

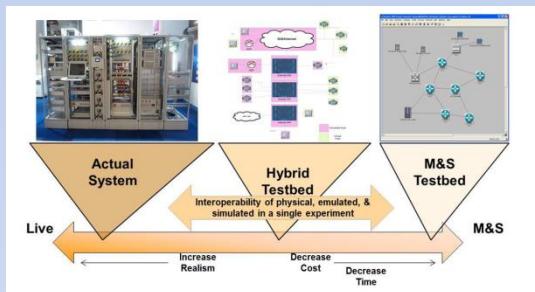
## The Center for Cyber Defenders

SAND2015-6109C

# Expanding Computer Security Knowledge

# FIRESTORM - Firewheel Instrumenting Realistic Environments while Starting Topologies on Running Minimega




Nicholas Hilbert, Missouri University of Science and Technology

Project Mentor: Kasimir Gabert/5638; Steven Elliott/5634

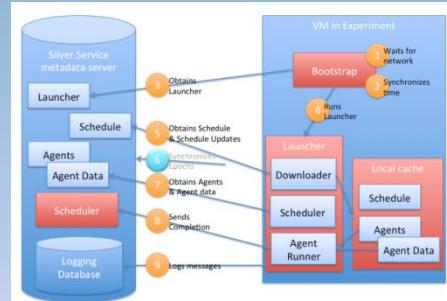
## Problem Statement:

Over the past 10 years, Sandia has been researching and developing a platform for emulating and analyzing large complex information systems. From this research, two different tools have emerged: Firewheel and Minimega. On a cursory level, these tools seem similar; however, they both excel at resolving different emulation challenges.

- Combining these tools is the next step forward for Sandia's Emulytics™ (emulation + analytics) program and my summer goal.



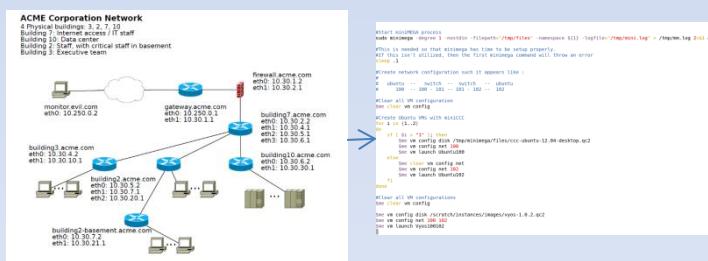
**Figure 1. Emulytics™ platform**


## Objective and Approach:

Unlike Firewheel, Minimega does not have an automated experiment configuration.

- Utilize the topology created by Firewheel to construct a virtual network within Minimega.
- This should be done through a process that can convert Firewheel's graph into a series of commands Minimega can interpret and execute.

## Results:


- Minimega and Firewheel commands can be used to control the setup and execution of the virtual machines.



**Figure 2. Firewheel Agent System**

## Impact and Benefits:

- Now, Firewheel's scalability along with its automated topology and experiment generation are combined with Minimega's graphical user interface (GUI) and easy-to-use controls.
- Customers previously familiar with only one of these tools can now expand their capabilities with minimal educational overhead.



**Figure 3. Firewheel topology to Minimega Script**