
Photos placed in horizontal position 
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Bulk plasma effects of the electron sheath

B.T. Yee1, B. Scheiner2, S.D. Baalrud2, E.V. Barnat1, and M.M Hopkins1

1 Sandia National Laboratories
2 Dept. of Physics and Astronomy, University of Iowa

SAND2015-8768C



Acknowledgements

 This work was supported by the Office of Fusion Energy 
Science at the U.S. Department of Energy under contracts DE-
AC04-94SL85000 and DE-SC0001939.

 One of the authors (B. Scheiner) is supported as a U.S. 
Department of Energy SCGSR fellow.

2



Outline

 Conventional sheath structures

 Experimental evidence for bulk effects

 Kinetic simulations of electron sheaths

 Dynamic electron sheath behavior
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see also NR3.00005 in this session for further detail
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Conventional sheath structures

Ion Sheath

 Boundary below plasma potential

 Presheath accelerates ions to 
Bohm velocity [1]

 Accelerating presheath, length 
scale determined by collisions

Traditional Electron Sheath

 Boundary above plasma potential

 Only thermal flux collected; VDF 
truncation [2-4]

 No presheath or region of 
acceleration
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Laser Sheet

Electrode Guard Ring

Dielectric Spacer

Helium plasma

Experimental Setup

 GEC cell (cylindrical volume)

 Sufficiently small (19 mm dia.) [5] 
embedded electrode

 20 mTorr He plasma

 ne ~ 3x109 cm-3

 Te ~ 4 eV

 2D electron densities from LCIF [6]
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On-axis electron densities

 Ion sheath (-50 V) represents nominal density profile
 Sheath: 0 – 6 mm

 Presheath: 6 – 12 mm

 Electron sheath (+15 V) deviates over 25 mm from electrode
 Sheath: 0 – 2 mm

 Presheath (?): 2 – 27 mm
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Simulation setup

 Electrostatic PIC-DSMC

 20 mTorr neutral He

 Plasma sourced to obtain 
bulk density of 109 cm-3

 2D, 5.0 x 7.5 cm domain
 Electrode-wall area ratio 

comparable to experiment

 Neutral-ion elastic 
collisions

 50 μs simulation time
 20 μs to reach equilibrium

 30 μs of averaging
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Detailed sheath structure

 Ion sheath as expected

 Strong depletion of electrons in 
sheath

 Confined bulk electrons

 Electron sheath

 Directed electron fluid flow 
(from > 60 λd away)

 Funneling/convergence effects
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See NR3.00005 for further detail on flow mechanisms
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Sheath Dynamics
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Instabilities and sheath edge

 Ion sheath edge stable in 
time

 Electron sheath edge highly 
oscillatory
 Mean location is 2 mm, 

similar to experiment

 Power spectrum peaks at 1 
MHz

 Likely a result of ion-acoustic 
instability

 Explains previous 
measurements of noisy 
current collection by positive 
probes [8, 9]
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Summary

 Electron sheath forms a distinct presheath analagous to the 
ion presheath
 Electron flux collected by positively biased electrode is not the 

random thermal flux crossing the sheath edge

 Length scale appears much larger (25+ mm vs. 6 mm)

 Strong electron fluid flow drives instabilities far from 
electrode
 Frequency analysis is consistent with the ion acoustic instability

Electron sheaths affect electron fluid flow and plasma stability 
many Debye lengths from the electrode.
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LCIF results, linear scale
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40 mTorr on-axis comparison
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On-axis sheath potentials
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Electron sheath results
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