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Battery Abuse Testing Laboratory
(BATLab)

Cell Prototype Facility
Battery Calorimetry
Modeling and Simulations
Materials Development R&D
Thermal Test Complex (TTC)
Burn Site, Laurence Canyon
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Battery Abuse Testing Laboratory (BATLab) (.

= Comprehensive abuse testing platforms for safety and reliability of cells,
batteries and systems from mWh to kWh

= Cell, module, and battery system hardware deliverables for testing
=  Mechanical abuse
=  Penetration
" Crush
= |Impact
" Immersion
= Thermal abuse
= Over temperature
" Flammability measurements
= Thermal propagation
= Calorimetry
= Electrical abuse
= Qvervoltage/overcharge
= Short circuit

= Overdischarge/voltage reversal




o o Sandia
Burn Site Test Site ) s
Full Scale Battery Testing Facilities
| l |

Owned by SNL Fire Sciences Dept.

Design for large scale fire testing
and high explosives (up to 100 kg)

Construction/design suitable for

large scale battery abuse testing
(10s of kWh Li-ion)

Fully instrumented data
acquisition capabilities




Understanding Battery Safety )

Materials R&D
Non-flammable electrolytes
Electrolyte salts
Coated active materials
Thermally stable materials

Testing

* Electrical, thermal, mechanical abuse testing

* Failure propagation testing on batteries/systems

* Large scale thermal and fire testing (TTC)

* Development for DOE Vehicle Technologies and USABC

Simulations and Modeling
Multi-scale models for understanding thermal runaway
Validating vehicle crash and failure propagation models
Fire Simulations to predict the size, scope, and
consequences of battery fires

Procedures, Policy, and Regulation
USABC Abuse Testing Manual (SAND 2005-3123)
SAE/UL procedures and standards
R&D programs with NHTSA/DOT to inform best
practices, policies, and requirements




Program Support & Collaborations @:.
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http://www.uscar.org/

Challenges with Lithium-lon Materials @&z

ium-ion Materials Issues:

ic thermal runaway

conditions

Materials choices and interfacial chemistry can impact these safety challenges




Calorimetry of Lithium-ion Cells ) .

Understanding the Thermal Runaway Response of Materials in Cells
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Can high energy cathodes behave like LFP during thermal runaway?
Where do high capacity Si/C anodes fit on this plot? 3




Characterizing Thermal Runaway &

Thermal Ramp Thermal Ramp + ARC
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= Consistent cell behavior between thermal abuse and calorimetry experiments

= Greater total temperature rise observed for the ARC experiment because it is in an
adiabatic environment

= May be able to use these data to compare results obtained between the two types

of experiments 9
I ———————




Characterizing Thermal Runaway &
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LCO 18650* 1.2 28.4 15.9 281
= Full cell runaway enthalpy shows NCA 18650* 1.0 21.6 9.8 266
a significant amount of heat NMC 18650* |  0.95 22.0 8.3 105
generation from even an LFP
18650 cell LFP 18650* 0.9 18.0 2.4 1
=  But that heat is generated at LFP 26650* 2.6 8.2 4.6 65
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Data provide a quantitative measurement of the runaway enthalpy
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Improving Runaway Response ) .

NMC/Graphite cells
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Materials choices can be made to improve the runaway response in cells
Reducing runaway enthalpy and kinetics has direct implications in battery system safety




Electrolyte Flammability ) .

Sulfonimide/Hydrofluoro ether (HFE) Electrolytes to improve thermal stability and flammability
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HFE electrolytes have conductivities on the order of 2 mS/cm
HFEs show comparable discharge capacity in NMC/Graphite cells compared
to LiPF/carbonate electrolytes 12

LABORATORY DIRECTED RESEARCH & DEVELOPMENT

G. Nagasubramanian et al. J. Power Sources 196 (2011) 8604-8609



Electrolyte Flammability ) .

Sulfonimide/Hydrofluoro ether (HFE) Electrolytes to improve thermal stability and flammability
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Autoignition measurements at ambient pressure are a more relevant measure of
battery electrolyte flammability than measurements at elevated pressure

HFEs have significantly higher autoignition temperatures in air relative to
carbonate solvents

LABORATORY DIRECTED RESEARCH & DEVELOPMENT 1 3

C. J. Orendorff et al. SAND2012-9186, “Advanced Inactive Materials for Improved Lithium-lon Battery Safety”



Electrolyte Flammability ) .

Flammability measurements Cell Vent Flammability Test (CVFT)

Conventional bulk quuidfuel Electrolyte Ignition (Y/N) ATime (ve(n)t-ignition) Burr(1 ';ime
Gi s s
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reflect flammability representative e
of a cell failure in a battery e, 1 . -

‘LiPFG/Ca1ﬁI5*o‘n~ate\“Ei'étq13rolyte TFSI/HEE Electrolyte (50% HFE)

Tools can be applied to electrolyte development efforts to
evaluate electrolyte flammability performance

; Flammability tools developed under Sandia LDRD Program

G. Nagasubramanian et al. J. Power Sources 196 (2011) 8604-8609



Battery System Field Failures iL

- Field failures could include:
= Latent manufacturing defects
Internal short circuits

Tesla Model S fire in October 2013, where the fire was isolated to the front
portion of the vehicle and did not propagate through the entire battery

Sandia
National
Laboratories
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USCAR Crash Safety )

Analog “pole test” of a battery

Mechanical behavior under compression
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Determining baseline mechanical behavior of batteries during crush/impact testing
Testing support to validate mechanical models for batteries during a crash scenario 16




° Sandia
Crash Safety Modeling ) 2.
Computer Aided Engineering for Batteries (CAEBAT) DOE VTO and NREL

Battery Crush Experiment (SNL, USCAR) Cell-level Mechanical Model (MIT)

Current density
contour and vector

Integrated Thermoelectrochemical & Mechanical Model (NREL)

Thermal Cell-to-Cell Propagation Model Thermoelectrochemical Model

N
S
=

Use battery crush data to validate the integrated model
Develop a predictive capability for battery thermal runaway response to mechanical insult




Standards, Regulation, and Policy @

005-3123) and current r

. % Testing development, evaluation, and validation (Propagation
testing procedure SAND2014-17053)

on SAE J2464, UL 1642
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Standards, Regulation, and Policy @

Fisker incident in the wake of Super Storm Sandy , New Jersey
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Lithium-lon Battery Challenges ) .

: x P A

stability in the field
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Battery Safety R&D Program at Sandia: http://enerqgy.sandia.qgov/?page _id=634

ECS Interface Issue on Battery Safety: http://www.electrochem.org/dl/interface/sum/sumi12/if sumi2.htm
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