
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Codesign	
 at	
 Sandia:	
 LULESH	
 and	
 MiniAero	

J.	
 Cook,	
 H.C.	
 Edwards,	
 D.	
 Dinge,	
 M.	
 Glass,	
 S.D.	
 Hammond,	
 R.	
 Hoekstra,	
 P.T.	
 Lin,	
 M.	
 Rajan,	
 C.R.	
 TroB	
 and	
 C.T.	
 Vaughan	

[
 sdhammo	
 |	
 crtroB	
]	
 @sandia.gov	

	

ApplicaMon	
 Performance	
 Team	

Center	
 for	
 CompuMng	
 Research	

Sandia	
 NaMonal	
 Laboratories,	
 NM,	
 USA	

SAND2015-8765PE

Overview	
 of	
 SNL	
 	

§  Part	
 I:	
 Performance,	
 Portability	
 and	
 Produc5vity	
 of	
 C++	

Abstrac5ons	
 for	
 the	
 LULESH	
 mini-­‐app	

§  Overview	
 of	
 our	
 porMng	
 acMviMes	

§  Comparison	
 of	
 performance	
 on	
 leading	
 HPC	
 architectures	
 for	
 OpenMP,	

RAJA	
 and	
 LULESH	

§  EvaluaMon	
 of	
 programmer	
 effort	
 required	
 for	
 OpenMP,	
 RAJA	
 and	
 Kokkos	

§  Part	
 II:	
 Performance	
 Analysis	
 of	
 MiniAero	

§  Comparison	
 of	
 Scaling	
 (MPI/OpenMP)	
 for	
 Haswell,	
 BlueGene/Q,	
 Knights	

Corner	
 and	
 NVIDIA	
 K80	
 GPUs	

§  IniMal	
 expectaMons	
 for	
 codes	
 on	
 Trinity	
 Phase-­‐I	
 and	
 Phase-­‐II	

§  Discussion	

PORTING	
 LULESH	
 TO	
 KOKKOS	

Kokkos	
 Programming	
 Model	

Kokkos	

Parallel	
 	

ExecuMon/Dispatch	

ApplicaMon	
 Data	
 	

Management	

PaBerns	
 Policies	
 Spaces	
 Access	
 Views	
 Spaces	

What
(For, Reduce, Scan)

How
(Iterator)

Where
(Which Device)

Where
(Which Memory)

How
(Indexing/Atomics

Streaming/Random)

What
(Application Data)

Separa5on	
 and	
 Abstrac5on	
 of	
 Concerns	

Abstract	
 ApplicaMon	
 Data	
 and	
 ComputaMon	

Kokkos	
 Programming	
 Model	
 (Compute)	

Parallel	
 	

ExecuMon/Dispatch	

PaBerns	
 Policies	
 Spaces	

What
(For, Reduce, Scan)

How
(Iterator)

Where
(Which Device)

Parallel-­‐For	

ExecuMon	
 PaBern	
 How	
 are	
 iteraMons	
 	

decomposed?	

Run	
 on	
 ..	
 	

GPU?	
 CPU?	
 PIM?	

+	
 +	

Sensible	
 defaults	
 for	
 many	
 execu5on	
 spaces	
 to	
 reduce	
 programmer	
 overhead	

Let	
 Sandia	
 research	
 and	
 Kokkos	
 developers	
 handle	
 the	
 heavy	
 work	

Kokkos	
 Programming	
 Model	
 (Data)	

ApplicaMon	
 Data	
 	

Management	

Access	
 Views	
 Spaces	

Where
(Which Memory)

How
(Indexing/Atomics

Streaming/Random)

What
(Application Data)

Index	
 Mapping,	

Containers	

How	
 should	
 data	
 be	
 accessed?	

Atomically?	
 Streaming	
 Stores?	
 	

Uncached	
 loads?	

Stored	
 in..	

HBM?	
 DDR?	
 NVM?	

+	
 +	

Sensible	
 defaults	
 for	
 many	
 memory	
 spaces	
 to	
 reduce	
 programmer	
 overhead	

Let	
 Sandia	
 research	
 and	
 Kokkos	
 developers	
 handle	
 the	
 heavy	
 work	

What	
 Does	
 Kokkos	
 Run	
 on	
 Today?	

POWER8 (XL, GNU)

NVIDIA GPU (K20, K40, K80, NSDK-7.5)

✔ Intel Xeon Haswell (Intel, GNU, LLVM) Intel Xeon Sandy Bridge (Intel, GNU,
LLVM, Cray)

Intel Xeon Phi Knights Landing Emulator
(Intel)

✔	

Intel Xeon Phi Knights Corner (Intel)

ASC Trinity Phase I – ATS1

ASC Trinity Phase II – ATS1

ASC Sierra – ATS2

ASC TLCC-2

✔

✔

✔

✔

ASC Advanced Arch. Test Beds

ARM64 (GNU, LLVM)

AMD Kaveri APU (GNU-HSA)

✔

✔

✔ ✔
	

= Kokkos Build Type in Release = Prototype/Research

Kokkos	
 is	
 running	
 on	
 every	
 advanced	
 	

architecture	
 test	
 bed,	
 prototype	
 op5on	
 on	
 AMD	
 systems	

Examining	
 PorMng	
 Strategies	
 for	
 Code	
 Teams	

§  Very	
 large	
 propor5on	
 of	
 ASC	
 code	
 at	
 Sandia	
 is	
 MPI	
 only	

§  Implies	
 a	
 serial	
 on-­‐node	
 model	
 with	
 limited	
 thread	
 safety	
 applied	

§  StarMng	
 point	
 for	
 this	
 study	
 is	
 the	
 serial	
 version	
 of	
 LULESH	

§  Taken	
 from	
 the	
 OpenMP	
 version	
 but	
 with	
 all	
 OpenMP	
 pragmas,	
 reducMons	

and	
 specializaMons	
 removed	
 (“proxy”	
 for	
 “real”	
 code)	

§  Provide	
 several	
 implementaMons	
 to	
 evaluate	
 metrics:	

§  Kokkos:	
 Minimal	
 CPU,	
 Minimal	
 CPU	
 with	
 ref	
 lambdas,	
 Minimal	
 GPU,	

OpMmized-­‐V1,	
 OpMmized-­‐V2,	
 OpMmized-­‐V3	

§  OpenMP:	
 Original	
 OpenMP	
 from	
 LLNL,	
 OpMmized	
 OpenMP	
 from	
 SNL	

§  RAJA:	
 RAJA-­‐Basic	
 and	
 RAJA-­‐Index-­‐Set	
 	

Non	
 Kokkos-­‐Variants	

§  RAJA-­‐Basic:	
 code	
 provided	
 by	
 Jeff	
 Keasler	
 and	
 Rich	
 Hornung	
 from	

LLNL,	
 uses	
 RAJA	
 abstracMons	
 for	
 parallel	
 dispatch	

§  RAJA-­‐IndexSet:	
 code	
 provided	
 by	
 Jeff	
 Keasler	
 and	
 Rich	
 Hornung	

from	
 LLNL,	
 uses	
 RAJA	
 abstracMons	
 for	
 data	
 iteraMon	

§  OpenMP	
 Original:	
 NO-­‐RAJA	
 variant	
 from	
 LLNL	

§  OpenMP	
 Minimal:	
 a	
 stripped	
 down	
 version	
 using	
 basic	
 parallel-­‐

for	
 schemes	
 and	
 atomic	
 operaMons	
 developed	
 from	
 serial	
 using	

Intel	
 AdvisorXE	
 and	
 InspectorXE	
 (akin	
 to	
 developer	
 using	
 tools)	

§  OpenMP	
 Op5mized:	
 Sandia	
 opMmized	
 version	
 which	
 improves	

vectorizaMon	
 and	
 reducMon	
 performance	

OpMmized	
 Kokkos	
 Variants	

§  Kokkos-­‐Minimal-­‐CPU:	
 developed	
 by	
 a	
 physicist	
 with	
 limited	

experience	
 wriMng	
 threaded	
 code	
 (our	
 experiment	
 for	
 code	
 we	

would	
 get	
 from	
 many	
 code	
 groups)	

§  Kokkos-­‐Minimal-­‐CPU-­‐RL:	
 basic	
 port	
 to	
 Kokkos	
 which	
 uMlizes	

capture-­‐by-­‐reference	
 lambdas	
 to	
 significantly	
 decrease	

programmer	
 burden	

§  Kokkos-­‐Minimal-­‐GPU:	
 extension	
 of	
 Kokkos-­‐Minimal-­‐CPU	
 to	
 work	

on	
 the	
 GPU	
 (mainly	
 data	
 structure	
 const	
 changes)	

§  Kokkos-­‐Op5mized-­‐v1:	
 eliminate	
 buffer	
 realloc;	
 reduce	
 register	

pressure	

§  Kokkos-­‐Op5mized-­‐v2:	
 use	
 Kokkos	
 Views	
 with	
 Layout	
 and	
 Traits,	

Hierarchical	
 Parallelism	

§  Kokkos-­‐Op5mized-­‐v3:	
 kernel	
 fusion	

2015 2016 2017 2018 2019 2020 2021

Trinity
Phase I

Trinity
Phase II

Sierra Crossroads

Serial OpenMP Optimized OpenMP

Kokkos Min. CPU X Kokkos Min. CPU

Kokkos Min. GPU K-Opt 1 K-Opt 2 K-Opt 3

RAJA RAJA Optimized CPU RAJA GPU/Optimized GPU

OpenMP

CUDA

C++20 Language
Specification

Directives
C++ Abstraction

Swim	
 Lanes	
 for	
 Code	
 Teams	

This is not an official Sandia position

2015 2016 2017 2018 2019 2020 2021

Trinity
Phase I

Trinity
Phase II

Sierra Crossroads

Serial OpenMP Optimized OpenMP

Kokkos Min. CPU X Kokkos Min. CPU

Kokkos Min. GPU K-Opt 1 K-Opt 2 K-Opt 3

RAJA RAJA Optimized CPU RAJA GPU/Optimized GPU

OpenMP

CUDA

C++20 Language
Specification

Directives
C++ Abstraction

Swim	
 Lanes	
 for	
 Code	
 Teams	

Initial
Ports

“Day One”

Initial
Portable
Versions

Optimized
Portable
Versions

ATDM/
Language

Standards?

This is not an official Sandia position

2015 2016 2017 2018 2019 2020 2021

Trinity
Phase I

Trinity
Phase II

Sierra Crossroads

Serial OpenMP Optimized OpenMP

Kokkos Min. CPU X Kokkos Min. CPU

Kokkos Min. GPU K-Opt 1 K-Opt 2 K-Opt 3

RAJA RAJA Optimized CPU RAJA GPU/Optimized GPU

OpenMP

CUDA

C++20 Language
Specification

Directives
C++ Abstraction

Swim	
 Lanes	
 for	
 Code	
 Teams	

Initial
Ports

“Day One”

Initial
Portable
Versions

Optimized
Portable
Versions

ATDM/
Language

Standards?

Initial
Parallel
Dispatch

Parallel
Dispatch +

Initial Data Structures

Many Task?

This is not an official Sandia position

Optimized
Dispatch + Data

Structures

What	
 are	
 We	
 PresenMng?	

§  In	
 an	
 ideal	
 world	
 we	
 would	
 have	
 all	
 code	
 ported	
 with	
 minimal	

changes	

§  Very	
 unlikely	
 to	
 happen	
 for	
 ASC	
 codes,	
 complicated,	
 legacy	
 algorithms,	

years	
 of	
 engineering	

§  So	
 what	
 can	
 we	
 hope	
 for?	

§  Progression	
 of	
 modificaMons	
 to	
 the	
 code	
 to	
 get	
 them	
 ready	
 for	
 NGP	

§  IniMal	
 ports	
 require	
 less	
 modificaMon	
 to	
 get	
 code	
 up	
 and	
 running	
 but	
 don’t	

give	
 top	
 performance	

§  Slowly	
 evolve	
 code/data-­‐structures	
 to	
 give	
 beBer	
 cross-­‐planorm	

performance	

§  Sandia	
 ASC	
 L2	
 results	
 show	
 what	
 we	
 might	
 be	
 able	
 to	
 expect	
 in	
 a	

small	
 case	
 study	
 using	
 LULESH	

§  We	
 think	
 there	
 is	
 a	
 similar	
 story	
 for	
 Kokkos	
 and	
 RAJA	

PERFORMANCE	
 PORTABILITY	
 OF	

LULESH	
 VERSIONS	

EvaluaMng	
 Performance	
 Across	
 Architectures	

ASC	
 Arch.	
 Test	
 Bed	
 Systems	
 Used	
 For	
 TesMng	

§  Shepard	
 Intel	
 Haswell	

§  Dual-­‐socket,	
 16-­‐cores/socket,	
 2	
 x	
 256-­‐bit	
 FP-­‐FMA	
 SIMD/core,	
 SMT-­‐2	

§  128GB	
 RAM/socket	

§  Intel	
 15.2.164	
 Compiler	
 with	
 OpenMPI	
 1.8.X	

§  Compton	
 Intel	
 Sandy	
 Bridge	
 and	
 Knights	
 Corner	

§  Dual-­‐socket	
 8-­‐cores/socket,	
 2x256-­‐bit	
 FP	
 SIMD/core,	
 SMT-­‐2	

§  32GB	
 RAM/socket	

§  Intel	
 15.2.164	
 Compiler	
 with	
 OpenMPI	
 1.8.X	
 (Sandy	
 Bridge)	

§  57-­‐core	
 KNC-­‐C0,	
 1.1GHz,	
 6GB/RAM	

§  Intel	
 15.2.164	
 Compiler	
 with	
 Intel	
 MPI	
 4.1.036	
 (KNC)	

ASC	
 Arch.	
 Test	
 Bed	
 Systems	
 Used	
 For	
 TesMng	

§  White	
 POWER8	

§  Dual-­‐socket,	
 Dual-­‐NUMA/socket	
 POWER8,	
 3.4GHz	

§  5-­‐cores/NUMA	
 =	
 10	
 cores/socket	
 =	
 20	
 cores/node,	
 SMT-­‐8/core	

§  128GB	
 RAM/NUMA	
 =	
 512GB/node	

§  GNU	
 4.9.2	
 with	
 OpenMPI	
 1.8.X	

§  IBM	
 XL	
 13.1.2	
 with	
 OpenMPI	
 1.8.X	

§  Hammer	
 APM	
 ARM-­‐64/v8	

§  Single	
 socket/node,	
 8-­‐cores/node,	
 2.4GHz	

§  32GB	
 RAM/socket	

§  GNU	
 4.9.2	
 with	
 OpenMPI	
 1.8.X	

ASC	
 Arch.	
 Test	
 Bed	
 Systems	
 Used	
 For	
 TesMng	

§  Shannon	
 Intel	
 Sandy	
 Bridge	
 +	
 NVIDIA	
 Kepler	
 K40/80	
 	

§  Dual-­‐socket,	
 8-­‐cores/socket	
 Sandy	
 Bridge	
 =	
 16	
 cores/node	

§  32GB	
 RAM/socket	

§  NVIDIA	
 Kepler	
 K40	
 per	
 socket	

§  NVIDIA	
 CUDA	
 7.5	
 SDK	

§  GNU	
 4.7.2	
 with	
 OpenMPI	
 1.8.X	
 (compiled	
 with	
 CUDA	
 support)	

OpMmizaMon	
 NoMce	

§  Where	
 possible	
 we	
 have	
 selected	
 architecture	
 appropriate	
 opMmizaMon	
 flags	

to	
 improve	
 performance	

§  Kokkos	
 –	
 baked	
 into	
 the	
 Kokkos	
 Makefile	
 system	

§  RAJA	
 –	
 baked	
 into	
 RAJA	
 Makefile	
 system	
 and	
 RAJA	
 header	
 files	
 for	
 alignment,	

vectorizaMon	
 width	
 etc	
 (header	
 addiMons	
 are	
 annoying)	

§  Results	
 are	
 the	
 harmonic	
 mean	
 of	
 LLNL-­‐coded	
 “Figure	
 of	
 Merit”	
 (FOM)	
 from	
 a	

minimum	
 10	
 runs,	
 max,	
 min	
 etc	
 are	
 all	
 recorded	
 	

§  Error	
 bars	
 are	
 typically	
 very	
 small	
 (1-­‐3%)	
 so	
 are	
 not	
 included	
 in	
 plots	
 for	
 brevity	

§  All	
 configuraMons	
 used	
 opMmized	
 (per	
 planorm)	
 MPI	
 process	
 pinning,	
 thread	

affiniMes	
 and	
 job	
 configuraMons	

§  Lots	
 of	
 research	
 at	
 Sandia	
 using	
 Mantevo	
 over	
 last	
 four	
 years	
 to	
 understand	
 these	
 issues	

§  An	
 on-­‐going	
 process	
 but	
 can	
 give	
 >2X	
 performance	
 difference	

0	

2000	

4000	

6000	

8000	

10000	

FO
M
	
 (Z

/s
)	

LULESH	
 Figure	
 of	
 Merit	
 Results	
 (Problem	
 45)	

HSW	
 1x16	
 HSW	
 1x32	
 P8	
 1x40	
 XL	
 KNC	
 1x224	
 ARM64	
 1x8	
 NV	
 K40	

Performance	
 Portability	
 Metrics	

Higher
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

FO
M
	
 (Z

/s
)	

LULESH	
 Figure	
 of	
 Merit	
 Results	
 (Problem	
 60)	

HSW	
 1x16	
 HSW	
 1x32	
 P8	
 1x40	
 XL	
 KNC	
 1x224	
 ARM64	
 1x8	
 NV	
 K40	

Performance	
 Portability	
 Metrics	

Higher
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

FO
M
	
 (Z

/s
)	

LULESH	
 Figure	
 of	
 Merit	
 Results	
 (Problem	
 60)	

HSW	
 1x16	
 HSW	
 1x32	
 P8	
 1x40	
 XL	
 KNC	
 1x224	
 ARM64	
 1x8	
 NV	
 K40	

Performance	
 Portability	
 Metrics	

IniMal	
 ports	
 of	
 code	
 will	
 give	
 similar	
 results	
 to	

OpenMP,	
 +/-­‐	
 10-­‐15%.	
 Seems	
 to	
 be	
 down	
 to	
 different	

opMmizaMon	
 strategies	
 in	
 the	
 compiler.	
 	

Higher
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

FO
M
	
 (Z

/s
)	

LULESH	
 Figure	
 of	
 Merit	
 Results	
 (Problem	
 60)	

HSW	
 1x16	
 HSW	
 1x32	
 P8	
 1x40	
 XL	
 KNC	
 1x224	
 ARM64	
 1x8	
 NV	
 K40	

Performance	
 Portability	
 Metrics	

Kokkos	
 implementaMons	
 deliver	
 consistent	

performance	
 across	
 all	
 architectures	

Higher
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

FO
M
	
 (Z

/s
)	

LULESH	
 Figure	
 of	
 Merit	
 Results	
 (Problem	
 60)	

HSW	
 1x16	
 HSW	
 1x32	
 P8	
 1x40	
 XL	
 KNC	
 1x224	
 ARM64	
 1x8	
 NV	
 K40	

Performance	
 Portability	
 Metrics	

SMT	
 on	
 Haswell	
 doesn’t	
 seem	
 to	
 improve	
 performance,	

generally	
 good	
 on	
 POWER	
 and	
 KNC	

Higher
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

§  These	
 problem	
 sizes	
 are	
 small	
 relaMve	
 to	
 some	
 of	
 the	
 systems	

§  O(100)	
 –	
 O(200)	
 MB	
 in	
 problem	
 size	

§  POWER8	
 –	
 very	
 large	
 memory,	
 large	
 caches	
 (parMcularly	
 L4)	

§  GPU	
 –	
 needs	
 more	
 parallelism	

§  We	
 are	
 trying	
 to	
 capture	
 performance	
 effects	
 based	
 on	
 feedback	

from	
 LULESH	
 developers	

§  But	
 larger	
 problems	
 help	
 our	
 opMmizaMons	
 even	
 more	

§  Not	
 necessarily	
 demonstraMng	
 the	
 best	
 potenMal	
 FOM	

performance	

§  Can	
 get	
 up	
 to	
 2X	
 these	
 FOM	
 figures	
 from	
 our	
 implementaMons	

Thoughts	
 and	
 Experiences	

Kernel	
 Analysis	
 for	
 Kokkos	
 ApplicaMons	

§  Consistent	
 profiling	
 across	
 architectures	
 is	
 hard	

§  Vtune	
 does	
 not	
 like	
 to	
 profile	
 deep	
 in	
 OpenMP	
 hierarchies	
 which	
 are	

enclosed	
 in	
 headers	

§  Nsight	
 manages	
 OK	

§  Not	
 clear	
 that	
 tools	
 understand	
 C++	
 abstracMon	
 layers	

§  KokkosP	
 Profiling	
 Layer	

§  Recent	
 addiMon	
 to	
 Kokkos,	
 opMon	
 to	
 always	
 compile	
 in	

§  Tools	
 dynamically	
 loaded,	
 can	
 be	
 stacked,	
 lightweight	

§  Expose	
 calling	
 structure	
 of	
 kernels	
 and	
 devices	
 to	
 profiler	

§  BeBer	
 context	
 awareness	
 of	
 what	
 execuMon	
 is	
 being	
 requested	

§  SMll	
 very	
 early	
 prototype	
 but	
 shows	
 some	
 promise	

KokkosP	
 Kernel	
 Comparison	
 of	
 Kokkos	
 Opt	
 1	

Haswell	
 1x16	
 S=45	
 I=1000	

CalcFBHourglassForceForElems
A	

CalcKinemaMcsForElems	

_INTERNAL_9_lulesh_cc_bde2
d54a::CalcHourglassControlFor
Elems(Domain&	

IntegrateStressForElemsA	

EvalEOSForElemsA	

CalcMonotonicQGradientsForE
lems	

CalcMonotonicQRegionForEle
ms	

CalcFBHourglassForceForElems
B	

POWER8	
 1x40	
 S=45	
 I=1000	

CalcFBHourglassForceForElems
A	

CalcHourglassControlForElems
(Domain&	

CalcKinemaMcsForElems	

IntegrateStressForElemsA	

EvalEOSForElemsA	

EvalEOSForElemsB	

CalcMonotonicQGradientsForE
lems	

CalcMonotonicQRegionForEle
ms	

EvalEOSForElemsC	

EvalEOSForElemsD	

See similar breakdown across architectures but we can profile them all using one tool

PROGRAMMER	
 PRODUCTIVITY	
 OF	

LULESH	
 VERSIONS	

EvaluaMng	
 Effort	
 to	
 Develop	
 Versions	
 using	

Performance	
 Portable	
 C++	
 AbstracMon	
 Layers	

How	
 do	
 we	
 calculate	
 “producMvity”?	

§  With	
 great	
 difficulty	
 –	
 lots	
 of	
 discussion	
 in	
 the	
 community	
 about	
 what	

this	
 really	
 means	

§  Our	
 approach:	

1.  Remove	
 all	
 comments	
 from	
 the	
 code	

2.  UMlize	
 the	
 clang-­‐format	
 LLVM	
 tool	
 with	
 “Google”	
 code	
 opMon	

3.  Compare	
 the	
 number	
 of	
 sites	
 using	
 Apple’s	
 FileMerge	
 tool	

4.  Compare	
 the	
 lines	
 added/removed	
 using	
 diff	
 –b	
 –w	
 <paths>	

	

§  Not	
 perfect	
 and	
 we	
 have	
 hand	
 modified	
 code	
 of	
 all	
 versions	
 to	
 bring	
 the	

counts	
 more	
 into	
 line	
 (and	
 to	
 be	
 fair	
 wherever	
 possible)	

§  Point	
 is	
 to	
 show	
 approximate	
 level	
 of	
 programmer	
 effort	
 not	
 be	

precisely	
 quanMtaMve	
 because	
 coding	
 style	
 largely	
 down	
 to	
 individual	

	

	

http://clang.llvm.org/docs/ClangFormat.html

Count	
 of	
 Sites	
 at	
 Which	
 Changes	
 are	
 Made	

0	

50	

100	

150	

200	

250	

300	

350	

Si
te
s	
 o

f	
 C
ha

ng
e	

Sites	
 at	
 Which	
 Changes	
 are	
 Made	
 vs.	
 MPI-­‐Only	
 LULESH	

Main	
 Code	
 Header	
 Total	
 Lower
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

Count	
 of	
 Sites	
 at	
 Which	
 Changes	
 are	
 Made	

0	

50	

100	

150	

200	

250	

300	

350	

Si
te
s	

of

	
 C
ha

ng
e	

Sites	
 at	
 Which	
 Changes	
 are	
 Made	
 vs.	
 MPI-­‐Only	
 LULESH	

Main	
 Code	
 Header	
 Total	
 Lower
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

Count	
 of	
 Sites	
 at	
 Which	
 Changes	
 are	
 Made	

0	

50	

100	

150	

200	

250	

300	

350	

Si
te
s	

of

	
 C
ha

ng
e	

Sites	
 at	
 Which	
 Changes	
 are	
 Made	
 vs.	
 MPI-­‐Only	
 LULESH	

Main	
 Code	
 Header	
 Total	

Kokkos and RAJA variants are similar

Lower
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

Source	
 Code	
 Line	
 Changes	

-­‐100	

0	

100	

200	

300	

400	

500	

600	

700	

800	

Li
ne

s	
 o
f	
 C

od
e	

Source	
 Code	
 Lines	
 Added/Removed	
 and	
 Total	
 vs.	
 MPI-­‐Only	

Main	
 Code	
 Added	
 Main	
 Code	
 Removed	
 Main	
 Code	
 Delta	

Header	
 Added	
 Header	
 Removed	
 Header	
 Delta	

Lower

is
Better

Results by Dennis Dinge, Christian Trott and Si Hammond

Source	
 Code	
 Line	
 Changes	

-­‐100	

0	

100	

200	

300	

400	

500	

600	

700	

800	

Li
ne

s	

of

	
 C
od

e	

Source	
 Code	
 Lines	
 Added/Removed	
 and	
 Total	
 vs.	
 MPI-­‐Only	

Main	
 Code	
 Added	
 Main	
 Code	
 Removed	

Main	
 Code	
 Delta	
 Header	
 Added	

Header	
 Removed	
 Header	
 Delta	

C++	
 AbstracMon	
 Layers	
 have	
 approximately	
 similar	

numbers	
 of	
 lines	
 changed	
 to	
 the	
 original	
 OpenMP	

code	
 from	
 LLNL	

Lower
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

Source	
 Code	
 Line	
 Changes	

-­‐100	

0	

100	

200	

300	

400	

500	

600	

700	

800	

Li
ne

s	

of

	
 C
od

e	

Source	
 Code	
 Lines	
 Added/Removed	
 and	
 Total	
 vs.	
 MPI-­‐Only	

Main	
 Code	
 Added	
 Main	
 Code	
 Removed	

Main	
 Code	
 Delta	
 Header	
 Added	

Header	
 Removed	
 Header	
 Delta	

C++	
 AbstracMon	
 Layers	
 have	
 approximately	
 similar	

numbers	
 of	
 lines	
 changed	
 to	
 the	
 original	
 OpenMP	

code	
 from	
 LLNL	

Naïve	
 port	
 to	
 Kokkos	
 uses	
 slightly	
 more	
 changes	
 than	

Is	
 needed	
 by	
 capture-­‐by-­‐reference	
 lambdas	

Lower
is

Better

Results by Dennis Dinge, Christian Trott and Si Hammond

Programmer	
 Development	
 Time	

§  IniMal	
 Kokkos-­‐CPU	
 port	
 by	
 Dennis	
 took	
 a	
 few	
 months	

§  No	
 threading/OpenMP/Kokkos	
 experience	
 for	
 code	
 development	

§  Lots	
 of	
 correctness	
 and	
 performance	
 issues	
 came	
 up	

§  IniMal	
 experience	
 with	
 programmer	
 tools	
 and	
 profilers	

§  Kokkos	
 opMmized	
 implementaMons	

§  O(few	
 weeks)	
 of	
 ChrisMan’s	
 Mme	
 (“Kokkos-­‐expert”)	

§  OpenMP	
 iniMal	
 and	
 opMmized	
 implementaMons	

§  O(few	
 days	
 -­‐	
 week)	
 of	
 Si’s	
 Mme	
 wriBen	
 on	
 a	
 plane	

§  These	
 are	
 not	
 significant	
 amounts	
 of	
 FTE	
 but	
 the	
 code	
 is	
 small	
 in	
 comparison	
 to	

producMon	
 se~ngs	
 (but	
 code	
 groups	
 are	
 larger	
 and	
 beBer	
 resourced)	

§  Difficult	
 (impossible?)	
 to	
 do	
 a	
 deep	
 quanMtaMve	
 comparison	

§  C++	
 abstracMon	
 layers	
 are	
 using	
 similar	
 numbers	
 of	
 changes	
 in	

code	
 (both	
 code	
 sites	
 and	
 SLOC-­‐delta)	
 to	
 direcMves	

§  Perhaps	
 to	
 be	
 expected	
 given	
 implementaMon	
 strategy	
 is	
 similar	

in	
 unopMmized	
 variants	
 of	
 the	
 code	

§  This	
 is	
 a	
 good	
 thing	
 for	
 developers	
 –	
 hard	
 work	
 is	
 in	
 developing	
 the	
 parallel	

algorithm,	
 not	
 in	
 how	
 it	
 is	
 expressed	
 in	
 source	
 code	

§  Looking	
 at	
 changing	
 roughly	
 15%	
 of	
 the	
 code	
 to	
 get	
 iniMal	
 parallel	

versions	
 in	
 this	
 example	

§  Warning:	
 example	
 is	
 friendly	
 to	
 parallelism	
 because	
 of	
 its	
 heritage	

§  Do	
 we	
 need	
 direcMves	
 in	
 applicaMon	
 code	
 at	
 all?	

What	
 can	
 we	
 take	
 away?	

ANALYSIS	
 OF	
 MINIAERO	

MiniAero	
 Overview	

§  Originally	
 wriBen	
 by	
 Ken	
 Franko	
 (now	
 at	
 Google)	

§  Added	
 to	
 Mantevo	
 suite	
 in	
 2014	

§  Designed	
 for	
 exploraMon	
 of	
 Kokkos	
 programming	
 model	

§  Not	
 to	
 be	
 used	
 as	
 a	
 proxy	
 for	
 producMon	
 algorithms	

§  Did	
 not	
 have	
 an	
 “original”	
 OpenMP	
 or	
 serial	
 implementaMon	

§  Different	
 opMons	
 for	
 threaded	
 algorithm	
 to	
 aggregate	
 values	
 onto	

the	
 mesh	

§  Use	
 of	
 atomics	
 operaMons	

§  Use	
 of	
 gather/sum	
 	

MiniAero	
 Scaling	
 Analysis	
 on	
 Trinity	
 Test	
 Machines	

1	

10	

100	

1000	

10000	

32	
 64	
 128	
 256	
 512	
 1024	
 2048	

Ru
nt

im
e	

(S
ec

on
ds

)	

Processor	
 Cores	
 Utilized	

Strong	
 Scaling	
 MiniAero	
 Results	
 for	
 Mutrino	

OpenMP-­‐1	
 OpenMP-­‐2	
 OpenMP-­‐4	
 OpenMP-­‐8	
 OpenMP-­‐16	

Approximately	
 10%	
 performance	

difference	
 by	
 switching	
 from	
 MPI	
 to	

OpenMP	
 (not	
 all	
 kernels	
 are	
 fully	

parallelized)	

Lower
is

Better

Results by Jeanine Cook and Courtenay Vaughan

MiniAero	
 Scaling	
 Analysis	
 on	
 Trinity	
 Test	
 Machines	

0	

500	

1000	

1500	

2000	

2500	

3000	

32	
 64	
 128	
 256	
 512	
 1024	
 2048	

Ru
nt

im
e	

(S
ec

on
ds

)	

Processor	
 Cores	
 Utilized	

Weak	
 Scaling	
 MiniAero	
 Results	
 for	
 Mutrino	

OpenMP-­‐1	
 OpenMP-­‐2	
 OpenMP-­‐4	
 OpenMP-­‐8	
 OpenMP-­‐16	

Approximately	
 20%	
 performance	

difference	
 by	
 switching	
 from	
 MPI	
 to	

OpenMP	
 (not	
 all	
 kernels	
 are	
 fully	

parallelized)	

Flatter
is

Better

Results by Jeanine Cook and Courtenay Vaughan

MiniAero	
 Scaling	
 Analysis	
 on	
 BlueGene/Q	

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

1	
 4	
 16	
 64	
 256	
 1024	
 4096	

Ru
nt

im
e	

(S
ec

on
ds

)	

BG/Q	
 Nodes	
 Utilized	

Weak	
 Scaling	
 MiniAero	
 Results	
 for	
 BlueGene/Q	

MPI-­‐Only	
 Atomics	
 MPI	
 Only	
 Gather	
 Sum	

MPI	
 +	
 OMP-­‐64	
 Atomics	
 MPI	
 +	
 OMP64	
 Gather	
 Sum	

Poor	
 atomics	
 performance	
 on	
 BG/Q	
 (not	
 opMmized	
 in	

Kokkos).	
 MPI	
 only	
 up	
 to	
 20%	
 faster	
 than	
 threaded	

Flatter
is

Better

MPI	
 =	
 Nodes	
 *	
 64	
 ranks,	
 MPI	
 +	

OpenMP	
 Ranks	
 =	
 Nodes	

Results by Paul Lin

MiniAero	
 Scaling	
 on	
 GPU	
 Clusters	

0	

20	

40	

60	

80	

100	

120	

140	

160	

1	
 2	
 4	
 8	

Ru
nt

im
e	

(S
ec

on
ds

)	

GPU	
 Cards	
 Utilized	

Weak	
 Scaling	
 MiniAero	
 Results	
 for	
 K80	
 GPU	
 Cluster	

Atomics	
 Gather	
 Sum	
 Flatter
is

Better

Good	
 atomics	
 performance	
 on	
 GPUs	

means	
 we	
 don’t	
 see	
 the	
 same	
 results	

at	
 BG/Q.	
 	

Results by Paul Lin

MiniAero	
 Scaling	
 on	
 KNC	
 Clusters	

0	

100	

200	

300	

400	

500	

600	

700	

1	
 2	
 4	
 8	
 16	
 32	

Ru
nt

im
e	

(S
ec

on
ds

)	

KNC	
 Cards	
 Utilized	

Weak	
 Scaling	
 MiniAero	
 Results	
 for	
 Compton	
 KNC	
 Cluster	

Atomics	
 Gather	
 Sum	
 Flatter
is

Better

Closer	
 performance	
 with	
 atomics	
 and	

gather-­‐sum	
 on	
 KNC.	
 Poor	
 scaling	
 is	

due	
 to	
 very	
 slow	
 intercard	
 MPI	

Results by Paul Lin

224	
 OpenMP	
 threads	
 per	
 card	
 (=	
 1	
 MPI	
 rank)	

EmulaMon	
 and	
 InstrucMon	
 Analysis	
 for	
 KNL	

§  Covers	
 all	
 instrucMons	
 executed	
 (dynamic	
 stream)	
 including	
 move	

operaMons	
 and	
 register	
 clears	

0%	

20%	

40%	

60%	

80%	

100%	

SNB	
 HSW	
 KNL	

Pe
rc
en

ta
ge
	
 o
f	
 I
ns
tr
uc
5o

ns
	
 E
xe
cu
te
d	

Instruc5on	
 Breakdown	
 by	
 Vector	
 Width	
 for	
 MiniAero	

Scalar	
 AVX128	
 AVX256	
 AVX512	

MiniAero	
 Summary	

§  QuesMon	
 as	
 to	
 whether	
 exactly	
 the	
 same	
 algorithm	
 will	
 run	
 on	
 all	
 architectures	

well	
 –	
 atomics	
 vs.	
 gather-­‐scaBer	

§  Open	
 quesMon	
 which	
 requires	
 further	
 research	

§  May	
 not	
 be	
 able	
 to	
 find	
 a	
 single	
 source	
 which	
 always	
 runs	
 truly	
 well	

everywhere	

§  Is	
 not	
 intrinsic	
 to	
 Kokkos,	
 the	
 same	
 issue	
 is	
 true	
 for	
 OpenMP,	
 RAJA	
 etc	

§  ConMnues	
 to	
 reinforce	
 why	
 we	
 need	
 codesign	
 and	
 research	
 into	
 our	
 code	

performance	

§  Clearly	
 sMll	
 need	
 to	
 look	
 at	
 poor	
 vectorizaMon	
 levels	
 for	
 Trinity	
 machines	

CONCLUSIONS	
 AND	
 DISCUSSION	

§  Showed	
 portability	
 of	
 two	
 Kokkos	
 mini-­‐app	
 implementa5ons	

across	
 ASC	
 Advanced	
 Architecture	
 Test	
 Beds	

§  Strong	
 performance	
 across	
 architectures	
 for	
 LULESH	

§  O�en	
 as	
 strong	
 or	
 stronger	
 than	
 equivalent	
 OpenMP	
 code	

§  IniMal	
 expectaMons	
 for	
 use	
 of	
 Haswell,	
 POWER	
 and	
 GPU	
 systems	

§  Knights	
 Landing	
 sMll	
 remains	
 an	
 unknown	
 due	
 to	
 significant	
 changes	
 over	

Knights	
 Corner	
 cards	

§  Evaluated	
 programmer	
 producMvity	
 for	
 LULESH	

§  C++	
 abstracMon	
 layers	
 are	
 approximately	
 equivalent	
 to	
 well	
 opMmized	

OpenMP	
 code	
 in	
 sites	
 of	
 code	
 change	
 and	
 number	
 of	
 source	
 lines	

Summary	

Feedback	
 to	
 Vendors/Community	

§  Kokkos	
 is	
 now	
 on	
 github.com	
 (fully	
 open	
 source	
 and	
 free	
 for	
 everyone)	

§  Full	
 public	
 release	
 of	
 the	
 most	
 up	
 to	
 date	
 development	
 branches	

§  Strong	
 engagement	
 with	
 NVIDIA,	
 AMD	
 and	
 IBM,	
 iniMal	
 engagement	
 with	
 Intel	

§  Feedback	
 to	
 IBM	
 and	
 Cray	
 on	
 compiler	
 issues,	
 during	
 this	
 L2	
 both	
 now	
 compile	
 miniapps	

successfully	

§  Now	
 has	
 iniMal	
 support	
 for	
 Knights	
 Landing	
 compile	
 path	

§  ImplementaMons	
 using	
 Kokkos	
 will	
 be	
 available	
 for	
 the	
 community	
 in	
 Mantevo	

release	
 for	
 SC15	

§  Poster	
 submiBed	
 to	
 SC15	
 covering	
 OpenMP	
 and	
 Kokkos	
 studies	
 (no	
 RAJA)	

§  Clearly	
 sMll	
 a	
 need	
 in	
 some	
 areas	
 for	
 beBer	
 opMmizaMon	
 support	
 in	
 compilers	

§  See	
 very	
 varied	
 inlining,	
 opMmizaMon,	
 vectorizaMon	
 etc.	
 More	
 Mme	
 and	
 more	
 focus	
 by	

the	
 labs	
 will	
 help	

§  CommiBed	
 to	
 C++	
 abstracMon	
 layer	
 support	
 in	
 development	
 of	
 ATS3	
 RFP	

ProducMvity	

§  ProducMvity	
 in	
 Kokkos	
 in	
 some	
 ways	
 has	
 always	
 been	
 behind	
 portability	
 and	

performance	

§  We	
 needed	
 to	
 learn	
 the	
 best	
 approach	
 before	
 we	
 could	
 work	
 out	
 how	
 to	
 enhance	

programmer	
 producMvity	

§  Have	
 learned	
 a	
 lot	
 through	
 discussions	
 with	
 RAJA	
 team	
 on	
 why	
 this	
 is	
 important	
 and	

through	
 our	
 own	
 applicaMon	
 work	
 on	
 LAMMPS,	
 Trilinos,	
 Albany,	
 SIERRA	
 etc	

§  Have	
 a	
 much	
 stronger	
 story	
 in	
 producMvity	
 on	
 the	
 parallel	
 execuMon/dispatch	

§  This	
 codesign	
 study	
 has	
 helped	
 inform	
 us	
 further	

§  Kokkos	
 has	
 strong	
 story	
 for	
 data	
 management	

§  IniMal	
 work	
 on	
 efficient	
 parallel	
 STL-­‐like	
 containers	

§  Our	
 experience	
 is	
 90%	
 of	
 the	
 work	
 is	
 in	
 making	
 the	
 algorithm	
 parallel	
 and	
 opMmizing	

the	
 data	
 structures	
 not	
 in	
 the	
 specific	
 way	
 its	
 wriBen	

Kokkos	
 in	
 the	
 Community	

§  Published	
 a	
 Kokkos	
 Programming	
 Guide	
 in	
 2015	

§  Based	
 on	
 lots	
 of	
 feedback	
 from	
 community	

§  Covers	
 general	
 concepts	
 and	
 themes	
 of	
 Kokkos	

§  Kokkos	
 Training	
 Material	

§  200	
 tutorial	
 slide	
 deck	

§  MulMple	
 examples	
 with	
 varying	
 levels	
 of	
 complexity	

§  Kokkos	
 Tutorial	
 at	
 Sandia	
 in	
 September	

§  Over	
 80	
 registered	
 aBendees	

§  Will	
 work	
 on	
 mulM-­‐core,	
 many-­‐core	
 and	
 GPU	
 Sandia	
 test	
 beds	

§  Tutorial	
 at	
 ACM/IEEE	
 SupercompuMng	
 in	
 November	
 2015	

Acknowledgments	

§  ApplicaMon	
 Performance	
 Team	
 at	
 Sandia	

§  Dave	
 Resnick,	
 Jim	
 Thomkins,	
 Sue	
 Phelps	

§  ASC	
 Advanced	
 Architecture	
 Test	
 Beds	
 at	
 Sandia	

§  Project	
 Management	
 and	
 System	
 AdministraMon	
 Team	

§  Jim	
 Brandt,	
 Ann	
 GenMle,	
 Victor	
 Kuhns,	
 Nate	
 GaunB,	
 Jason	
 Repik,	
 T.J.	
 Lee,	
 Jim	
 Laros,	
 Sue	
 Kelly	

§  SIERRA	
 Code	
 Teams	
 for	
 inputs	
 (-­‐SM,	
 -­‐SD	
 and	
 -­‐TF)	

§  Mike	
 Tupek,	
 Kendall	
 Pierson,	
 Nate	
 Crane,	
 Mark	
 Mereweather,	
 Travis	
 Fisher	
 &	
 others	

§  Kokkos	
 Development	
 Team	

§  Carter	
 Edwards,	
 Mark	
 Hoemmen,	
 Dan	
 Sunderland,	
 Irina	
 Dimenshenko	
 &	
 others	

§  ASC	
 L2	
 Review	
 CommiBee	

§  Jeff	
 Keasler,	
 Ian	
 Karlin	
 and	
 Rich	
 Hornung	
 (LLNL)	
 for	
 inputs	
 on	
 RAJA,	
 LULESH	
 and	

general	
 programming	
 model	
 discussion	

§  We	
 have	
 learned	
 a	
 great	
 deal	
 from	
 you	
 folks	
 	

BACKUP	
 SLIDES	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

1	
 2	
 4	
 8	
 16	

So
lv
e	

Ti
m
e	

(S
ec
on

ds
)	

Cores	
 per	
 MPI	
 Rank	

Thread	
 Scaling	
 per	
 MPI	
 Rank	
 on	
 Volta	
 XC30	

1	
 Node	
 2	
 Nodes	
 4	
 Nodes	
 8	
 Nodes	
 16	
 Nodes	
 32	
 Nodes	

MiniAero	
 Thread	
 Scaling	
 on	
 Cray	
 XC30	

See	
 beBer	
 performance	
 from	
 threads	
 as	
 we	
 strong	
 scale	
 out	
 to	

more	
 nodes	
 (smaller	
 problem	
 per	
 node)	

Lower
is

Better

Results by Jeanine Cook and Courtenay Vaughan

