

Fuel Cycle Research and Development

**Nuclear Fuel Cycle Options
Catalog – Status and Plans**

**Laura Price
Sandia National Laboratories**

Nuclear Fuel Cycle Options Campaign

December 8, 2015

FY15 Fuel Cycle Options Online Catalog Activities

- **Create enhanced search facility**
- **Create Fuel Cycle Evaluation and Screening webpage**
- **Create “Evaluate My Option” webpage**
- **Develop on-line FCDP entry process**
- **Add options and technologies to the catalog**
- **Conduct ongoing maintenance activities**

Create Enhanced Search Facility

NUCLEAR FUEL CYCLE OPTIONS CATALOG

Search for Fuel Cycle Options by Strategy, Stages, and Technologies

Found 58 Options

Fuel Cycle Option Title & Description (Click on Title to Display Details) ▾

	Fuel Cycle Strategy	Number of Stages
Accelerator Driven System using Natural Uranium Fuel	No Recycle	1 Stages
Accelerator Driven System using Natural Uranium, Recovered Uranium, and Transuranic Fuel; Pressurized Water Reactor using Natural Uranium, Recovered Uranium, and Transuranic Fuel	Continuous Recycle	2 Stages
Accelerator Driven System using Thorium Fuel	No Recycle	1 Stages
Accelerator Driven System using Thorium Fuel; Pressurized Water Reactor using Thorium and Uranium-233 Fuel	Continuous Recycle	2 Stages
Accelerator Driven System using Uranium and Plutonium Fuel; Pressurized Water Reactor using Uranium and Plutonium Fuel	Continuous Recycle	2 Stages

Click Here to Reset Search Criteria to ALL

Expand to display criteria selections
Default for no selection is ALL

- Select a Fuel Cycle Strategy
- Select the Number of Stages
- Select a Reactor Technology
- Select a Fresh Fuel
- Select a Separation Technology

This is a once-through nuclear fuel cycle that uses natural uranium metal fuel in a blanket of a subcritical accelerator-driven reactor, breeding and fissioning plutonium-239 at equilibrium. The target material is liquid lead.

This is a two-stage continuous recycle fuel cycle option in which an accelerator driven system uses metal driver fuel composed of recovered uranium and transuramics, and metal blanket fuel composed of natural uranium and recovered uranium. Fuel discharged from the accelerator-driven system is reprocessed; fission products are disposed of. Some recovered transuramics and all recovered uranium are re-used in the accelerator-driven system. The remainder of the recovered transuramics are mixed with natural uranium, plutonium, and recovered uranium (from the second stage) and fabricated into a mixed-oxide fuel that is used in a pressurized water reactor. Fuel discharged from the pressurized water reactor is reprocessed; fission products are disposed of. Minor actinides are re-used in the first-stage accelerator driven system, while recovered plutonium and uranium are re-used in the pressurized water reactor.

This is a once-through fuel cycle in which a molten salt thorium fuel is used as a blanket in an accelerator-driven system. A graphite moderator is used to maintain a thermal spectrum. The target material is liquid lead. Discharged fuel is disposed of.

This is a two-stage continuous-recycle fuel cycle option in which a natural thorium metal fuel is irradiated in the blanket region of an accelerator-driven system. The target material is liquid lead. Fuel discharged from the accelerator-driven system is reprocessed electrochemically; fission products and target materials are disposed of. Recovered thorium is fabricated into metal fuel and re-used in the accelerator-driven system. Recovered uranium is combined with thorium and fabricated into a mixed oxide fuel that is used in a pressurized water reactor. Fuel discharged from the pressurized water reactor is reprocessed; transuramics and fission products are disposed of. Recovered thorium and uranium are fabricated into oxide fuel and re-used in the pressurized water reactor.

Create Enhanced Search Facility (cont'd)

NUCLEAR FUEL CYCLE OPTIONS CATALOG

Search for Fuel Cycle Options

Found 58 Options

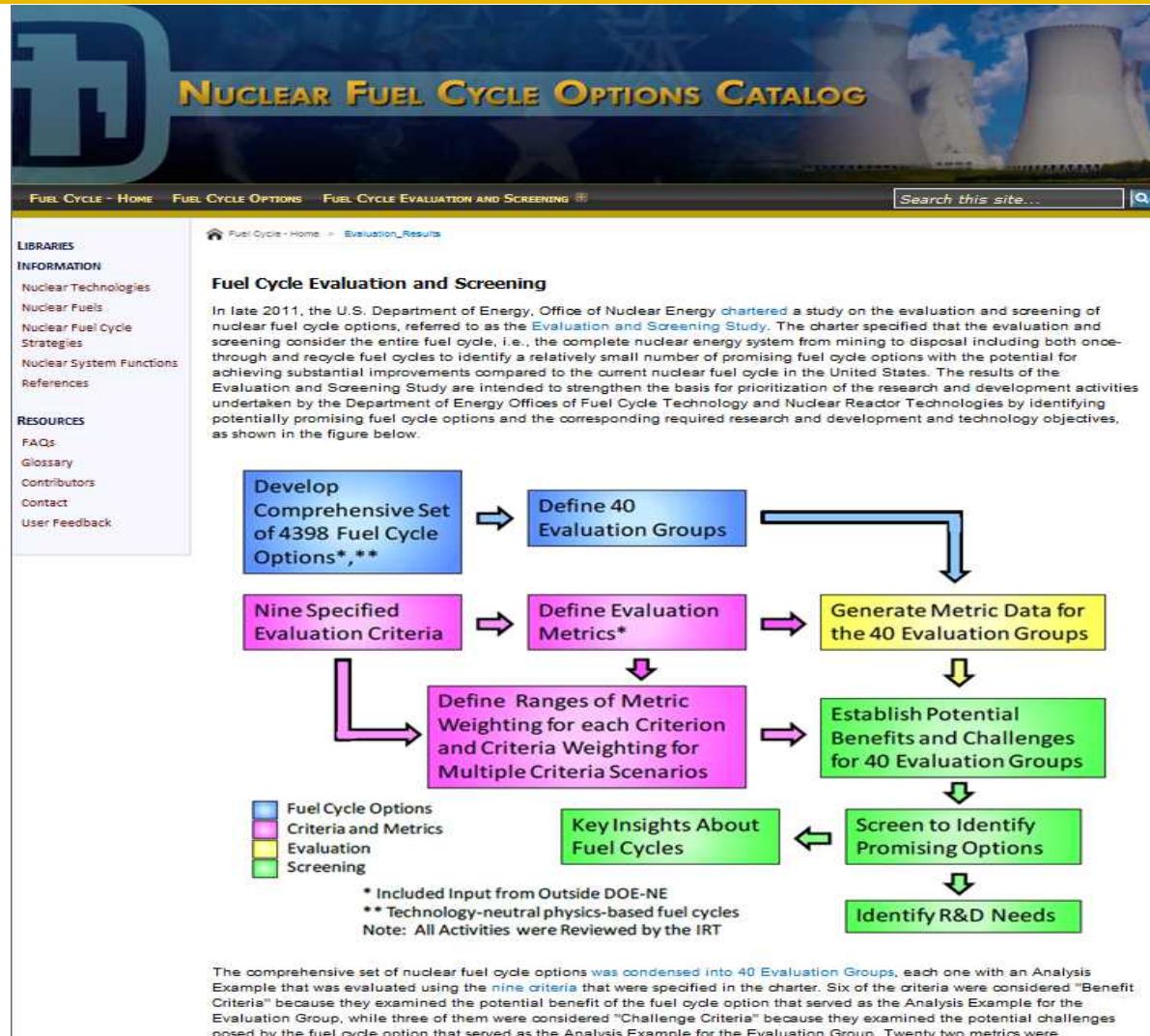
Fuel Cycle Option Title & Description (Click on Title to Display Details) ▾

Fuel Cycle Strategy	Number of Stages	Reactor Spectrum	Reactor Reactivity	Incoming Fuel	Enrichment Needed?	Recycle Elements
once-through	1 Stages	Fast	Subcritical	U	No	-None-
Accelerator Driven System using Natural Uranium Fuel This is a once-through nuclear fuel cycle that uses natural uranium metal fuel in a blanket of a subcritical accelerator-driven reactor, breeding and fissioning plutonium-239 at equilibrium. The target material is liquid lead. Display Interactive Flow Diagram						
Accelerator Driven System using Natural Uranium, Recovered Uranium, and Transuranic Fuel; Pressurized Water Reactor using Natural Uranium, Recovered Uranium, and Transuranic Fuel This is a two-stage continuous recycle fuel cycle option in which an accelerator driven system uses metal driver fuel composed of recovered uranium and transuramics, and metal blanket fuel composed of natural uranium and recovered uranium. Fuel discharged from the accelerator-driven system is reprocessed; fission products are disposed of. Some recovered transuramics and all recovered uranium are re-used in the accelerator-driven system. The remainder of the recovered transuramics are mixed with natural uranium, plutonium, and recovered uranium (from the second stage) and fabricated into a mixed-oxide fuel that is used in a pressurized water reactor. Fuel discharged from the pressurized water reactor is reprocessed; fission products are disposed of. Minor actinides are re-used in the first-stage accelerator driven system, while recovered plutonium and uranium are re-used in the pressurized water reactor. Display Interactive Flow Diagram						
once-through	1 Stages	Thermal	Subcritical	Th	No	-None-
Accelerator Driven System using Thorium Fuel This is a once-through fuel cycle in which a molten salt thorium fuel is used as a blanket in an accelerator-driven system. A graphite moderator is used to maintain a thermal spectrum. The target material is liquid lead. Discharged fuel is disposed of. Display Interactive Flow Diagram						
Accelerator Driven System using Thorium Fuel; Pressurized Water Reactor using Thorium and Uranium-233 Fuel This is a two-stage continuous-recycle fuel cycle option in which a natural thorium metal fuel is irradiated in the blanket region of an accelerator-driven system. The target material is liquid lead. Fuel discharged from the accelerator-driven system is reprocessed electrochemically; fission products and target materials are disposed of. Recovered thorium is fabricated into metal fuel and re-used in the accelerator-driven system. Recovered uranium is combined with thorium and fabricated into a mixed oxide fuel that is used in a pressurized water reactor. Fuel discharged from the pressurized water reactor is reprocessed; transuramics and fission products are disposed of. Recovered thorium and uranium are fabricated into oxide fuel and re-used in the pressurized water reactor. Display Interactive Flow Diagram						
multi-stage continuous	2 Stages	Fast and Thermal	Subcritical and Critical	U	No	Pu
Accelerator Driven System using Uranium and Plutonium Fuel; Pressurized Water Reactor using Uranium and Plutonium Fuel						

Reset Search Criteria to ALL

Expand to display criteria selections. Default for no selection is ALL

- Select a Fuel Cycle Strategy
- Select a Number of Stages
- Select a Spectrum
- Select a Reactivity
- Select an Incoming Fuel
- Select a Recycle Element
- Select Enrichment Needed



FY15 Fuel Cycle Options Online Catalog Activities

- Create enhanced search facility
- **Create Fuel Cycle Evaluation and Screening webpage**
- Create “Evaluate My Option” webpage
- Develop on-line FCDP entry process
- Add options and technologies to the catalog
- Conduct ongoing maintenance activities

Create Fuel Cycle Evaluation and Screening Webpage

FY15 Fuel Cycle Options Online Catalog Activities

- Create enhanced search facility
- Create Fuel Cycle Evaluation and Screening webpage
- **Create “Evaluate My Option” webpage**
- Develop on-line FCDP entry process
- Add options and technologies to the catalog
- Conduct ongoing maintenance activities

“Evaluate My Option” webpage

NUCLEAR FUEL CYCLE OPTIONS CATALOG

FUEL CYCLE - HOME FUEL CYCLE OPTIONS FUEL CYCLE EVALUATION AND SCREENING

[Fuel Cycle - Home](#) > OptionQuestions

Option Questions

[Start](#) [Recycle Strategy](#) [Reactivity](#) [Reactor Spectrum](#) [Fresh Fuel](#) [Recycled Elements](#) [Enrichment](#)

How does my option score?

From this page, you can determine how your envisioned nuclear fuel cycle option would perform against the criteria and metrics used in the evaluation and screening. The series of questions below will indicate to which of the evaluation groups your envisioned fuel cycle option belongs, and will show how that evaluation group performed against the evaluation criteria and metrics in the evaluation and screening. Click on the “Next” button to get started.

[Previous](#) [Next](#) [Start Over](#) [Finish](#)

FY15 Fuel Cycle Options Online Catalog Activities

- Create enhanced search facility
- Create Fuel Cycle Evaluation and Screening webpage
- Create “Evaluate My Option” webpage
- **Develop on-line FCDP entry process**
- Add options and technologies to the catalog
- Conduct ongoing maintenance activities

Develop On-Line FCDP Entry Process

Nuclear Fuel Cycle Option Catalog Option Manager

Edit Technology Parameter Values

Option	Demonstration 1		
Stage	Stage 1 - This is a description of Stage 1 of the option.		
Stage Architecture	(D) Transmutation Systems		
Stage Architecture Technology	Sodium-cooled Fast Reactor (SFR) (breeder or burner)		
Technology Parameter	Parameter Value	Parameter Unit	Actions
Average Accelerator Power Requirement	TBD	MWe	Edit Parameter Value
Capacity factor	TBD	%	Edit Parameter Value
Core Configuration	TBD	Text	Edit Parameter Value
Core Thermal Power	TBD	MWth	Edit Parameter Value
Electrical Energy Generation Sharing	TBD	%	Edit Parameter Value
Net Thermal Efficiency	TBD	%	Edit Parameter Value
NPPT Technology Identifier	TBD	Text	Edit Parameter Value
Specific Power Density	TBD	MW/Initial Heavy Metal Metric Ton	Edit Parameter Value
Technology Readiness Level	TBD	Scale from 1 to 9	Edit Parameter Value
Technology Readiness Level - Brief Justification	TBD	Text	Edit Parameter Value

On-Line FCDP Entry – Still To Do

- Finish on-line interface
- Create user's guide for the on-line interface
- Develop review process for on-line entries
- Test the data entry process and review process

FY15 Fuel Cycle Options Online Catalog Activities

- Create enhanced search facility
- Create Fuel Cycle Evaluation and Screening webpage
- Create “Evaluate My Option” webpage
- Develop on-line FCDP entry process
- Add options and technologies to the catalog
- Conduct ongoing maintenance activities

Fuel Cycle Options Added to the Catalog in FY15

- **The following fuel cycle options were added to the catalog in FY15; these are not analysis examples**
 - PWR using LEU fuel in a seed/blanket arrangement
 - PWR using LEU fuel; PWR with MOX fuel
 - FFH using DU and/or NU fuel
 - PWR using LEU fuel; HTGR using TRISO-TRU fuel
 - PWR using LEU fuel; HWR using MOX fuel (DUPIC)
 - PWR using LEU fuel; PWR using Pu and RU fuel
 - PWR using Th and U oxide fuel; HTGR using recovered Th and U carbide fuel
- **The following fuel cycle options will be added in the first few months of FY16**
 - ADS using Pu, NU, and RU fuel
 - Sodium-cooled intermediate reactor using Pu, NU, and RU fuel
 - Reduced-moderation boiling water intermediate spectrum reactor using Pu, DU, NTh, RTh, RU-233 and RU-238 fuel
 - MSR (fast) using Pu and U fuel
 - Reduced-moderation boiling water intermediate spectrum reactor using Pu, DU, NTh, RTh, RU-233, RU-238, and TRU fuel
 - Sodium-cooled fast reactor using Pu and RU fuel; MSR (thermal) using Pu and RU fuel

Reactors and Fuels to be Added to the Catalog in FY16

■ The following reactors will be added to the catalog in FY16

- Supercritical water reactor
- High-conversion water reactor

■ The following fuel will be added to the catalog in FY16

- Reduced-moderation boiling water intermediate spectrum uranium oxide fuel

FY15 Fuel Cycle Options Online Catalog Activities

- Create enhanced search facility
- Create Fuel Cycle Evaluation and Screening webpage
- Create “Evaluate My Option” webpage
- Develop on-line FCDP entry process
- Add options and technologies to the catalog
- **Conduct ongoing maintenance activities**

Ongoing Maintenance Activities

- Finish updating the catalog requirements document
- Make sure the database and website continue to work when SNL's network managers updated software or equipment

On-Going and Future Work

- Finish the on-line FCDP interface, the user's guide, and develop the review process
- Input the six fuel cycle options, the two reactors, and the fuel
- Finish updating the catalog requirements document
- Add content of interest to the Fuel Cycle Options Campaign