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Overview

Active Projects

— Solar Thermochemical Hydrogen Production (STCH)
« Sandia, Bucknell, Colorado School of Mines
 University of Colorado

— Photoelectrochemistry
« Stanford

— Magnetically Stabilized Thermochemistry (HEATS-
ARPAe)

 University of Florida

— Liquid metal heat transport in solar-thermochemical fuels
« Georgia Tech

— Ceria-Based Solar Thermochemistry (HEATS-ARPAe)
« University of Minnesota
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University of Minnesota Ceria-
based Solar Redox Reactors

Produces syngas by splitting H,Oand CO,
/ Isothermal Reactor \

* No moving high temperature
components

* Mechanically robust, fixed bed
reactor using porous fibrous
particles

Heat exchanger

Insulation .
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* Adaptableto otherisothermal
cycles that promise much higher
efficiency
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University of Minnesota Ceria-
based Solar Redox Reactors

Produces syngas by splitting H,Oand CO,
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between temperature zones
allows continuous fuel
production

@ Integratedsolid phase heat
recovery system

Counter-rotating alumina

cylinder designed to recuperate
50% of the sensible heat of the

ceria as it cycles

Continuous on-sun fuel
production

In process of testingin UMN
flux simulator

Tested up to 1400°C to-date

Temperature Swing

Designed for 200-500 °C swing
between reduction/oxidation

Rotation of RPC ceria structures
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STCH: Sandia, DLR, ASU,
Bucknell, CS Mines

Internal heat recovery between T.; and T
Continuous on-sun operation = ) TR chambers
Temperature and product separation T7r #1673K
Pressure separation (thermal reduction step
vacuum pumping )

e »  pumped
Non-monolithic oxide P Op
. . . i 2
Reaction kinetics decoupled from reactor pant'tlcle
: return
operation e .
Thermal reduction pressure (0.1-10Pa) . ! » ;
D d solid-solid heat internal radiant
ecrfease solid-solid heat recovery heat energy
requirement recovery sources
Decreased pump work requirement
Compatibility with MW-scale plant pressure separation
by packed bed
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STCH: Sandia, DLR, ASU,

Bucknell, CS Mines
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Sr- and Mn-doped LaAlO5_; for solar thermochemical H,
and CO productionf
Cite this: DOI: 10.1039/¢3eed41372a
Anthony H. McDaniel,*® Elizabeth C. Miller,iab Darwin Avrifin,§* Andrea Ambrosini,”
Received 22nd April 2013 Eric N. Coker,? Ryan O'Hayre,® William C. Chueh€? and Jianhua Tong*®
Accepted 4th June 2013

=
(&)

DOI: 10.1039/c3eed1372a

www.rsc.org/ees

H, production (umoles/s/q)

o
o

%0, H,0

40 vol% H,0 @ 1000 °C
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= Perovskite compounds split H,O in a thermochemical cycle.

= First of a kind observation, also demonstrated durability

= Kinetics benchmarked against CeO.,.

= Similarly fast oxidation rates

= Make ~9x more H, than CeO, at Tz = 1350 °C.
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STCH: University of Colorado at

Boulder, NR

* Previously developed a packed
tube, inert-flushed, “Surround

Sun” reactor

« Sandia-Inspired particle reactor ———

 Investigating the isothermal
hercynite cycle

Y
Credit: CU Boulder, Al Weimer group

Inert Sweep:
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Reactor Unit Concept (not to scale)
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Georgia Tech
(ARPA-E)

» Development of a high-efficiency solar reactor to produce
solar fuel. Using liquid metal, the reactor transports heat away
from the sunlight-collection point to a chemical reaction zone,
minimizing the loss of solar heat.

i b) Cycle Stage 2;

: : Heat Exchange I:I

 a) Cycle Stage 1: ‘[01
I Reactions (1) & (2) -

. + Heat Exchange [_-——_]
s H0, 1H,0+0,

To solar

From solar
receiver

c) Cycle Stage 3: : Edj Cycle Stage 4:
i Reactions (1) & (2) | : {Heat Exchange
i+ Heat Exchange I:I

o To solar
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University Of Florida
(ARPA-E)

« Solar Thermochemical Fuel Production via a Novel Low
Pressure, Magnetically Stabilized, Non-volatile Iron Oxide
Looping Process

Magnetic Particles I Ceramic Particles
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PROMOTES: High Performance Reduction/Oxidation Metal
Oxides for Thermochemical Energy Storage

v

2. Falling Particle
Receiver + Reactive
Metal Oxide

1. Materials Enabled Innovation
(AH,.y > 1200 kJ/kg)

Solar Receiver
Reduction
Reactor (SR3)

= 0.
pz: o¢:1 Hot Reduced
90 5 a;m | Particle Storage | -m Particles

7}@ | ﬂmr or Oxygen
Re-Oxidation ’ 4
iRy Air Brayton
Power Cycle

‘ Cold Oxidized
| Particle Storage

4. Pressurized oxidation
reactor. Air acts as reactant
and heat transfer fluid. Open 3 T T
cycle — no gas storage. N
/ \:Temp

0,0 pr,;‘\\_ Réducing

5. High Temp/High d
Efficiency Air Brayton I
Power Cycle.

3. Particle Storage at
T>1000° C
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KEY PARTNERS: Sandia National Laboratories, Georgia Institute of Technology, King
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University of Minnesota Molten
Salt Solar Gasifier

Ternary eutectic blend of
Li, K, and Na carbonates
Thet= 670 K

Carbonate Salts \

* Provides thermal storage to
enable continuous operation
during solar transients

* Provides excellent transfer of
solar energy to the reaction
site

» Catalyzes the gasification
reactor producing a ten-fold
increase in reaction rates

* Yields clean product gas —
retains ash, tar and sulfur

* 4 kW prototype reactor has
been successfully
demonstrated in UMN’s solar
simulator.
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~Solar Methane Steam Reforming: PNNL,

CH

Credit: PNNL

750-800°C

HT
Recuperator [«

Sulfur
Removal

3
_ Syngas

SoCal Gas, Diver Solar, Infinia, OSU

Concentrated
Solar Energy

L

SMR
Reactor

SMR = Solar Methane Reforming
WGS = Water-Gas Shift

_H
410-275°C
WGS PSA CO,+
"| Reactor Separation '
Water H,0
Vaporizer

Net Reaction:

CH, + 2H,0 > CO, + 4H,

Key element: heat exchange in
thin engineered channels
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