

Exceptional service in the national interest

Machine Learning Capabilities

Chris Stork, Dept. 1814

December 9, 2015

Machine Learning Overview

- Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. Machine learning algorithms operate by building a model from example inputs in order to make data-driven predictions or decisions.

Machine Learning Methods

Method

Clustering

Constrained factor analysis (CFA)

Group inclusion/exclusion

Multivariate regression

Multivariate statistical process control (MSPC)

Use

Identify intrinsic groups with little or no prior knowledge

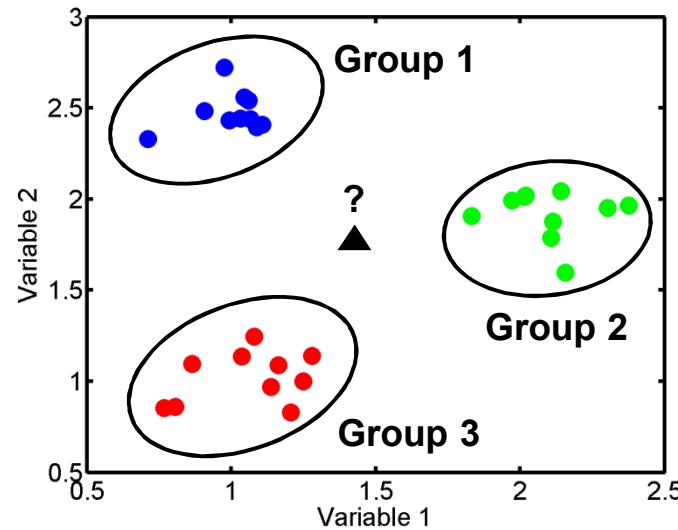
Extract spectral and concentration profiles

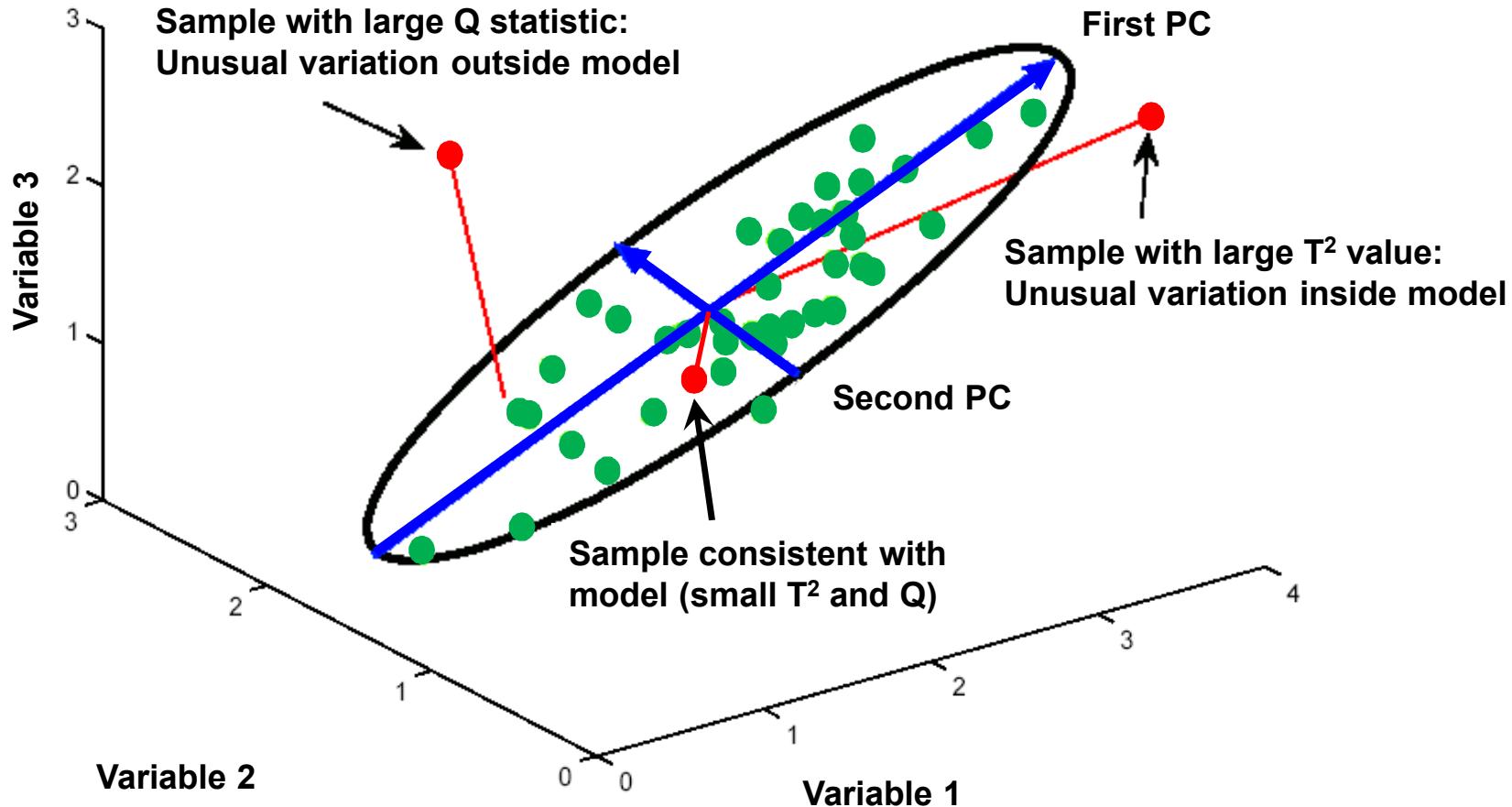
Quantify similarity of unknown material to known groups

Predict chemical quantity using sensor response

Detect process/sensor changes

Group Inclusion and Exclusion of Nuclear Forensics Data


- **Developing principal component analysis and nearest neighbor based classification algorithms to enable rapid, accurate, and credible identification of origins of questioned nuclear materials**
 - Compare multivariate signatures (isotopes, trace elements) for questioned nuclear material to signatures for materials from known groups (reactors, processes), enabling group inclusion and exclusion


Compare signatures
for material with
known groups

Exclusion - questioned material
inconsistent with known groups

Technical Approach: Address Group Inclusion/Exclusion Problems using PCA

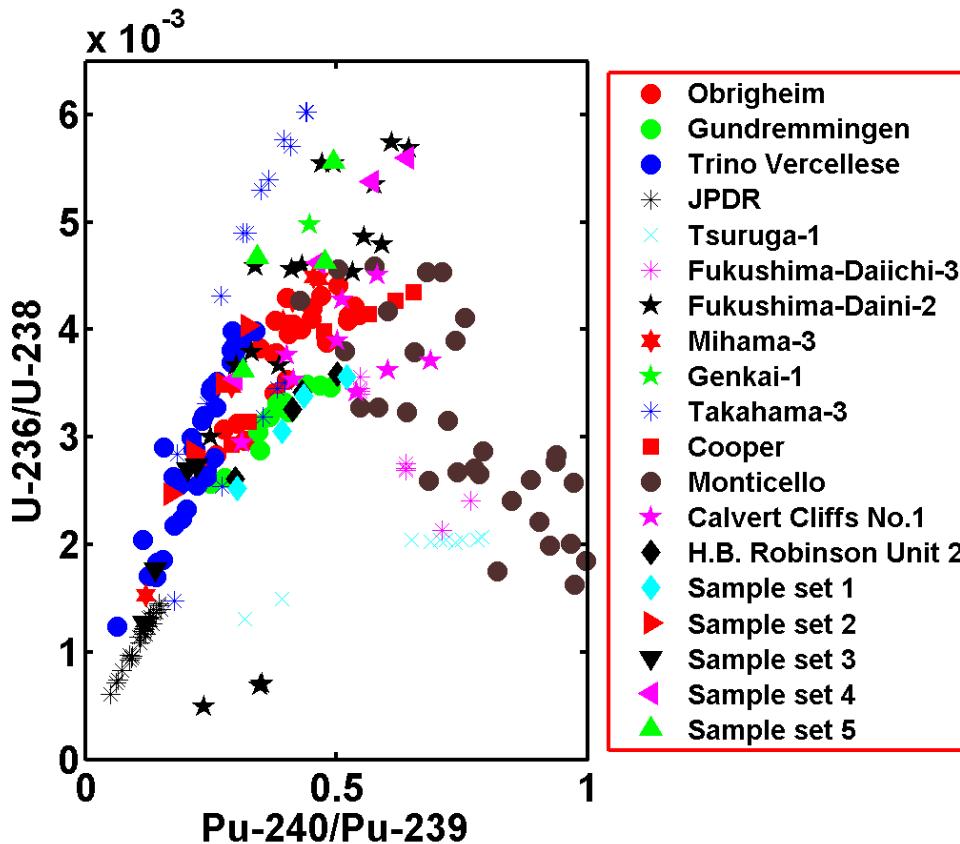
Spent Fuel Isotopic Composition (SFCOMPO) Database

- Composed of isotopic composition data for spent nuclear fuel (SNF) samples from 14 reactors in 4 countries
 - Includes U, Pu, Am, Cm and several fission products (Nd, Cs, Sr)
 - 7 boiling water reactors (BWRs) and 7 pressurized water reactors (PWRs)

Gundremmingen/Germany

Tsuruga Plant/Japan

Calvert Cliffs No. 1/USA



Group Inclusion/Exclusion Analysis using SFCOMPO Database

- Separate PCA model constructed for each reactor or related set of reactors within SFCOMPO
- In blind study, five simulated SNF sample sets from Argonne National Laboratory (ANL) treated as questioned samples and statistically compared to each PCA group model
 - Each simulated sample set originated from reactor in SFCOMPO
 - Four samples within each set
- Four indices used for group inclusion and exclusion:
 - Q statistic
 - Hotelling's T^2 statistic
 - Hawkins' T^2_H statistic
 - Mahalanobis distance
- Assessment and ranking of these indices based on their group inclusion/exclusion performance

Group Inclusion/Exclusion Analysis of Simulated SNF Sample Sets

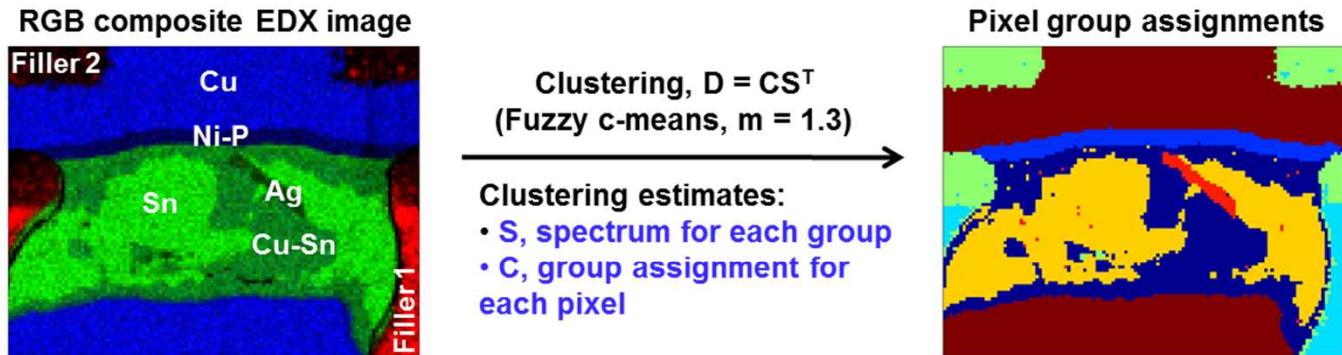
- 5 isotopic ratios used in statistical comparisons:
 - $^{240}\text{Pu}/^{239}\text{Pu}$, $^{241}\text{Pu}/^{239}\text{Pu}$, $^{242}\text{Pu}/^{239}\text{Pu}$, $^{235}\text{U}/^{238}\text{U}$, $^{236}\text{U}/^{238}\text{U}$

- Sample set 1 overlaps H.B. Robinson Unit 2 and Gundremmingen reactor samples
- Sample sets 2 and 3 overlap Trino Vercellese and Mihama-3 reactor samples
- Sample sets 4 and 5 overlap Mihama-3 and Fukushima-Daini-2 reactor samples

Q Statistic Probabilities Calculated for Sets 1-5 for 14 PCA Models

PCA Model	Set 1	Set 2	Set 3	Set 4	Set 5
Obrigheim	0.002-0.007	<i>0.015-0.093</i>	<i>0-0.076</i>	0.000-0.004	0.000-0.005
Gundremmingen	0.000-0.001	0.000-0.000	0.000-0.000	0.000-0.000	0.000-0.000
Trino Vercellese	0.000-0.000	<i>0.100-0.343</i>	<i>0.013-0.124</i>	0.000-0.000	0.000-0.000
JPDR	0.000-0.000	0.000-0.000	0.000-0.000	0.000-0.000	0.000-0.000
Tsuruga-1	0.000-0.000	0.000-0.000	0.000-0.000	0.000-0.000	0.000-0.000
Fukushima-Daiichi-3	0.000-0.000	0.000-0.000	0.000-0.000	0.000-0.002	0.000-0.004
Fukushima-Daini-2	0.000-0.000	<i>0.078-0.155</i>	<i>0.001-0.145</i>	<i>0.410-0.669</i>	<i>0.122-0.678</i>
Mihama-3/Genkai-1	0.000-0.000	<i>0.007-0.506</i>	<i>0.027-0.284</i>	0.000-0.005	0.000-0.006
Takahama-3	0.000-0.000	<i>0.024-0.055</i>	<i>0.004-0.065</i>	0.000-0.004	<i>0.000-0.014</i>
Cooper	0.000-0.000	0.000-0.000	0.000-0.000	0.000-0.000	0.000-0.000
Monticello	0.000-0.001	0.000-0.004	0.000-0.000	0.000-0.002	0.000-0.001
Calvert Cliffs No. 1/H.B. Robinson Unit 2	<i>0.247-0.508</i>	0.000-0.003	0.000-0.000	0.000-0.001	0.000-0.003
Calvert Cliffs No. 1	<i>0.052-0.154</i>	0.000-0.002	0.000-0.000	0.000-0.002	0.000-0.008
H.B. Robinson Unit 2	<i>0.033-0.460</i>	0.000-0.000	0.000-0.000	0.000-0.000	0.000-0.000

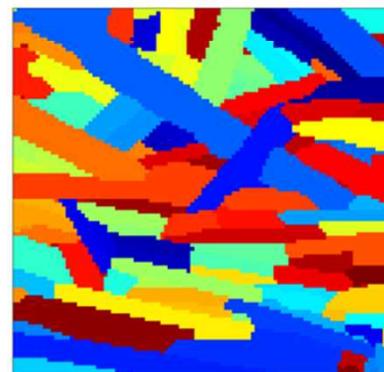
Q statistic performs best:

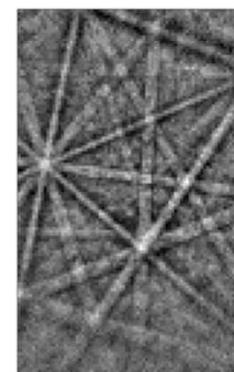

- **Correctly excludes large percentage of reactor groups for all 5 sample sets**
- **Correctly includes true reactor of origination for all 5 sample sets**

Entries above exclusion threshold of 0.01 highlighted in ***red italics***. True reactor of origination for each sample set is underlined.

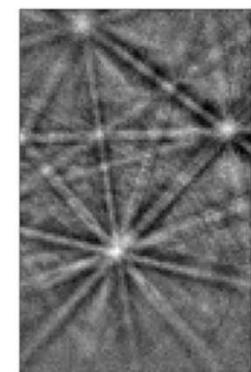
Material Characterization Through Cluster Analysis of Hyperspectral Images

- Identification of intermetallic phases in material samples through cluster analysis


Fuzzy clustering identifies Cu-Sn intermetallic phase in EDX solder bump data set


- Phase identification in complex materials using fast hierarchical clustering algorithm

**Two US patents issued
(8,280,887 and 8,554,771)**


Pixel Assignments
(120 Clusters)

Diffraction Pattern
(Cluster 1)

Diffraction Pattern
(Cluster 2)

Application of hierarchical clustering to bismuth titanate (BTO) diffraction data reveals 120 readily interpretable phases

Potential Areas of Collaboration

- Summer internship opportunities at Sandia for undergraduate and graduate students.
- Materials Data Science collaboration opportunities:
 - Sandia has extensive materials databases that could be used to facilitate development of new/improved materials.
 - Sandia has machine learning expertise that can be extended to model relationships between materials processes, structures and properties.