108UU0DIBIU| [BUISIXT

 On-Package 5 : .
: < : : : Knights Corner

Coprocessor

KNC Card

KNC Card s sy
“TCP/IP- , 1 ,)
Intel® PCle x16 —— Actual runtime ~ ~ = = = Ideal runtime
o (Hend p—
Processor , = N :

|
|
|
|

Accelerator

On-Package
e

’

>= 8GB GDDR5 memory

Laboratories

\\
A\
N

2 ‘ 4 ‘ 8 ‘ 16 ‘ 32 ‘ 64
Number of OpenMP Threads per MPI Process

Hybrid Programming Model to Scale Legacy
Volume Smoothing on Next Generation Platforms

“& U.S. DEPARTMENT OF M]A ' .' oﬁ’éa‘

William Roshan Quadros

& 2
& j ENERGY ﬂ' VA' fu"-ﬂ Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
s Natlonal Nuclear Security Adminisicaiion Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Layout of Presentation

Next Generation Platforms (NGP)

NGP Challenge

Test Beds

Procedure to Scale Legacy Code
Hybrid Programming Model
Performance Portability

Case Study Kernel- Volume Smoothing
Case Study Scaling Results

Next Generation Platforms (NGP) @

e The next generation platforms built towards exascale
computing will have heterogeneous architectures in order to
take advantage of the revolution in many integrated core
(MIC) and GPU devices.

* ATS-1 Trinity Supercomputer in 2016:
* Hosted at Los Alamos National Laboratory
* Cray XC30 platform architecture
* Intel Knights Landing (KNL) MIC processors

* ATS-2 Sierra Supercomputerin 2017:
 Hosted at Lawrence Livermore National Laboratory
e IBM platform
GPU accelerators.

NGP compute node with
heterogeneous cores and memory

Laboratories

On-Package
Memory

Network-on-Chip

NUMA Domain

aoepaU|
MIOMIBN [eua1X]

\
h

L
ad
@
=
-
»
3
=
@
=
Q
]
=2
>
(4]
Q

On-Package

Reference: https://github.com/kokkos

Sandia

NGP Challenge) S

20 year “just recompile" free ride is over! “Just recompile” would
result in approx 10x slow down on NGP platforms.

MPI-only is no longer possible because not all cores can run MPI.

Compute nodes are heterogeneous in both cores and memory.
Scaling requires leveraging node-level heterogeneous parallelism.

Compute node architectures can be characterized by increasing
thread count and decreasing memory per thread. Therefore,
threading is critical for achieving high scaling.

Performance portability on multiple advanced architectures is a
challenge.

High performance computing on these advanced architectures
requires hybrid programming models containing distributed and
shared memory parallelism.

Sandia

Te St B e d S Il“aat}Erg%ries

Test bed for Trinity supercomputer was used.

The test bed contains Intel Knights Corners (KNC) instead of
Intel Intel Knights Landing (KNL).

Two nodes were allocated
in this study. Each node Knights Corner
contains a socket with two Coproce

KNC coprocessors. e S
Each KNC has 57 or 61 sz-a
many integrated cores.

KNC Card
P/IP =
e i cos
PCle x16
”Pme x16 -

>= 8GB GDDR5 memory

Intel Knight Corner (KNC)
http://ark.intel.com/products/codename/57721/Knights-Corner

http://ark.intel.com/products/codename/57721/Knights-Corner
http://ark.intel.com/products/codename/57721/Knights-Corner
http://ark.intel.com/products/codename/57721/Knights-Corner
http://ark.intel.com/products/codename/57721/Knights-Corner
http://ark.intel.com/products/codename/57721/Knights-Corner
http://ark.intel.com/products/codename/57721/Knights-Corner

Sandia

Procedure to Scale Legacy Code kI

« STEP 1 - Profile legacy code to identify characteristics

Profile to identify number of hotspots, distribution of hotspots, etc.
to decide rewrite or refactor.

TAU has been used to profile CUBIT, and Laplace volume smoothing
in CAMAL was taking 30% of the overall Sculpt meshing runtime on
our test cases.

e STEP 2: Choose a suitable programming model

The next generation platforms would require both distributed and
shared memory programming models.

Determine if data parallelism is enough or if task parallelism is
required?

In this case study, hybrid MPI + Kokkos programming model has been
selected.

Sandia

Procedure to Scale Legacy Code kI

 STEP 3: Implement selected programming model

Convert the serial code to parallel using the MPI for distributed level
parallelism.

Make the code thread safe at the hotspots for shared memory
parallelism.

In this study, a performance portable layer such as Kokkos as been
used for thread level parallelism.

e STEP 4: Determine optimal runtime parameters

Determine the optimal number of MPI processes and threads per
MPI process based on the underlying hardware architecture.

In this study, 4 MPI processes were specified as there are 4 KNC
devices. Also, the number of threads per process ranged from 1 to
64 as each KNC contains 57 or 61 cores.

Sandia
National

Procedure to Scale Legacy Code oo

 STEP 5: Optimize the code for higher scaling

Once the code runs on NGP, optimize the code
Efficient memory access
Reduced communication
Efficient data structure changes
Vectorization
Refactor algorithm

Sandia

Hybrid Programming Model s

Three levels of parallelism is required on Trinity test beds

(1 Distributed memory parallelism supported through the Intel MPI library:

Distributed parallelism would require optimal domain decomposition considering
load balancing and MPI communication cost.

Shared memory thread level parallelism on the MIC device using OpenMP

Thread level parallelism on 57 or 61 core KNC would require loop-level data
parallelism via a threading library. In this study, Kokkos layer was used on top of
OpenMP library to achieve performance portability.

Vectorization for the 512-bit SIMD Vector Processing Unit (VPU) of KNC.

Intel VectorAnalyzer and compiler flags/reports can be used to vectorize the code to
achieve fine-grained parallelism on VPU.

Performance Portability) .

Preserving the source code from potentially detrimental parallel directives for
multiple architectures is important for software maintenance.

Kokkos provides a minimal overhead abstract layer that isolates user code from
device specific hardware architectures. Goal is to write one implementation
which compiles and runs on multiple architectures.

Kokkos supports MPI+“X” programming model to scale on both KNC MIC-based
and GPU-based next generation platforms.

Kokkos provides performant memory access patterns across multiple
architectures and leverage architecture-specific features where possible.

Kokkos provides diverse capabilities

m Execution spaces: CPU, GPU, MIC, PIM, ...

= Memory spaces: HBM, DDR w/NUMA, NVRAM, scratch pads / managed cache layers, ...
= Backend Libs: OpenMP/ACC/CL, Cuda, TBB, C++AMP, Thrust, HPX, StarPU, ...

Example: Kokkos Loop-level
Parallelism

Sandia
National _
Laboratories

// data parallelism on N nodes

MyClass::class _method(function arguments)
{ ..
// 1st argument: number of nodes
// 2nd argument: this object
Kokkos::parallel _for(N, *this);

}
// operator() for Kokkos::parallel for
MyClass::operator()(int k) const

{

// Laplace smoothing at node k given by Eq (1)
laplacian_smooth _at node(k);

}

For more details visit https://github.com/kokkos/kokkos-tutorials

Case Study Kernel: Volume Smoothing

* In this case study, CAMAL’s Laplace volume smoothing
algorithm was used as the hotspot kernel

* Laplace smoothing is given by:

N
1
Xi+1,k = N Xij
Jj=1

N - number of adjacent nodes to node k

X, ;- coordinate of jth adjacent node of node k in the jth
iteration

Xi;1— coordinate of node k in i+1* iteration

Sandia
National
Laboratories

Sandia

Case Study Scaling Results s

Test Case
Kernel: Laplace volume smoothing
lterations: 10
Data size: 5 million nodes
No. of MPI processes =4
No. of threads per process =1 to 64

Case Study Scaling Results) .

One of the studies focused on node-level threading performance
on a KNC MIC device. The MPI-only version shown in row 1 is
regarded as the baseline application.

Table 1. 5-trial average result of volume smoothing on a
5 million node hex mesh

Number Thread Process Actual Ideal Percentage

of or Process X Runtime Runtime Deviation
Processes p Thread (sec) (sec)

4 278.88 278.88 0%

140.43 139.44 0.74%
73.22 69.72 5.02%
40.23 34.86 15.40%
24.16 17.43 38.61%
23.64 Q.71 171.25% |
14.24 435 226.79%

Sandia

Case Study Scaling Results s

As we increase the threads
per process, the deviation
from the linear scaling
increases due to thread
startup and overhead costs

On a MIC device, 95%
reduction in runtime (a 20X
speedup) is observed, as
the single thread runtime
of 278.88 seconds is
dropped to 14.24 seconds

e (sec
S

150

wu
o

S
|_
oo
=
-
+—
o
o
S
v
[«F]
S
=
o
=

o

—&— Actual runtime = = = — Ideal runtime

N\
N
A
N
N
~

2 | 4 | 8 | 16 | 32 | 64
Number of OpenMP Threads per MPI Process

Linear scaling and actual scaling

Thank Youl!

