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Nonlinear ODE, implicit time integration

total Newton iterations

d
eg

re
es

of
fr
ee

d
om

Time-parallel ROMs via forecasting Carlberg, Barone, Antil 2 / 39



Reduced-order model (ROM): computed unknowns
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Exploit spatial-behavior data to decrease # unknowns.
Can we do more?
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Goal

total Newton iterations
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Exploit temporal-behavior data to decrease total Newton iterations.
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Main idea

full-order model

1st- or 2nd-order nonlinear ODE
implicit time integator

computational complexity

each time step, solve a large-scale system of nonlinear
equations with a Newton-like method
spatial complexity: cost of each Newton iteration
(i.e., linear-system solve)
temporal complexity: number of Newton iterations

ROM: use spatial-behavior data to decrease spatial complexity

goals

1 exploit temporal-behavior data to decrease temporal complexity
2 introduce no additonal error to ROM solution
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Outline
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Parameterized, nonlinear ODE

for simplicity, consider first-order ODEs

ẋ = f (x ; t,µ)

x(0;µ) = x0 (µ)

state: x ≡ x(t;µ) ∈ RN

f nonlinear in x

inputs: µ ∈ D
initial condition: x0 (µ) ∈ RN
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Implicit time integration

for simplicity, consider only single-stage methods

system of nonlinear equations solved at each time step:

Rn (wn;µ) = 0, n = 1, ... ,M

unknowns wn: state or velocity at t ∈
[
tn−1, tn

]
after computing wn, explicitly update the state:

xn = γxn−1 + βwn
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Full-order model: computational burden

Solve
Rn (wn;µ) = 0, n = 1, ... ,M

with a Newton-like method

solve one N-dimensional linear system per Newton iteration

spatial complexity: cost of each linear-system solve

direct solver: O
(
ω2N

)
flops1

iterative solver: O (LωN) flops2

N large → spatial complexity large

temporal complexity: total number of Newton iterations

N large → M large → temporal complexity large

1ω: average number of nonzeros per row of ∂Rn

∂w
2L: average number of linear-solver iterations per Newton iteration
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Projection-based model reduction

Offline: exploit knowledge of spatial behavior to compute

basis Φ ∈ RN×N̂ with N̂ � N (e.g., POD)

Online: approximate state by x̃ in low-dim trial subspace:

x̃(t;µ) = x0 (µ) + Φx̂(t;µ) (1)

˙̃x(t;µ) = Φ ˙̂x(t;µ) (2)

substituting (1)–(2) into ODE (with x = x̃) yields

Φ ˙̂x = f
(
x0 (µ) + Φx̂ ; t,µ

)
. (3)

ODE (3) may not be solvable, because image(f ) 6⊂ range(Φ)
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Project, then discretize in time

Goal: compute solution to overdetermined ODE

enforce orthogonality of ODE residual to range of Ψ ∈ RN×N̂

ΨTΦ ˙̂x = ΨT f
(
x0 (µ) + Φx̂ ; t,µ

)
˙̂x =

(
ΨTΦ

)−1
ΨT f

(
x0 (µ) + Φx̂ ; t,µ

)
(4)

solve (4) with the same implicit numerical integrator(
ΨTΦ

)−1
ΨTRn

(
w0 (µ) + Φŵn;µ

)
= 0, n = 1, ... ,M

ŵn ∈ RN̂ : generalized unknowns at time step n
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Discretize in time, then project

Goal: compute solution to overdetermined ODE

1 apply time integrator to overdetermined ODE

2 minimize discrete residual over the trial subspace
[LeGresley, 2006, Carlberg et al., 2011]

ŵn = arg min
y∈RN̂

‖Rn
(
w0 (µ) + Φy;µ

)
‖2

solve with nonlinear least-squares method, e.g., Gauss–Newton

Problem: spatial complexity still scales with N
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Hyperreduction

Goal: reduce spatial complexity by approximating nonlinear terms

collocation [Astrid et al., 2008, Ryckelynck, 2005, LeGresley, 2006]

R̃n = ZTZRn

Z (sampling matrix): selected rows of IN×N

empirical interpolation/gappy POD
[Astrid et al., 2008, Bos et al., 2004, Chaturantabut and Sorensen, 2010,

Galbally et al., 2009, Drohmann et al., 2012, Carlberg et al., 2011]

f̃ = Φf (ZΦf )+ Zf

or

R̃n = ΦR (ZΦR)+ ZRn

ΦR , Φf : bases that exploit observed spatial behavior
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Example: Ahmed body

(a) Ahmed body [Hinterberger et al., 2004] (b) mesh

compressible Navier–Stokes (finite volume, AERO-F)

DES turbulence model

Re = 4.48× 106

M∞ = 0.175

3-point BDF integrator
(implicit)

FOM: N = 1.73× 107

GNAT nonlinear ROM [Carlberg et al., 2011]

discretize in time, then project (minimize discrete residual)

hyperreduction: gappy POD applied to residual
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Example: GNAT nonlinear model reduction [Carlberg et al., 2012]

(c) full-order (1.73 × 107 dofs) (d) GNAT (283 dofs)

surface pressure at t = 0.1 seconds

model
error in cost, Newton iterations

drag core-hours per time step

full-order model 6810 4.0

reduced-order model 0.68% 16 2.75
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Complexity reduction

spatial complexity: decreased by factor of 637

temporal complexity: decreased by factor of 1.5

Can we do more?
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Overview

Goal: exploit temporal-behavior data to
reduce temporal complexity

1 during ROM simulation, apply gappy POD in the time domain
to generate a forecast for the generalized unknowns

2 use the forecast as an accurate initial guess for the
Newton-like solver

+ good guess → few Newton its → low temporal complexity

+ introduces no additional error
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Offline: compute time-evolution POD bases Ψj

1 collect snapshots of the temporal behavior of the
jth generalized unknown:

ŵn
j (µ), n = 1, ... ,M, µ ∈ {µ̄i}ntraini=1

ŵ
j

n

0 M

0

example with 3 training configurations (ntrain = 3)
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Offline: compute time-evolution POD bases Ψj

2 compute SVD of temporal-behavior snapshots

 

 

U
j

n

1
2
3

0 M

 ŵ1
j (µ̄1) · · · ŵ1

j (µ̄ntrain)
...

. . .
...

ŵM
j (µ̄1) · · · ŵM

j (µ̄ntrain)

 = UjΣjV
T
j

3 truncate: keep only aj ≤ ntrain vectors: Ψj = Uj(:, 1 : aj)
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Time-evolution bases: example

implicit linear multi-step scheme: wn = xn

one training configuration (ntrain = 1)

POD model reduction

Here, the time-evolution bases Ψj are the right singular vectors
generated when computing Φ:[

x1 (µ̄1) · · · xM (µ̄1)
]

= UΣV T

Φ = U

Ψj = V (:, j) for j = 1, ... ,M
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Online: compute forecast, use as initial guess

1 compute forecast by gappy POD in time domain:
match generalized unknowns at previous α time steps

ŵ
j

n

0 M

0

ŵj so far; memory α = 4; forecast

zj = arg min
z∈Raj

∥∥∥∥∥
 Ψj(n − α, 1) · · · Ψj(n − α, aj)

...
. . .

...
Ψj(n − 1, 1) · · · Ψj(n − 1, aj)

 z−

 ŵn−α
j
...

ŵn−1
j

∥∥∥∥∥
2

2

2 use forecast Ψjzj as an accurate initial guess for Newton solver
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Online algorithm sketch

1: for n = 1, ... ,M do

2: if forecast is available then
3: use forecast as initial guess for generalized unknowns
4: end if
5: solve reduced-order equations with a Newton-like method
6: if # Newton iterations > τ then {recompute forecast}
7: compute forecast using generalized unknowns at previous

α time steps
8: end if
9: end for

many Newton iterations: heuristic for poor forecast
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Clamped-free truss structure, geometric nonlinearity
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(a) initial displacement (red)
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(b) external forces

M (µ)ẍ + C (µ)ẋ + f int (x ;µ) = f ext(t;µ)

M: mass matrix

C = αM + β∇x f
int(x0): Rayleigh damping matrix

f int: internal force, nonlinear in x

f ext: sum of three sinusoidal forces, activated at n = M/2

N = 9000 degrees of freedom in full-order model

implicit midpoint rule: wn = ẍ(tn−1 + 1/2∆t)
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Clamped-free truss structure, geometric nonlinearity
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(c) initial displacement (red)
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(d) external forces

9 inputs:

3 material properties: density, bar cross-sectional area,
modulus of elasticity

2 geometrical parameters: base width a, base height b

1 initial-displacement magnitude

3 external-force magnitudes
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Three reduced-order models compared

1 Galerkin projection

ΦTM (µ)¨̂x + ΦC (µ)Φ ˙̂x + ΦT f int
(
x0 (µ) + Φx̂ ;µ

)
= ΦT f ext(t;µ)

2 Galerkin projection + collocation

ΦTZTZ
(
M (µ)¨̂x + C (µ)Φ ˙̂x + f int

(
x0 (µ) + Φx̂ ;µ

)
− f ext(t;µ)

)
= 0

3 Galerkin projection + gappy POD approximation of residual

ΦTΦR (ZΦR)+ Z
(
M (µ)¨̂x + C (µ)Φ ˙̂x + f int

(
x0 (µ) + Φx̂ ;µ

))
=

ΦTΦR (ZΦR)+ Zf ext(t;µ)
)

forecasting: memory α = 12, Newton threshold τ = 0
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Case 1 (ideal): fixed inputs, no truncation of bases

 

 

Galerkin + collocation
Galerkin + gappy POD
Galerkin
full-order model
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all responses nearly exact (as expected)
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Case 1: forecasting drastically improves performance

ROM method
relative
error

total Newton its wall-time speedup

no
forecast

forecast
no

forecast
forecast

Galerkin 8.64× 10−12 99 2 1.01 1.84
Gal + Gappy 8.64× 10−12 99 2 36.4 69.3

Gal + coll 2.12× 10−5 100 16 36.5 61.9

+ forecast ‘perfect’: computation only at first time step for
ROMs 1 and 2
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Case 2: unforced dynamics, varying structure

six varied inputs: material properties, geometry, initial cond

six randomly chosen training configurations

two randomly chosen online configurations

99.99% energy criterion for POD
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(f) online configuration 2

+ all relative errors less than 1%
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Case 2: forecasting improves performance by ∼ 60%

online
config

ROM
method

Newton its wall-time speedup

no
forecast

forecast
no

forecast
forecast

1
Galerkin 82 49 0.998 1.71

Gal + Gappy 82 48 58.2 82.4
Gal + coll 82 48 59.4 80.8

2
Galerkin 82 48 1.03 1.55

Gal + Gappy 82 48 54.0 86.1
Gal + coll 82 48 55.5 88.7

+ forecasting cuts Newton steps nearly in half

+ wall-time speedup increases by roughly 60%

- performance less impressive than ideal case
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Case 2: temporal behavior similar across input variation

temporal behavior of first generalized unknown ŵ1

(bold=online; thin=training):
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(h) online configuration 2

temporal behavior similar across input variation: this explains
the method’s effectiveness

+ method seems to handle frequency shifts
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Case 3: forced dynamics, fixed structure

four varied inputs: external-force magnitudes, initial condition
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(j) online configuration 2

+ relative errors roughly 1.5%
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Case 3: forecasting improves performance by ∼ 50%

online
config

ROM
method

Newton its wall-time speedup

no
forecast

forecast
no

forecast
forecast

1
Galerkin 100 60 1.02 1.47

Gal + Gappy 100 61 52.7 75.2
Gal + coll 100 71 49.5 70.9

2
Galerkin 100 60 1.02 1.52

Gal + Gappy 100 61 52.1 73.2
Gal + coll 100 68 54.3 71.8

+ forecasting cuts Newton steps by 40%

+ wall-time speedup increases by roughly 50%

- performance again slightly worse (richer dynamics)
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Case 4: forced dynamics, varying structure

nine varied inputs: external-force magnitudes, initial condition
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(l) online configuration 2

- ROMs increasingly inaccurate after forces activated (t = 12.5)

relative errors between 5% and 17%

Time-parallel ROMs via forecasting Carlberg, Barone, Antil 36 / 39



Case 4: forecasting improves performance by ∼ 35%

online
config

ROM
method

Newton its wall-time speedup

no
forecast

forecast
no

forecast
forecast

1
Galerkin 104 109 1.21 1.38

Gal + Gappy 124 94 8.0 9.48
Gal + coll 120 90 8.12 11

2
Galerkin 95 62 1.04 1.47

Gal + Gappy 95 64 7.47 10.4
Gal + coll 100 73 7.36 9.98

- forecasting method does not always help: number of Newton
steps increases in one case

+ forecasting cuts Newton steps by 25% in most cases

+ wall-time speedup increases by roughly 35%
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Conclusions

use temporal-behavior data to reduce ROM simulation time

offline: compute time-evolution bases

online:
1 use gappy POD to forecast generalized unknowns
2 use forecast as initial guess in ROM Newton solver

+ observed decrease in temporal complexity

+ observed decrease in ROM simulation wall time

+ no additional error introduced

best performance occurs in the case of:
1 smooth dynamics (low frequency)
2 temporal behavior similar across input variation
3 accurate ROM

Reference: K. Carlberg, J. Ray, and B. van Bloemen
Waanders. ‘Decreasing the temporal complexity for nonlinear,
implicit reduced-order models by forecasting,’ arXiv e-Print
1209.5455 (2012). (submitted to CMAME)

Time-parallel ROMs via forecasting Carlberg, Barone, Antil 38 / 39



Questions?
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