAISO, MISO, and ISO-NE are used for the base 29 
case simulations in the study. The percentages of energy and capacity for different kinds of 30 
generations in the three ISOs are shown in Table 1. The values are modified from the 2014 31 
market reports of CAISO [37], ISO-NE [38], and MISO [30], respectively. The original data in 32 
CAISO and ISO-NE have 28% and 16.3% net imported energy, respectively. Because we model 33 
an isolated power system in this study, the imported energy is removed, and the percentages for 34 
all other generation types are recalculated accordingly. The total generation capacity remains the 35 
same for three base cases: 7,220 MW, which is the generation capacity of the original IEEE 118-36 
bus system. Table 1 shows that the MISO market is dominated by coal, whereas the CAISO and 37 
ISO-NE markets are dominated by natural gas (NG in tables). The CAISO market has relatively 38 
higher wind and solar capacities, whereas the ISO-NE market has relatively lower wind and solar 39 
capacities. Currently, MISO has approximately 7% wind energy and close to 0% solar energy. 40 
Pumped-storage (PS in tables) generators are modeled in the ISO-NE cases. The pump efficiency 41 
is set to a reasonable assumed value (75%) in the simulation. 42 
 43 
 44 
 45 
 46 
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 1 
Table 1. 2 

Generation data in the three base cases in terms of both energy capacity (%) and energy (%) 3 
 4 

Generation 
Mix 

CAISO 
Base Case 

ISO-NE 
Base Case 

MISO 
Base Case 

Capacity (%) Energy (%) Capacity (%) Energy (%) Capacity (%) Energy (%) 
Wind 10 7.9 3.5 1.8 14.9 7.0 

Hydro 14.4 6.9 14.3 6.6 - - 
Solar 6 6.7 1 0.3 - - 

Geothermal 2.4 7.2 - - - - 
Biomass 1.7 3.4 3.5 6.9 2.1 3.9 

NG 60.9 57.7 44 44.8 40.0 7.6 
Coal 0.7 0.5 6 5.1 35.8 67.4 

Nuclear 3.3 9.7 13 33.7 4.7 13.9 
Oil 0.6 .01 11.7 0.004 2.5 0.2 

PS Gen - - 3 0.6 - - 
PS Load - - - -0.8 - - 

Total 100 100 100 100 100 100 
 5 
Because we plan to compare the cost reduction rates for different wind penetration levels, we 6 
fixed all other parameters, except for the wind input data, to simulate different scenarios in each 7 
BAA. Table 2 shows the 10 testing scenarios we designed, with annual energy wind penetration 8 
levels uniformly changing from 5% to 50%, as shown in the second column. The only difference 9 
in the input data among these scenarios is the wind power; all other input parameters remain the 10 
same. However, the generation mix solutions, which are optimized according to the production 11 
cost simulation engine, vary in the system generation mix scenarios. 12 
 13 
The third column of Table 2 shows the wind penetration levels as input information for each 14 
scenario. They are calculated by dividing the total wind power by the total load amount. Note 15 
that the input penetration levels are slightly different from the designed penetration levels. The 16 
reason is that the wind power data are directly extracted from individual wind sites in the WIND 17 
Toolkit, and we do not manipulate (scale up/down) the data. For instance, we design Scenario #1 18 
to expect a 5% penetration level; however, it is difficult to find available wind sites that have 19 
total outputs exactly equal to 5% of the annual energy. Instead, we found several wind sites that 20 
have total outputs equal to 5.87% of the annual energy, which is very close to the 5% designed 21 
value. Detailed information on the selected wind sites from the WIND Toolkit is shown in the 22 
appendix.  23 
 24 
The fourth through sixth columns of Table 2 show the actual wind penetration levels for the three 25 
different system cases. They are calculated after the PLEXOS simulations finish. Their values 26 
are different from those in Column 3 because of the existence of wind curtailments. Obviously, 27 
larger curtailment is induced at high wind penetration scenarios. In addition, the three simulated 28 
systems have slightly different values for each scenario because they have different realized 29 
generation commitments and dispatches.  30 
 31 
For each of the 10 scenarios, we run four tests to measure the effects of improving wind power 32 
forecasting at different timescales: current state of the art, day-ahead improvement only, 4HA 33 
improvement only, and both day-ahead and 4HA improvements. Table 3 shows a description of 34 
each test. Note that in our previous work [28], less simulation runs were conducted because 35 
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comparing the impacts of improved wind power forecasts at different timescales was not the 1 
focus, and we ran only the cases with both day-ahead and 4HA improvements.  2 
 3 

Table 2. 4 
Different kinds of wind penetration levels: 1) designed penetration level, 2) input penetration level, and 3) actual 5 

penetration level after dispatch 6 
 7 

Scenario 
# 

Designed Penetration 
Level (%) 

Input Penetration 
Level (%) 

Actual Penetration Level After Dispatch (%) 
CAISO ISO-NE MISO 

1 5 5.87 5.87 5.65 5.87 
2 10 10.48 10.47 10.07 10.45 
3 15 15.16 15.15 14.58 15.01 
4 20 21.77 21.71 20.82 21.06 
5 25 27.69 27.38 25.95 25.89 
6 30 33.53 32.16 30.19 30.00 
7 35 37.35 34.88 32.56 32.38 
8 40 41.68 37.46 34.78 34.78 
9 45 47.66 40.61 37.34 37.65 

10 50 51.64 42.45 38.73 39.27 
 8 

Table 3. 9 
Four tests were run for each scenario 10 

 Scenario Description 
Test 1 State of the Art Original case without wind power 

forecasting improvements 
Test 2 DA Only Improve only the DA forecast 
Test 3 4HA Only Improve only the 4HA forecast 
Test 4 DA & 4HA Improve the DA and 4HA forecasts 

simultaneously 
 11 
The actual historical load from the San Diego Gas & Electric (SDG&E) area in year 2012 was 12 
used for the simulations [39]. The 2012 SDG&E peak load was 4,620 MW, which is close to the 13 
maximum load in the original IEEE 118-bus system (4,772.75 MW) [31]. The annual hourly 14 
load profile is shown in Figure 6. The parameters for traditional generators are obtained from the 15 
WECC Transmission Expansion Planning Policy Committee (TEPPC) 2024 Common Case 16 
database [40]. The average fuel costs for natural gas, biomass, coal, nuclear, geothermal, and oil 17 
plants are set to $5.24/MMBTU, $2.68/MMBTU, $1.99/MMBTU, $0.81/MMBTU, 18 
$0/MMBTU, and $20.96/MMBTU, respectively. These values are calculated by averaging the 19 
actual data from the database. The production cost, which is calculated by the product of fuel 20 
cost and heat rate, is a quadratic curve for each individual generator. We can obtain the average 21 
production costs of different generation technologies with the simulation results for each case. In 22 
addition, all the resources have additional unit-specified variable O&M costs. The proportions of 23 
regulating-up, regulating-down, and spinning reserves are set to 1%, 1%, and 3% of the system 24 
load, respectively. Note that different systems may have different criteria to determine the exact 25 
values, but the ones we use here are reasonable for electricity market analysis [41]. Ten wind 26 
generators were placed on bus numbers 4, 26, 27, 40, 49, 62, 89, 100, 107, and 112 of the 27 
original IEEE 118-bus system [28].  28 
 29 
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 1 
Fig. 6. 2012 annual load profile in SDG&E area  2 

 3 
3.2 Production Cost Simulation 4 

 5 
The commercial production cost software PLEXOS [42] is the simulation tool utilized for this 6 
study. PLEXOS is an electricity market simulation tool that uses mathematical programming and 7 
advanced optimization techniques to provide a comprehensive analytical framework for power 8 
system modeling. The model can simulate the operation and locational marginal pricing [43] of 9 
wholesale electricity markets in a way that is similar to many independent system 10 
operator/regional transmission organization market applications, but it incorporates a much 11 
longer simulation time frame [44]. 12 
 13 
Within the production cost simulation model, we run the market by co-optimizing energy and 14 
reserves at three timescales: day-ahead, 4HA, and real time (RT in tables). The day-ahead market 15 
determines the hourly unit commitments for the 24 hours of the next day. The 4HA market is 16 
designed to recommit fast-ramping resources to meet the forecasted net load variations, wherein 17 
the net load equals the actual system load minus the renewable generations. The real-time market 18 
balances the real-time load and generation in the system. Different power generators have 19 
different unit commitment scheduling decisions in the market depending on their unique start-up 20 
and shutdown times. Some types of units must be committed 1 day ahead or earlier (e.g., 21 
biomass, coal, nuclear, and geothermal), other types of units instead can be recommitted 4 hours 22 
ahead (e.g., gas combined cycle, gas and oil steam turbines), and others may be recommitted 1 23 
hour ahead or less (e.g., gas and oil fast turbines and internal combustion engines). Hydro units 24 
are typically flexible and are often used for supplying peak generations. In our simulation, the 25 
hydro units are committed 1 day-ahead, and they are allowed to be freely dispatched in 4HA and 26 
real time. Pumped-storage units are allowed to be re-dispatched in real time. 27 
 28 
The proposed simulation process runs in a sequential operating mode as follows. 1) The process 29 
starts with taking long-term hydro constraints and decomposing them into daily constraints using 30 
the PLEXOS medium-term schedule function. Based on the available hydro energy, the medium-31 
term schedule simulates the long-term system operations using load duration curves and 32 
produces short-term hydro budget constraints for the daily modeling. 2) The day-ahead market 33 
simulation is then performed for an entire year to generate hourly unit commitment and dispatch 34 
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decisions. The day-ahead forecasted wind and load profiles are used in this stage of the 1 
simulation. 3) The 4HA simulation starts with fixed unit commitment results for non-fast 2 
ramping units passed from the day-ahead solution. 4) The real-time process starts with fixed unit 3 
commitment results passed from the day-ahead and 4HA, and it dispatches the available units to 4 
meet the load as well as to allow for the recommitment of gas and oil fast turbines and 5 
combustion turbines. In all the unit commitment models, the mixed-integer linear programming 6 
(MILP) optimality gap is set to 0.1%. In PLEXOS, the unit commitment is a MILP problem and 7 
is solved using a linear-programming-based branch-and-bound algorithm, and the MILP gap is 8 
the relative difference between the current upper and lower bounds in the solving process [45]. 9 
Although many independent system operators currently operate subhourly energy markets, in 10 
this study we adopted an hourly real-time market for the modeling. For the variables we 11 
examined, such as generation mixes and overall generation production costs, hourly real-time 12 
markets produce very similar results to subhourly markets [46]. 13 
 14 

4. Study Results and Analysis 15 
 16 
The annual production cost modeling results of the 480 simulated scenarios were analyzed in 17 
terms of total generation production costs, wind power curtailment, and electricity generation 18 
and ramping of conventional generators. The state-of-the-art forecast cases (i.e., 0% wind power 19 
forecasting improvement) are used as the benchmarks. Then we compare them to cases where 20 
only the day-ahead forecast is improved, cases where only the 4HA forecast is improved, and 21 
cases where both the day-ahead and 4HA forecasts are improved simultaneously.  22 
 23 

4.1 Base Case Simulation Results 24 
 25 
The base cases are designed to have generation energy mixes similar to those of the current 26 
CAISO, ISO-NE and MISO electricity markets, as shown in Table 1. The load and network data 27 
in the three base cases are kept the same. The only difference is the generation mix diversity. 28 
Figure 7 shows the generation stacks for the three base cases from September 14 to September 29 
15, which are the peak load days of the year. It is observed that the CAISO case is dominated by 30 
natural gas, the ISO-NE case is dominated by natural gas and nuclear, and the MISO case is 31 
dominated by coal. The CAISO case has higher renewable energy penetrations than the MISO 32 
and ISO-NE cases. The annual real-time production costs of CAISO, ISO-NE, and MISO cases 33 
in the year 2012 are $722.15M, $768.50M, and $676.07M, respectively. These values are the 34 
PLEXOS simulation results for the three base cases. Note that these would not be the actual 35 
production costs of the three actual independent system operators because we are simulating a 36 
smaller load system; they represent the production costs with systems that have the same load 37 
profile as SDG&E but different generation mixes to resemble the CAISO, ISO-NE, and MISO 38 
markets. The production cost in the CAISO base case is smaller than that in ISO-NE base case 39 
because the latter has more nuclear energy while the former has more renewable energy, which 40 
has a low marginal cost. The production cost in the MISO base case is the lowest because it is 41 
dominated by the relatively cheaper coal resource. 42 
 43 
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 1 
Fig. 7. Generation stacks for peak load days September 14, 2012–September 15, 2012 (48 hours): (a) CAISO base 2 

case; (b) ISO-NE base case, and (c) MISO base case 3 
 4 
With the high penetration of renewable energy sources and the increased variability and 5 
uncertainty of system net loads, operational flexibility has become an important property of 6 
modern electric grids. Reference [47] reviews the energy system flexibility measures to enable 7 
high levels of variable renewable electricity such as pumped hydro storage and demand-side 8 
management. Reference [48] examines the feasibility of integrating large-scale wind power into 9 
the Brazilian northeast subsystem, which has a high proportion of hydroelectricity. Reference [49] 10 
establishes the necessary framework to quantify the power system operational flexibility via a 11 
few metrics such as the power ramp rate, power and energy capability of generators, and loads 12 
and storage devices. Comparing the operational flexibility of the three simulated systems will 13 
give additional insights for the analysis. As shown in [50], a number of key factors impact grid 14 
flexibility. The mix of generation technologies in the system is one of the most important 15 
considerations. For example, a system dominated by natural gas will likely have a higher level of 16 
flexibility than a system dominated by coal or nuclear generators. The ramp rate ranges of all 17 
generation sources that are available to follow the variations in net load are another important 18 
consideration. Another factor is the percentage of must-run base-load generators (which should 19 
always be committed in the system), a high penetration of which may reduce grid flexibility. The 20 
existence of spatial diversity, shiftable load, and energy storage in the grid are other imporant 21 
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factors. In this study, the flexiblity of the three different system generation mix scenarios are 1 
compared through the following factors: the percentage of must-run base-load generations (i.e., 2 
nuclear power generation), the diversity of generation technologies, and the normalized total 3 
available ramp rate and minimum generation levels. Table 4 shows the total available ramp rate, 4 
total minimum generation level, number of units, and total capacity of different generation 5 
technologies in the three generation mix scenarios. The total available ramp rate and minimun 6 
generation levels are calculated by summing the ramp rate and minimum generation values of the 7 
individual units, which are obtained from the WECC TEPPC database and have the same order 8 
of magnitude as those in reference [47]. An analysis of the operational flexiblility of the three 9 
systems is shown as follows: 10 

• A major must-run base-load generation resource—nuclear power in the CAISO, ISO-NE, 11 
and MISO base cases—accounts for 9.7%, 33.7%, and 13.9%, respectively, of the total 12 
energy according to Table 1; hence, the ISO-NE system is relatively less flexible in terms 13 
of the “must-run” metric. 14 

• Generation mix is a basic feature of a system. Table 4 shows that the CAISO (MISO) 15 
system has the most (least) diversified generation technologies. In addition, a coal-16 
dominated system is generally less flexible than a gas-dominated system because coal 17 
power plants usually have longer minimum run times once started [28]. As shown in 18 
Table 1, the MISO system is dominated by coal (67.4%), whereas the CAISO and ISO-19 
NE systems are dominated by natural gas (57.7% and 44.8%, respectively). Thus, the 20 
MISO system is less flexible than the CAISO and ISO-NE systems in terms of generation 21 
mix diversity and flexibility. 22 

• The total capacity of different generation technologies varies in Table 4. To make a fair 23 
comparison, we need to normalize the capacities into an equal value—for example, 1,000 24 
MW. We use the natural gas in the CAISO base case as an example. The normalized total 25 
available ramp capability is calculated as (76.93/4395) × 1,000 = 17.50 MW/min, which 26 
means that the total available ramp capability for a 1,000-MW natural gas generator is 27 
17.5 MW per minute. Similary, normalized total available ramp capability and 28 
normalized total minimum generation levels for the dominant generation resources are 29 
calculated, as shown in Table 5. Normally, coal plants have slower ramp rates and higher 30 
minimun generation levels (thus less flexibility) than natural gas plants [49]. This is 31 
shown in the MISO base case in Table 5, wherein the coal plants have a smaller ramp 32 
capability and larger minimum generation values than the natural gas plants. When we 33 
look at the dominant resources in the three systems,3 the coal plants in MISO have a 34 
smaller normalized total available ramp capability value than the natural gas plants in 35 
CAISO and ISO-NE. On the other hand, the natural gas plants in the CAISO system have 36 
the largest normalized total minimum generation level among the three. There are two 37 
reasons for this: 1) Although a coal plant normally has a higher minimum generation 38 
level than a natural gas plant, it is not guaranteed that this is always true for every single 39 
generator. 2) The number of generators selected from the WECC TEPPC database is not 40 
large enough (25 natural gas generators in CAISO compared to 20 coal generators in 41 
MISO). Further, the natural gas units in CAISO can be shut down if necessary. However, 42 

3 Although the MISO base case has a large capacity of natural gas plants, the natural gas is not the dominated 
resource because only 7.6% of energy is produced by natural gas plants, as shown in Table 1. The MISO base case 
is dominated by coal, which produces 67.4% of the energy. 
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here we compare only the static flexibility of the three systems, thus shutting down the 1 
natural gas units is not considered. Instead, it is considered in the analysis below, where 2 
dynamic flexibility is compared. Based on the values of the two metrics shown in Table 5, 3 
we can compare the operational flexibility of the three systems as follows: 1) the MISO 4 
base case is less flexible than the ISO-NE base case; and 2) it is hard to conclude if the 5 
MISO base case is less flexible than the CAISO base case or not.  6 

The metrics above demonstrate different factors that contribute to a power system’s flexibility. 7 
Although it is easy to compare the systems from a single metric, it is difficult to tell which 8 
system is more flexible when considering all the metrics together. Although the CAISO base 9 
case has a larger normalized total minimum generation level, we may still deem that it has 10 
relatively more flexibility than the other two independent system operators because it performs 11 
well in all other metrics, including must-run generation, normalized total available ramp 12 
capability, and the diversity of the generation technologies. The flexibilities in the ISO-NE and 13 
MISO base cases are lower because the former has a larger nuclear percentage, and the latter is 14 
dominated by coal.  15 

 16 
Table 4. 17 

The total avaialbe ramp capability (MW/min), total minimum generation level (MW), number of units, and total 18 
capacity (MW) information for CAISO, ISO-NE and MISO base cases 19 

 20 
 CAISO ISO-NE MISO 

Total 
Ramp 

Min Gen Unit 
No. 

Total 
Capacity 

Total 
Ramp 

Min 
Gen 

Unit 
No. 

Total 
Capacity 

Total 
Ramp 

Min Gen Unit 
No. 

Total 
Capacity 

Hydro 10.00 0.00 4 1035 10.00 0.00 4 1035 - - - - 
NG 76.93 2,201.37 25 4395 51.65 930.61 20 3162 54.82 651.00 17 2915 

Nuclear 0.00 0.00 1 238 0.00 0.00 2 834 0 0 1 341 
Coal 4.33 44.84 2 52 2.20 82.56 3 155 35.17 1,173.39 20 2551 

Oil 3.40 12.89 2 43 12.77 135.24 9 451 5.67 54.90 3 183 
Biomass 2.90 43.09 7 121 1.66 26.77 4 131 1.25 38.40 3 153 

Geothermal 3.15 87.80 3 176 - - - - - - - - 

 21 
Table 5 22 

Normalized total available ramp capability and normalized total minimum generation level for the dominated 23 
generation resources for the CAISO, ISO-NE and MISO base cases 24 

 25 
Base 
Case 

Resource Normalized Total Available 
Ramp Capability (MW/min) 

Normalized Total Minimum 
Generation Level (MW) 

CAISO NG 17.50 500.88 
ISO-NE NG 16.33 294.31 
MISO Coal 13.78 459.98 
MISO NG 18.81 223.33 

 26 
The three factors presented above are static metrics to measure the flexibility of a power system. 27 
After the dispatch solutions are obtained, we can calculate the dynamic flexibility of the system, 28 
which is measured by the upward and downward ramp capacity during a specific time period. 29 
The upward ramp capacity, or the headroom of a unit at interval t, is shown in (1). Similarly, the 30 
downward ramp capacity of the unit is shown in (2). 31 
 32 
      { }( ) min ,t t tRamp Up Capacity t DMAX D Ramp T= − ×                                                      (1) 33 

      { }( ) min ,t t tRamp Down Capacity t Ramp T D DMIN= × −                                                  (2) 34 

 35 
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where DMAXt and DMINt are the maximum and minimum capacity of the unit, Dt is the energy 1 
dispatch (MW) of the unit at interval t, Rampt is the ramp rate of the unit at interval t, and T is 2 
the number of minutes in interval t. For example, T equals 60 minutes for the hourly-dispatch 3 
market. The system’s overall upward/downward ramp capacity is calculated by the summation of 4 
the ramp-up/ramp-down capacity of each committed unit. As shown in Section 3.2, three types 5 
of units are based on their commitment timescales: those committed in the day-ahead that pass 6 
the commitment to 4HA and real time (e.g., slow-start units such as coal), those committed in the 7 
4HA that pass the commitment to real time (e.g., medium-start units such as combined-cycle 8 
plants), and those committed in real time (e.g., fast-start units such as oil and gas combustion 9 
turbines). Specifically, coal units are committed in the day-ahead and the 4HA, and the real-time 10 
commitment status is fixed as the day-ahead status; combined-cycle units are committed in the 11 
4HA, and the real-time commitment status is fixed as the 4HA status; and oil and combustion 12 
turbine units can be freely committed in real time. Figure 8 illustrates the upward/downward 13 
ramp capacity of the three kinds of units as well as the system’s overall up/down capacity in the 14 
week from September 10, 2012–September 16, 2012, which is the peak load week of the year. 15 
The results presented here are based on the solution of the base cases for the three independent 16 
system operators. It is observed that the ISO-NE base case has the largest upward/downward 17 
ramp capacities; however, the upward ramp capacities of the real-time committed units for the 18 
ISO-NE base case are close to 0 (as shown in the second figure), which means that all the fast-19 
start units are dispatched at their maximum generation levels. 20 
 21 

 22 
Fig. 8. Dynamic upward and downward ramp capacity for peak load week September 10, 2012–September 16, 2012 23 

(168 hrs) 24 
 25 
As shown in Figure 8, the upward ramp capacity in MISO is primarily provided by units 26 
committed in the day-ahead, whereas ISO-NE has very little upward ramp capacity provided by 27 
the real-time committed units. The downward ramp capacities in the CAISO and ISO-NE cases 28 
are mainly provided by units committed in the 4HA, whereas the MISO case mainly relies on 29 
day-ahead committed units to provide downward ramp capacity. 30 
 31 
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4.2 Wind Power Forecasting Improvement Scenarios 1 
 2 
Consistent with Table 2, 10 different wind penetration scenarios were simulated for each of the 3 
three independent system operators, with six wind power forecasting improvement runs for each 4 
scenario (0%, 20%, 40%, 60%, 80%, and 100%). For each scenario at a certain wind power 5 
forecasting improvement level, we conducted three 1-year production cost modeling runs: 6 
improving the forecast at day-ahead only, at 4HA only, and at day-ahead and 4HA 7 
simultaneously. We calculated the real-time generation production costs savings in millions of 8 
dollars ($M) due to improved wind power forecasting compared to the benchmark (i.e., the 0% 9 
improvement) case. To reduce redundancy, in Figure 9 we demonstrate only the results for 10 
scenarios #2, #4, #6, and #10, which correspond to approximately 10%, 20%, 30%, and 50% of 11 
the designed wind penetration levels, respectively. Note that the actual wind penetration levels 12 
(the last three columns in Table 2) for these scenarios were approximately 10%, 20%, 30%, and 13 
40%, respectively. The generation production costs value details for the three independent 14 
system operators in Scenario #10 are shown in Figure 10. Table 6 shows the percentages of real-15 
time total generation production costs reduction (%) compared to the state-of-the-art wind power 16 
forecasting for Scenario #7. For example, a 40% wind power forecasting improvement in only 17 
4HA will reduce the cost by 1.59% for the CAISO Scenario #7, whereas the same amount of 18 
wind power forecasting improvement in both 4HA and day-ahead will reduce the cost by 2.34%. 19 
The following observations are made from Figure 9, Figure 10, and Table 6:  20 

• The dollar amount of cost reduction increases with improved wind power forecasting. 21 
This is more obvious when the wind penetration level is high. It was observed that the 22 
curves do not always increase with higher wind power forecasting improvements when 23 
the wind penetration level is low (e.g., CAISO Scenario #2). This is because the MILP 24 
gap is set to 0.1% in the simulations, and the differences are within the MILP gap. In 25 
addition, when the wind penetration is low, the system has sufficient flexibility to 26 
economically deal with the wind variations. 27 

• Improving the day-ahead and 4HA wind power forecasting simultaneously will bring the 28 
largest amount of cost reductions, higher than improving the forecast solely in the day-29 
ahead or 4HA; however, it is difficult to make a general conclusion about which 30 
timescale is more beneficial to improve forecasting because it depends on various factors, 31 
such as the generation mix, grid flexibility, energy storage, and the relative value of grid 32 
reliability. In this study, improving wind power 4HA forecasting will lead to larger cost 33 
reductions in the CAISO and MISO cases. In contrast, improving day-ahead forecasting 34 
is more economically beneficial in the ISO-NE cases. The reasons for this are analyzed in 35 
detail in the following sections.  36 

 37 
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 1 
Fig. 9. Cost reductions with wind power forecasting improvements in scenarios #2, #4, #6, and #10 2 

 3 

 4 
Fig. 10. Cost comparisons in three independent system operators in Scenario #10 ($M) 5 

Table 6. 6 
Percentages of real-time total generation production costs reduction (%) with improved wind power forecasting 7 

compared to the state-of-the-art case for Scenario #7 8 
 9 

Scenarios Wind Forecast Improvement (%) 
20 40 60 80 100 

CAISO 
Scenario #7 

DA Only 0.23 0.29 0.55 0.57 0.58 
4HA Only 0.91 1.59 1.87 2.15 2.24 
DA & 4HA 1.21 2.34 3.24 3.96 4.47 

ISO-NE 
Scenario #7 

DA Only 0.13 0.47 0.78 0.82 0.91 
4HA Only 0.09 0.14 0.25 0.28 0.31 
DA & 4HA 0.22 0.72 1.00 1.02 1.03 

MISO Scenario 
#7 

DA Only 0.24 0.52 1.03 1.07 1.19 
4HA Only 0.66 1.16 1.42 1.95 2.39 
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DA & 4HA 0.54 1.21 2.15 2.71 3.49 
 1 

Table 7. 2 
 Average production costs of different generation technologies for Scenario #7 base cases ($/MWh) 3 

 4 
Generation 

Technologies 
CAISO Scenario #7 

Base Case 
ISO-NE Scenario #7 

Base Case 
MISO Scenario #7 

Base Case 
NG 56.41 56.42 79.36 

Nuclear 23.04 23.04 23.04 
Coal 38.97 31.72 33.42 

Biomass 21.38 37.30 34.73 
Oil 199.57 208.44 248.00 

Geothermal 2.92 - - 
 5 
In Section 3.1, we mentioned that the average production costs of different generation 6 
technologies can be obtained from the simulation results, and the value varies in different 7 
simulation cases. To provide more insights for future analysis, we calculate the average 8 
production costs of different generation technologies for the Scenario #7 base cases in the 9 
different generation mix scenarios, as shown in Table 7. As shown, oil generation is the most 10 
expensive, and natural gas is more expensive than nuclear, coal, and biomass generation. 11 
 12 
Table 8 shows the cost savings per MWh of wind power generation with wind power forecasting 13 
improvement in the Scenario #7 cases. The values are calculated by dividing the annual cost 14 
savings ($) by the total wind generation (MWh). Consider CAISO Scenario #7. In the base case, 15 
the total operational generation cost, total generation, and total wind generation is $464.85M, 16 
20,054.98 GWh, and 7,511.81 GWh, respectively. For the “DA Only” case, with 40% wind 17 
power forecast improvement, those values are $463.51M, 20,055.01 GWh, and 7,510.45 GWh, 18 
respectively. For the “4HA Only” case, with 40% wind power forecasting improvement, those 19 
values are $457.46M, 20,054.98 GWh, and 7,517.87 GWh, respectively. For the “DA & 4HA” 20 
case, with 40% wind power forecasting improvement, those values are $453.99M, 20,054.98 21 
GWh, and 7,530.06 GWh, respectively. Compared to the base case, a 40% wind power 22 
forecasting improvement reduces annual operational electricity generation production costs by 23 
$1.34M (=$464.85M-$463.51M), $7.39M, and $10.86M, respectively, for the CAISO “DA 24 
Only,” “4HA Only,” and “DA & 4HA” cases. Dividing the cost savings by the total wind 25 
generation, we obtain the equivalent average savings per MWh of wind power generation, $0.18 26 
(=$1.34M/7510.45GWh), $0.98, and $1.44, respectively, for those cases. To the authors’ best 27 
knowledge, this is the first attempt in literature to quantify the cost savings from wind power 28 
forecasting improvement per unit of wind power generation. Reference [51] indicated that the 29 
wind integration costs were approximately $2/MWh at a 15% penetration level and $4/MWh at a 30 
25% penetration level; however, it did not quantify the cost savings due to wind power 31 
forecasting improvements. Reference [27] provided the total production cost saving from an 32 
improved wind power forecast, but it did not calculate the cost savings per unit of wind power. 33 
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Reference [26] calculated the production cost savings per unit of solar power, wherein the values 1 
varied from $0.11/MWh to $1.42/MWh. The order of magnitude of the values in references [51] 2 
and [26] are consistent with the results shown in Table 8. 3 

 4 
Table 8. 5 

Cost savings per MWh of wind power generation from improved wind power forecasting for the Scenario #7 cases 6 
($/MWh) 7 

 8 

Scenarios 
Wind Forecast Improvement (%) 

20 40 60 80 100 

CAISO 
Scenario #7 

DA Only 0.14 0.18 0.34 0.35 0.34 
4HA Only 0.56 0.98 1.16 1.33 1.38 
DA & 4HA 0.75 1.44 2 2.44 2.75 

ISO-NE 
Scenario #7 

DA Only 0.08 0.29 0.48 0.48 0.56 
4HA only 0.06 0.08 0.15 0.15 0.15 

DA & 4HA 0.13 0.45 0.62 0.63 0.63 

MISO Scenario 
#7 

DA Only 0.18 0.4 0.79 0.79 0.92 
4HA Only 0.41 0.89 1.1 1.51 1.84 
DA & 4HA 0.42 0.93 1.66 2.09 2.69 

 9 
To understand why improving the day-ahead wind power forecasting leads to higher economic 10 
benefits in the ISO-NE case, whereas improving the 4HA wind power forecasting leads to higher 11 
economic benefits in the CAISO and MISO cases, we need to decompose the total generation 12 
production costs by generation resource types. To reduce redundancy, we select only one case 13 
for analysis: Scenario #9, with 40% wind power forecasting improvement. For other cases, the 14 
conclusions are similar. The decompositions of energy and total generation production costs by 15 
resource type for the CAISO, ISO-NE, and MISO systems are shown in Table 9, Table 10, and 16 
Table 11, respectively. The total production costs for hydro, wind, solar, and pumped-storage 17 
generations are assumed to be zero because they have no fuel costs and their marginal O&M 18 
costs are assumed to be zero in the simulation. In reality, those resources should have non-zero 19 
total O&M costs; however, this is a common assumption in production cost modeling based on 20 
their bidding behavior in market environments. The total production cost includes three parts: 21 
unit start-up and shutdown cost, fuel cost, and O&M cost. The O&M cost is relatively low 22 
compared to the other two. To avoid redundancy, only total production costs are listed in Table 23 
9–Table 11. The below conclusions can be generalized from those results: 24 

• In a coal-dominated system (e.g., MISO), improving the day-ahead wind power 25 
forecasting will utilize more coal resources than improving the 4HA wind power 26 
forecasting by the same amount. In a natural-gas-dominated system (e.g., ISO-NE), 27 
improving the day-ahead wind power forecasting will utilize less natural gas resources 28 
than improving the 4HA wind power forecasting by the same amount. This is because 29 
coal plants are generally less flexible than natural gas plants, with longer start-up and 30 
shutdown times. For the MISO case, improving the day-ahead wind power forecasting 31 
will have a more significant impact to the generation of coal plants. For the ISO-NE case, 32 
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improving the 4HA wind power forecasting will have greater impacts on the generation 1 
of more flexible natural gas plants. On the other hand, we observed that although the 2 
CAISO case was also dominated by natural gas, the generation from natural gas plants 3 
was very close between improving the day-ahead and 4HA wind power forecasting 4 
(5,935.2 GWh compared to 5,935.9 GWh, respectively). This was because the percentage 5 
of natural gas resources is higher in CAISO than it is in ISO-NE. For example, in the 6 
ISO-NE system, the generation from nuclear plants (which were simulated as must-run 7 
units) was more than two times that of natural gas generation, whereas in the CAISO 8 
system the generation from nuclear plants was much lower; thus, the CAISO system has 9 
more available natural gas units to meet the uncertainty brought by improving wind 10 
power forecasting at different timescales, which makes the energy generated by natural 11 
gas units very close in the improvements of the “DA Only” and “4HA Only” cases, as 12 
shown in Table 9.  13 

• The dominated non-base-load resources in the system have the most significant impact on 14 
the total generation production costs. For instance, comparing the “DA Only” to the 15 
“4HA only” columns in Table 10, the total generation production costs for coal, oil, 16 
biomass, and pumped-storage generation resources is lower in the latter, but the total 17 
generation production costs for natural gas (which is the dominated non-base-load 18 
resource) is significantly higher. This makes the annual generation production costs when 19 
improving only the 4HA wind power forecasting higher than when improving only the 20 
day-ahead wind power forecasting. In addition, Table 9 shows that although the energy 21 
output from natural gas in the “DA Only” and “4HA only” cases is very close, the total 22 
production cost of natural gas generation is quite different. The reason is that different 23 
types of natural gas units have different operational efficiencies—e.g., combined-cycle 24 
natural gas plants are more efficient than open-cycle natural gas plants. In the “DA only” 25 
case, more open-cycle natural gas plants are dispatched; thus, the production cost is 26 
higher.  27 

 28 

Table 9. 29 
Decomposition of energy and total generation production costs by resource type for CAISO Scenario #9, with 40% 30 

wind power forecasting improvement 31 
 32 

 DA Only 4HA Only DA & 4HA 
Generation Type Energy (GWh) Total Production 

Cost ($k) 
Energy (GWh) Total Production 

Cost ($k) 
Energy (GWh) Total Production 

Cost ($k) 
Hydro 1,478.3 0.0 1,475.0 0.0 1,478.3 0.0 

NG 5,935.2 339,870.2 5,935.9 336,549.2 5,906.5 331,880.4 
Nuclear 2,088.7 48,135.2 2,088.7 48,135.2 2,088.7 48,135.2 

Coal 75.0 2,983.9 75.2 2,989.0 75.2 2,989.3 
Wind 8,755.9 0.0 8,768.4 0.0 8,782.4 0.0 

Oil 3.1 1,839.9 3.4 1,996.3 3.2 1,874.8 
Biomass 448.3 9,933.4 435.8 9,470.8 446.6 9,851.8 

Geothermal 1,270.6 3,704.0 1,272.6 3,709.9 1,274.2 3,714.7 
Solar 1,527.7 0 1,527.7 0 1,527.7 0 
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Sum 21,582.8 406,466.6 21,582.7 402,850.4 21,582.8 398,446.2 

 1 
 2 

Table 10. 3 
Decomposition of energy and total generation production costs by resource type for ISO-NE Scenario #9, with 40% 4 

wind power forecasting improvement 5 
 6 

 DA Only 4HA Only DA & 4HA 
Generation Type Energy (GWh) Total Production 

Cost ($k) 
Energy (GWh) Total Production 

Cost ($k) 
Energy (GWh) Total Production 

Cost ($k) 
Hydro 1,346.0 0.0 1,316.0 0.0 1,344.7 0.0 

NG 3,257.2 188,293.8 3,330.8 192,833.5 3262.2 187,870.8 
Nuclear 7,331.5 168,953.4 7,331.2 168,953.4 7331.5 168,953.4 

Coal 595.4 19,195.7 573.0 18,433.3 586.8 18,856.5 
Wind 8,372.8 0.0 8,364.2 0.0 8375.2 0.0 

Oil 3.2 1,365.9 2.3 1,037.1 1.9 834.3 
Biomass 790.5 29,942.6 778.3 29,545.8 791.4 29,991.6 

Solar 62.9 0 62.9 0 62.9 0 
PS Gen 594.9 0 583.1 0 585.4 0 

Sum 22,354.4 407,751.4 22,341.8 410,803.1 22,342 406,506.6 

 7 
 8 
 9 

Table 11. 10 
Decomposition of energy and total generation production costs by resource type for MISO Scenario #9, with 40% 11 

wind power forecasting improvement 12 
 13 

 DA Only 4HA Only DA & 4HA 
Generation Type Energy (GWh) Total Production 

Cost ($k) 
Energy (GWh) Total Production 

Cost ($k) 
Energy (GWh) Total Production 

Cost ($k) 
NG 1,812.5 137,130.6 1,983.6 141,609.1 1,853.3 134,033.3 

Nuclear 2,993.2 68,977.9 2,993.2 68,977.9 2,993.2 68,977.9 
Coal 8,057.6 273,518.4 7,886.6 266,633.8 8,006.5 271,135.3 

Wind 8,086.8 0 8,122.8 0.0 8,108.4 0.0 
Oil 17.6176 9,504.8 15.4 8,561.2 15.4 8,390.5 

Biomass 566 19,334 533.1 18,108.8 556.9 18,915.8 
Sum 21,533.7 508,465.7 21,534.7 503,890.8 21,533.7 501,452.8 

 14 
Wind power forecasting improvements at different operational timescales will impact real-time 15 
wind curtailment in the system. Table 12 shows the annual wind power curtailment changes for 16 
CAISO Scenario #9. Wind power curtailment (GWh) in the state-of-the-art case is used for 17 
benchmarking. In the state-of-the-art case, the actual wind power generation is 8,744.03GWh, 18 
the curtailed wind is 1,519.19 GWh, and thus the curtailment rate is 14.8%. The average 19 
locational marginal price of the case is $32/MWh; thus, the lost value of the curtailed wind is 20 
approximately $48.6 M. Table 12 shows that the percentage that wind power curtailment was 21 
reduced (relative to the state-of-the-art case) increased with improved forecasts. For this case, 22 
improving the day-ahead and 4HA wind power forecasting simultaneously will bring in the 23 
highest curtailment reductions, whereas improving the 4HA wind power forecasting will lead to 24 
higher curtailment reductions than improving only the day-ahead wind power forecasting. As a 25 
reference, Table 13 shows the wind power curtailments at different penetration levels for the 26 
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three generation mix scenarios, wherein values are demonstrated for the state-of-the-art cases 1 
and for the 40% wind power forecasting improvement at both day-ahead and 4HA cases. 2 
 3 

Table 12. 4 
Reduction of wind power curtailment (%) relative to the state-of-the-art case for the CAISO Scenario #9 cases  5 

 6 
Curtailment 

Reduction (%) 
Wind Power Forecasting Improvement 

20% 40% 60% 80% 100% 
DA Only 0.7 0.8 1.1 1.4 1.6 

4HA Only 0.8 1.6 2.0 2.0 2.3 
DA & 4HA 1.5 2.5 3.8 4.0 5.4 

 7 

Table 13. 8 
Wind power curtailments for the three simulated systems at different penetration levels: curtailment at state-of-the-9 

art case compared to the case of 40% forecast improvement  10 
 11 
  CAISO ISO-NE MISO 
Scena
rio # 

Wind 
Level 

Curtailment 
State-of-the-Art, 

GWh (%) 1 

Curtailment 
40% Improve.,  

GWh (%) 

Curtailment 
State-of-the-Art, 

GWh (%) 

Curtailment 
40% Improve.,  

GWh (%) 

Curtailment 
State-of-the-Art, 

GWh (%) 

Curtailment 40% 
Improve.,  
GWh (%) 

2 10% 0.27 
 (0.01%) 

0.26 
 (0.01%) 

0  
(0%) 

0  
(0%) 

6.06 
 (0.27%) 

5.81  
(0.26%) 

4 20% 12.78  
(0.27%) 

12.68  
(0.27%) 

25.07 
 (0.53%) 

24.8  
(0.52%) 

151.27  
(3.23%) 

150.15 
 (3.21%) 

6 30% 294.26  
(4.08%) 

279.78  
(3.88%) 

460.68  
(6.38%) 

452.39 
 (6.27%) 

759.32  
(10.52%) 

746.61 
 (10.34%) 

8 40% 907.62  
(10.11%) 

872.56  
(9.72%) 

1186.07  
(13.22%) 

1176.5  
(13.11%) 

1484.49  
(16.54%) 

1473.58  
(16.42%) 

10 50% 1978.92  
(17.80%) 

1938.34  
(17.43%) 

2446.8  
(22.00%) 

2429.8  
(21.85%) 

2663.12  
(23.95%) 

2651.21  
(23.84%) 

1 Note: The values outside the brackets are the curtailed wind power in GWh; the values inside the brackets are the percentages of wind 12 
curtailment. 13 
 14 

4.3 The Impact of Pumped-Storage Resource 15 
 16 
In the ISO-NE test case, the pumped-storage devices may mitigate variations in system condition 17 
and thus reduce the benefits of wind power forecasting improvements. To eliminate the impacts 18 
of pumped-storage units on the system, we replaced them with gas turbine units that have the 19 
same capacities. All other parameters remained the same, and these new cases were rerun. Two 20 
ISO-NE cases were selected for demonstration: Scenario #3 (low wind penetration) and Scenario 21 
#9 (high wind penetration). Table 14 shows the simulation results of annual production cost 22 
savings (%) with and without pumped-storage units by improving wind power forecasts at 23 
different timescales. Note that by replacing the pumped-storage units (results shown in the 24 
“Without PS” rows), the production cost saving percentages are higher (compared to the results 25 
shown in the “With PS” rows). This confirms that the existence of storage resources in the 26 
system can reduce the benefits of wind power forecasting improvements. In addition, in both of 27 
the scenarios, improving the day-ahead wind power forecasting can bring higher cost saving 28 
rates compared to improving the 4HA wind power forecasting by the same amount when the 29 
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pumped-storage resources are replaced. This is because pumped storage is not the dominant 1 
resource in the ISO-NE system. The general conclusion that improving the day-ahead wind 2 
power forecasting is more beneficial than improving the 4HA wind power forecasting for the 3 
ISO-NE system remains the same, even when removing the impacts of pumped-storage units. 4 
 5 

Table 14. 6 
Comparing the percentage of cost savings (%) with and without pumped-storage units 7 

Scenario Timescale PS Units 
Wind Power Forecasting Improvement (%) 

20 40 60 80 100 

ISO-NE 
#3 

DA Only 
With PS 0.04 0.09 0.09 0.10 0.14 

Without PS 0.05 0.29 0.27 0.61 0.62 

4HA Only 
With PS 0.01 0.01 0.04 0.04 0.08 

Without PS 0.02 0.20 0.21 0.41 0.41 
DA and 

4HA 
With PS 0.09 0.01 0.06 0.13 0.14 

Without PS 0.13 0.44 0.44 0.36 1.00 

ISO-NE 
#9 

DA Only 
With PS 0.30 0.85 1.51 1.65 1.95 

Without PS 0.39 1.21 1.82 2.15 2.15 

4HA Only 
With PS 0.04 0.11 0.22 0.25 0.27 

Without PS 0.23 0.77 0.79 1.00 1.03 

DA & 4HA 
With PS 0.50 1.15 1.65 2.25 2.25 

Without PS 0.90 1.60 2.25 2.56 3.38 
 8 
Table 15 shows the cost savings ($) per unit (MWh) of wind power generation by simulating the 9 
cases with and without pumped-storage resources, respectively. To give a general concept of the 10 
magnitude of the values, we list the actual total operational generation cost ($), total generation 11 
(GWh), and total wind generation (GWh) for the state-of-the-art scenarios with pumped storage. 12 
In the ISO-NE Scenario #3, those values are $640.4M, 21,565.6 GWh, and 2,960.5 GWh, 13 
respectively. In the ISO-NE Scenario #9, those values are $411.2M, 21,698.1 GWh, and 14 
8,363.2GWh, respectively. 15 
 16 
It is observed that the cost savings per unit of wind power generation are higher in the high-wind 17 
power penetration scenario. In addition, when the system does not have pumped-storage rsouces, 18 
the cost saving per unit of wind power generation is higher than when the system has pumped-19 
storage resouces—except for the “DA Only” test in the ISO-NE Scenario #9. This was because 20 
improving wind power forecasting at the day-ahead only does not significnatly impact cost 21 
reductions for the ISO-NE cases because they do have many day-ahead commited resoruces, 22 
such as coal. 23 

 24 
Table 15. 25 

Comparing the cost savings per unit of wind power generation with and without pumped-storage units ($/MWh) 26 

Scenario Timescale PS Units 
Wind Power Forecasting Improvement (%) 

20 40 60 80 100 

ISO-NE 
#3 

DA Only 
With PS 0.10 0.20 0.20 0.21 0.31 

Without PS 0.21 0.54 0.54 0.65 0.65 
4HA Only With PS 0.01 0.01 0.09 0.09 0.09 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.

http://www.energy.gov/sites/prod/files/2014/08/f18/DOE_Public_Access%20Plan_FINAL.pdf


Without PS 0.12 0.65 0.65 1.38 1.38 

DA & 4HA 
With PS 0.12 0.12 0.12 0.29 0.29 

Without PS 0.30 0.99 1.02 1.02 2.25 

ISO-NE 
#9 

DA Only 
With PS 0.18 0.47 0.82 0.90 1.05 

Without PS 0.04 0.44 0.48 0.91 0.91 

4HA Only 
With PS 0.01 0.06 0.11 0.06 0.13 

Without PS 0.34 0.88 1.29 1.54 1.54 

DA & 4HA 
With PS 0.26 0.64 0.90 1.22 1.22 

Without PS 0.65 1.14 1.57 1.79 2.27 
 1 

4.4 The Impact of Generation Ramp Rate 2 
 3 
The ramp rate refers to the rate at which a power plant can increase or decrease electricity 4 
generation within the dispatch interval. As an important indicator of the system flexibility, the 5 
system-level ramp-up and ramp-down capacities in generating units are paramount to managing 6 
variability in electric loads. The impacts of variable resources on grid operations are perhaps best 7 
represented on the duck curve of the CAISO wholesale electricity market, wherein 13,000 MW 8 
of ramp capacity is need in 3 hours [26]. To investigate the impacts of ramp-rate constraints on 9 
the system, we select the Scenario #9 base cases for CAISO, ISO-NE, and MISO for analysis. 10 
The percentages of production cost reductions are calculated by comparing the original cases to 11 
the corresponding cases with ramp-rate constraints relaxed (i.e., setting the ramp rate to a very 12 
large number), as shown in Table 16. The ramp rates for all resources are relaxed in the cases, 13 
and the minimum generation levels for all resources are kept the same. Generally, relaxing the 14 
ramp rate of the coal units will cause higher cost reductions than relaxing the ramp rate of the 15 
same quantity of natural gas units in the same system; however, when relaxing different kinds of 16 
generators in different systems, the conclusions are not as straightforward. In our test, the ISO-17 
NE base case has the smallest cost reduction rate because it has a large volume of nuclear power, 18 
which serves the base load and normally cannot ramp up and down quickly. The CAISO base 19 
case has larger cost reduction rate than the MISO base case, which may be because CAISO has 20 
more diversified generation technologies, and if the ramp-rate limits for all units are relaxed, the 21 
dispatch engine can select more cost-effective resources to meet the load, and thus the 22 
production cost is much lower. 23 
 24 
Table 17 compares the percentages of production cost savings to wind power forecasting 25 
improvements on the case with a relaxed generation ramp rate. Higher production cost savings 26 
are observed with improved wind power forecasts. For the CAISO and MISO cases, improving 27 
the 4HA wind power forecasting is more beneficial; whereas for the ISO-NE cases, it is more 28 
beneficial to improve the day-ahead forecasts. The conclusion remains the same as in Section 29 
4.2. This indicates that the generation mix of the system, instead of the ramp rate, is the key 30 
factor that determines the value of the improved wind power forecast in different timescales for 31 
different markets.  32 
 33 
 34 
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 1 
 2 
 3 

Table 16. 4 
Production costs with and without ramp-rate constraint relaxations 5 

 6 
 Cost Without 

Relaxation 
Cost With 
Relaxation Cost Reduction 

CAISO #9 Base Case 409.92 M 383.71 M 6.39% 
ISO-NE #9 Base Case 411.24 M 406.10 M 1.25% 
MISO #9 Base Case 511.78 M 501.27 M 2.05% 

 7 
Table 17. 8 

Percentage of production cost savings (%) with relaxed generation ramp rates 9 
 10 

Case Timescale Wind Power Forecasting Improvement (%) 
20 40 60 80 100 

CAISO 
#9 Case 

DA Only 0.47 0.47 0.78 1.16 1.33 
4HA Only 0.89 1.39 2.22 2.7 2.96 
DA & 4HA 1.24 2.44 4.27 4.99 5.84 

ISO-NE 
#9 Case 

DA Only 0.78 1.95 2.48 3.26 3.61 
4HA Only 0.54 0.54 0.98 1.2 1.21 
DA & 4HA 0.88 2.17 3.32 4.12 4.79 

MISO 
#9 Case 

DA Only 0.27 0.58 0.65 0.88 1.01 
4HA Only 0.66 1.77 2.51 3.55 4.59 
DA & 4HA 1.11 2.26 3.32 4.26 5.34 

 11 
4.5 The Impact of Minimum Generation Level 12 

 13 
In power system operations, the base-load units (typically large nuclear and coal-fired facilities) 14 
often supply the same amount of energy around the clock. To follow the diurnal load cycle, 15 
many coal units run at minimum generation levels at night and increase output during the day. 16 
These units have relatively high minimum generation levels and slow ramp rates. On the other 17 
hand, the intermediate and peaking units, which are generally natural gas or oil-fired facilities, 18 
have relatively lower minimum generation levels and faster ramp rates, and they can be shut 19 
down and started up quickly. In this study, we relax the minimum generation level for all the 20 
generators in the three generation mix scenarios. The must-run status of the nuclear plants is not 21 
relaxed. By doing this, the MISO base case will be most significantly impacted because it is 22 
dominated by coal. The CAISO base case should have the least impact because it is dominated 23 
by more flexible natural gas units. The impact to the ISO-NE base case should be between that of 24 
the CAISO and MISO base cases because it has a large amount of nuclear power but also a high 25 
volume of natural gas resources. This is confirmed by the results shown in Table 18, wherein the 26 
cost reduction rates are calculated by relaxing the minimum generation levels in the CAISO, 27 
ISO-NE, and MISO Scenario #9 base cases. By “relaxing the minimum generation levels,” we 28 
mean setting their values to 0 in all the simulations. Comparing the results shown in Table 16 to 29 
those in Table 18, note that relaxing the generation ramp rates constraints can lead to higher cost 30 
reductions than relaxing the minimum generation constraints in the CAISO case, whereas 31 

Pursuant to the DOE Public Access Plan, this document represents the authors' peer-reviewed, accepted manuscript. 
The published version of the article is available from the relevant publisher.

http://www.energy.gov/sites/prod/files/2014/08/f18/DOE_Public_Access%20Plan_FINAL.pdf


relaxing the minimum generation levels in the ISO-NE and MISO cases can result in more 1 
system-wide benefits. 2 
 3 
Table 19 compares the production cost saving rates of the three systems at different timescales 4 
by relaxing the minimum generation levels. As shown, improving 4HA forecasts can lead to 5 
higher production cost savings for the CAISO and MISO cases, whereas improving the day-6 
ahead forecast leads lead to higher production cost saving for the ISO-NE case. The overall 7 
conclusion remains the same as in Section 4.2. 8 
 9 

Table 18. 10 
Production costs with and without relaxed minimum generation levels  11 

 12 
 Cost Without 

Relaxation 
Cost With 
Relaxation Cost Reduction 

CAISO #9 Base Case 409.92 M 388.96 M 5.11% 
ISO-NE #9 Base Case 411.24 M 384.52 M 6.50% 
MISO #9 Base Case 511.78 M 461.07 M 9.91% 

 13 
Table 19. 14 

Percentage of production cost savings (%) with relaxed minimum generation levels 15 
 16 

Case Timescale Wind Power Forecasting Improvement (%) 
20 40 60 80 100 

CAISO 
#9 Case 

DA Only 0 0.86 0.88 0.88 1.2 
4HA Only 0.73 1.27 1.56 1.56 1.65 
DA & 4HA 0.92 1.97 3.12 3.74 3.9 

ISO-NE 
#9 Case 

DA Only 0.15 0.73 1.18 1.22 1.24 
4HA Only 0.12 0.37 0.7 0.7 0.74 
DA & 4HA 0.35 1.1 1.62 1.76 2.01 

MISO 
#9 Case 

DA Only 0.28 1.06 1.11 1.6 1.66 
4HA Only 0.38 1.07 1.38 1.99 2.47 
DA & 4HA 0.74 1.94 2.55 3.27 3.74 

 17 
5 Conclusions 18 

 19 
The analysis of the results presented in this paper provides interesting insights regarding the 20 
values of improved wind power forecasting at different operational timescales. The values are 21 
evaluated by the annual electricity generation production costs as well as the impacts to system 22 
operations. A production cost model that runs day-ahead, 4HA, and real-time markets was 23 
adopted for the simulation. The tests were conducted on the IEEE 118-bus system as modified to 24 
emulate the generation mixes of CAISO, ISO-NE, and MISO. For each independent system 25 
operator, 10 scenarios were simulated with the wind penetration level ranging from 5% to 50%. 26 
For each scenario, six uniform wind power forecasting improvement cases were tested. To 27 
compare the values of improved wind power forecasting at different timescales, we performed 28 
multiple runs by improving only the day-ahead forecasts, only the 4HA forecasts, and both the 29 
day-ahead and 4HA forecasts. 30 
 31 
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The impact of improved wind power forecasting on system operations was analyzed and 1 
compared to the state-of-the-art wind power forecasting model. Improving the wind power 2 
forecasting decreases the uncertainty of the overall system, thus leading to higher production cost 3 
savings; however, improving wind power forecasting at different market operation timescales 4 
will have different impacts on the real-time operation of the system. The results analyzed 5 
through the paper show that the values largely depend on the generation resource mix of the 6 
system. For example, in a coal-dominated system such as MISO, improving the day-ahead wind 7 
power forecast will make more coal resources to be utilized in real-time operations than 8 
improving the 4HA wind power forecasting by the same amount. This is due to the long start-up 9 
and shutdown times associated with coal generators. In a natural-gas dominated system that has a 10 
high percentage of inflexible base-load resources (i.e., nuclear), such as ISO-NE, improving the 11 
day-ahead wind power forecasting will mean that less natural gas resources are utilized in real-12 
time operations than improving the 4HA wind power forecasting improvements by the same 13 
amount. In a natural-gas dominated system with a low percentage of inflexible base-load 14 
resources, such as CAISO, the real-time natural gas energy utilization when improving the day-15 
ahead wind power forecast is very close to that when improving the 4HA wind power forecast. 16 
This is because natural gas units are generally more flexible in the system and can mitigate the 17 
variability of system operation conditions. In addition, our study shows that the system’s annual 18 
operational electricity generation production costs is mostly impacted by the cost changes of the 19 
dominant resources. More coal energy utilized in the system does not necessarily mean that the 20 
total electricity generation production costs are lower, especially when coal is the dominant 21 
resource. For example, in the MISO cases, although more coal energy was consumed when 22 
improving the day-ahead wind power forecast, the total cost is higher than when improving the 23 
4HA forecast because coal is the dominant resource and the production cost of the coal units is 24 
higher in the day-ahead forecast than it is in the 4HA. In a natural gas-dominated system such as 25 
CAISO, the consumption of natural gas in the “DA Only” and “4HA Only” cases is very similar; 26 
however, the electricity generation production costs of the natural gas resources are quite 27 
different. This is because although the total natural gas energy consumptions are close, the 28 
energy consumed by different types of natural gas units is different. In the improvement of the 29 
“4HA Only” case, more combined-cycle natural gas units, which have lower operational 30 
production costs, are dispatched. The study also analyzed the changes in wind power 31 
curtailments and the impacts of pumped-storage resources. Finally, we used three metrics to 32 
compare the flexibility of the simulated systems: the generation mix, the available ramp rate, and 33 
the system minimum generation level. It is observed that higher operational flexibility can be 34 
achieved by relaxing the ramp-rate and minimum generation constraints, but production cost-35 
saving behaviors are similar to the cases when those constraints are not relaxed. In our tests, we 36 
did not simultaneously relax the ramp-rate and minimum generation levels, which may change 37 
some of the conclusions in this paper. 38 
 39 
Future work could continue to conduct the analysis presented in this paper by simulating an 40 
actual electric power system. Another interesting topic would be to design an optimal generation 41 
mix (under different wind penetration levels) to reduce carbon-dioxide emissions and/or to 42 
increase the operational flexibility of the system. In addition, a comprehensive flexibility index 43 
can be examined be assigning proper weights to different flexibility indices. We may also test the 44 
impact of relaxing both the ramp rates and minimum generation levels on different systems. 45 
 46 
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Appendix 10 
 11 
Figure A.1 provides a map of the latitude and longitude of wind plants utilized in the study. 12 
When combined with the wind turbine aggregation approach, Tables A.1 and A.2, it provides 13 
complete wind data information for the concerns of scientific reproducibility. Corresponding 14 
data are validated and freely available on the Internet [32]. 15 
 16 

 17 
Fig. A.1. Enumeration of the ten CAISO wind sites used to generate all scenarios. Wind turbines (Table A.1) were 18 
successively aggregated (Table A.2) from the Wind Toolkit [32] to compose a wind plant for a given scenario 19 
(Table 2) and weighted (Table A.2) to achieve a total capacity (Table 2) that was uniformly distributed at each of the 20 
ten wind plants.  21 

 22 
Table A.1  23 

Wind turbine site identifications [32] located near, and considered as part of, the wind plants (Figure A.1); all wind 24 
turbines are located in the California ISO. 25 

 26 
Aggregation 

Level 
Wind Turbine Site IDs as Located in CAISO 

1 2 3 4 5 6 7 8 9 10 
1 79930 82860 65251 64409 56121 45512 36136 34853 35705 24310 
2 76646 82631 63266 63462 56122 43112 35000 34674 36008 24172 
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3 76057 82632 66780 62267 56123 47177 34829 35030 35862 24173 
4 75874 82633 67290 62026 56344 47043 36135 34493 35704 24311 
5 75875 82167 60033 62025 56124 47178 35683 34852 36007 24455 
6 75876 82168 59814 62027 56345 47323 35843 35221 36150 24042 
7 75877 82169 67025 62024 56568 47044 35682 35029 36006 24174 
8 75684 80391 59378 62028 56346 47179 34264 35220 35548 24312 
9 75685 79765 59813 62023 56569 47324 34999 34673 35861 24586 

10 75686 79766 60259 62029 56125 49148 34265 34492 36149 23899 
11 75687 79767 60475 61790 56570 49147 34463 34851 35392 24043 
12 75490 79594 59379 61791 56347 48892 34266 35219 35549 24456 
13 75491 79595 69007 61789 56571 49302 34464 35391 36148 24175 
14 75492 79596 64045 61792 56126 49301 34096 35028 35703 24313 
15 73288 79395 58908 62813 56803 49443 34267 35390 36005 23900 
16 73289 79396 72865 61788 56804 48313 34828 34672 35221 24044 
17 73290 79397 72864 61793 56572 48432 34097 34491 36147 24587 
18 73083 79394 73086 61787 56348 48314 32834 35389 35391 24176 
19 73084 79393 58463 61794 56805 48538 33203 35218 36287 24457 
20 73085 79392 73085 61564 56127 48433 37916 34850 35860 23762 
21 72863 79201 72863 61565 56573 48315 37269 34297 36286 23901 
22 73086 79202 73084 61563 57038 48539 31323 35547 36288 24314 
23 72864 79200 63267 61566 56806 48434 31322 35548 35547 24045 
24 72865   73290 61562 56349 48540 31321 35546 36285 24177 
25 80391   73083 61567 57039   31320 35027 35393 23763 
26     61558           35550 23623 
27     73289           35702 24458 
28                 35222   

 1 
Table A.2 2 

Successive aggregation of wind turbines 1-to-N, at a specific weighting, to achieve the specified wind plants (Figure 3 
A.1) and wind scenarios (Table 2); all wind plants are located in the California ISO. 4 

 5 
Scenario Wind Power Plants as Located in CAISO: Aggregation Level from 1-N@Weighting 

1 2 3 4 5 6 7 8 9 10 
Base 3@0.782 3@0.782 3@0.782 4@0.853 4@0.782 4@0.782 3@0.782 3@0.782 3@0.782 4@0.782 

1 3@0.940 3@0.940 3@0.940 5@0.752 5@0.940 4@0.940 3@0.940 3@0.940 3@0.940 4@0.940 
2 5@0.987 6@0.840 5@0.987 7@0.859 7@0.878 7@0.987 5@0.987 5@0.987 5@0.987 7@0.840 
3 8@0.925 8@0.896 8@0.882 9@0.910 9@0.956 9@0.882 8@0.882 8@0.896 8@0.882 9@0.925 
4 11@1.000 10@1.000 10@0.987 12@0.918 12@0.952 12@0.963 11@1.000 11@0.987 11@1.000 12@0.963 
5 14@0.989 13@0.951 14@0.933 14@0.960 14@0.989 14@0.960 14@0.999 14@0.979 15@0.960 14@0.999 
6 17@0.971 15@0.995 17@0.948 17@0.955 17@0.963 17@0.940 17@0.971 17@0.955 18@0.987 18@0.948 
7 19@0.952 17@0.973 18@0.987 18@0.995 18@0.945 19@0.980 18@0.952 18@0.995 20@0.980 19@0.995 
8 21@0.952 19@0.971 21@0.978 20@0.991 20@0.998 20@0.978 20@0.952 20@0.991 22@0.998 22@0.978 
9 23@0.983 22@0.955 24@0.978 23@0.972 23@0.978 23@0.961 23@0.983 23@0.972 26@0.972 25@0.995 

10 25@0.974 23@0.990 27@0.964 25@0.964 25@0.969 25@0.996 24@0.974 25@0.964 28@0.964 27@0.996 

 6 
 7 
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