
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Hybrid Programming Model to Scale Legacy
Volume Smoothing on Next Generation Platforms

William Roshan Quadros

0

50

100

150

200

250

300

1 2 4 8 16 32 64

V
o

lu
m

e
Sm

o
o

th
in

g
Ti

m
e

(s
ec

)

Number of OpenMP Threads per MPI Process

Actual run me Ideal run me

SAND2015-8785C

Layout of Presentation

 Next Generation Platforms (NGP)

 NGP Challenge

 Test Beds

 Procedure to Scale Legacy Code

 Hybrid Programming Model

 Performance Portability

 Case Study Kernel- Volume Smoothing

 Case Study Scaling Results

Next Generation Platforms (NGP)

• The next generation platforms built towards exascale
computing will have heterogeneous architectures in order to
take advantage of the revolution in many integrated core
(MIC) and GPU devices.

• ATS-1 Trinity Supercomputer in 2016:
• Hosted at Los Alamos National Laboratory

• Cray XC30 platform architecture

• Intel Knights Landing (KNL) MIC processors

• ATS-2 Sierra Supercomputer in 2017:
• Hosted at Lawrence Livermore National Laboratory

• IBM platform

• GPU accelerators.

NGP compute node with
heterogeneous cores and memory

Reference: https://github.com/kokkos

NGP Challenge

• 20 year “just recompile" free ride is over! “Just recompile” would
result in approx 10x slow down on NGP platforms.

• MPI-only is no longer possible because not all cores can run MPI.

• Compute nodes are heterogeneous in both cores and memory.
Scaling requires leveraging node-level heterogeneous parallelism.

• Compute node architectures can be characterized by increasing
thread count and decreasing memory per thread. Therefore,
threading is critical for achieving high scaling.

• Performance portability on multiple advanced architectures is a
challenge.

• High performance computing on these advanced architectures
requires hybrid programming models containing distributed and
shared memory parallelism.

Test Beds

• Test bed for Trinity supercomputer was used.

• The test bed contains Intel Knights Corners (KNC) instead of
Intel Intel Knights Landing (KNL).

• Two nodes were allocated
in this study. Each node
contains a socket with two
KNC coprocessors.

• Each KNC has 57 or 61
many integrated cores.

Intel Knight Corner (KNC)
http://ark.intel.com/products/codename/57721/Knights-Corner

http://ark.intel.com/products/codename/57721/Knights-Corner
http://ark.intel.com/products/codename/57721/Knights-Corner
http://ark.intel.com/products/codename/57721/Knights-Corner
http://ark.intel.com/products/codename/57721/Knights-Corner
http://ark.intel.com/products/codename/57721/Knights-Corner
http://ark.intel.com/products/codename/57721/Knights-Corner

Procedure to Scale Legacy Code

• STEP 1 - Profile legacy code to identify characteristics
• Profile to identify number of hotspots, distribution of hotspots, etc.

to decide rewrite or refactor.

• TAU has been used to profile CUBIT, and Laplace volume smoothing
in CAMAL was taking 30% of the overall Sculpt meshing runtime on
our test cases.

• STEP 2: Choose a suitable programming model
• The next generation platforms would require both distributed and

shared memory programming models.

• Determine if data parallelism is enough or if task parallelism is
required?

• In this case study, hybrid MPI + Kokkos programming model has been
selected.

Procedure to Scale Legacy Code

• STEP 3: Implement selected programming model
• Convert the serial code to parallel using the MPI for distributed level

parallelism.

• Make the code thread safe at the hotspots for shared memory
parallelism.

• In this study, a performance portable layer such as Kokkos as been
used for thread level parallelism.

• STEP 4: Determine optimal runtime parameters
• Determine the optimal number of MPI processes and threads per

MPI process based on the underlying hardware architecture.

• In this study, 4 MPI processes were specified as there are 4 KNC
devices. Also, the number of threads per process ranged from 1 to
64 as each KNC contains 57 or 61 cores.

Procedure to Scale Legacy Code

• STEP 5: Optimize the code for higher scaling

Once the code runs on NGP, optimize the code
• Efficient memory access

• Reduced communication

• Efficient data structure changes

• Vectorization

• Refactor algorithm

• …

Hybrid Programming Model

Three levels of parallelism is required on Trinity test beds

① Distributed memory parallelism supported through the Intel MPI library:

Distributed parallelism would require optimal domain decomposition considering
load balancing and MPI communication cost.

② Shared memory thread level parallelism on the MIC device using OpenMP

Thread level parallelism on 57 or 61 core KNC would require loop-level data
parallelism via a threading library. In this study, Kokkos layer was used on top of
OpenMP library to achieve performance portability.

① Vectorization for the 512-bit SIMD Vector Processing Unit (VPU) of KNC.

Intel VectorAnalyzer and compiler flags/reports can be used to vectorize the code to
achieve fine-grained parallelism on VPU.

Performance Portability
• Preserving the source code from potentially detrimental parallel directives for

multiple architectures is important for software maintenance.

• Kokkos provides a minimal overhead abstract layer that isolates user code from
device specific hardware architectures. Goal is to write one implementation
which compiles and runs on multiple architectures.

• Kokkos supports MPI+“X” programming model to scale on both KNC MIC-based
and GPU-based next generation platforms.

• Kokkos provides performant memory access patterns across multiple
architectures and leverage architecture-specific features where possible.

• Kokkos provides diverse capabilities
 Execution spaces: CPU, GPU, MIC, PIM, …

 Memory spaces: HBM, DDR w/NUMA, NVRAM, scratch pads / managed cache layers, …

 Backend Libs: OpenMP/ACC/CL, Cuda, TBB, C++AMP, Thrust, HPX, StarPU, …

Example: Kokkos Loop-level
Parallelism
// data parallelism on N nodes
MyClass::class_method(function arguments)
{ ...
// 1st argument: number of nodes
// 2nd argument: this object
Kokkos::parallel_for(N, *this);
..

}
// operator() for Kokkos::parallel_for
MyClass::operator()(int k) const
{ ...
// Laplace smoothing at node k given by Eq (1)
laplacian_smooth_at_node(k);
}

For more details visit https://github.com/kokkos/kokkos-tutorials

Case Study Kernel: Volume Smoothing

• In this case study, CAMAL’s Laplace volume smoothing
algorithm was used as the hotspot kernel

• Laplace smoothing is given by:

N - number of adjacent nodes to node k

xi,j - coordinate of jth adjacent node of node k in the ith

iteration

xi+1,k – coordinate of node k in i+1th iteration

`

Case Study Scaling Results

Test Case

Kernel: Laplace volume smoothing

Iterations: 10

Data size: 5 million nodes

No. of MPI processes = 4

No. of threads per process = 1 to 64

Case Study Scaling Results

One of the studies focused on node-level threading performance
on a KNC MIC device. The MPI-only version shown in row 1 is
regarded as the baseline application.

Table 1. 5-trial average result of volume smoothing on a
5 million node hex mesh

Number
of

Processes

Thread
per Process

Process
X

Thread

Actual
Runtime

(sec)

Ideal
Runtime

(sec)

Percentage
Deviation

4 1 4 278.88 278.88 0%

4 2 8 140.48 139.44 0.74%

4 4 16 73.22 69.72 5.02%

4 8 32 40.23 34.86 15.40%

4 16 64 24.16 17.43 38.61%

4 32 128 23.64 8.71 171.25%

4 64 256 14.24 4.35 226.79%

Case Study Scaling Results

• As we increase the threads
per process, the deviation
from the linear scaling
increases due to thread
startup and overhead costs

• On a MIC device, 95%
reduction in runtime (a 20X
speedup) is observed, as
the single thread runtime
of 278.88 seconds is
dropped to 14.24 seconds

0

50

100

150

200

250

300

1 2 4 8 16 32 64

V
o

lu
m

e
Sm

o
o

th
in

g
Ti

m
e

(s
ec

)

Number of OpenMP Threads per MPI Process

Actual run me Ideal run me

Linear scaling and actual scaling

Thank You!

