
Brookhaven National Laboratory

U.S. Department of Energy
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)

Energy Sciences Directorate

May 2016

H. J. van Dam

A comparison of different methods to implement higher order derivatives of
density functionals

BNL-112219-2016-INRE

BNL-112219-2016-IR

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract
No.DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication
acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government
purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

BNL-112219-2016-IR

A Comparison of different methods to implement

higher order derivatives of density functionals

Hubertus J.J. van Dam

May 2016

 Energy and Photon Sciences Directorate

Brookhaven National Laboratory

U.S. Department of Energy
DOE Office of Science, Office of Biological and

Environmental Research

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under

Contract No. DE-SC0012704 with the U.S. Department of Energy. The publisher by accepting the

manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up,

irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others

to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government nor any

agency thereof, nor any of their employees, nor any of their contractors,

subcontractors, or their employees, makes any warranty, express or implied, or

assumes any legal liability or responsibility for the accuracy, completeness, or any

third party’s use or the results of such use of any information, apparatus, product,

or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any specific commercial product, process, or service

by trade name, trademark, manufacturer, or otherwise, does not necessarily

constitute or imply its endorsement, recommendation, or favoring by the United

States Government or any agency thereof or its contractors or subcontractors.

The views and opinions of authors expressed herein do not necessarily state or

reflect those of the United States Government or any agency thereof.

A comparison of different methods to implement higher

order derivatives of density functionals

Hubertus J. J. van Damb

aBrookhaven National Laboratory, Upton, NY 11973

Abstract

Density functional theory is the dominant approach in electronic structure
methods today. To calculate properties higher order derivatives of the density
functionals are required. These derivatives might be implemented manually,
by automatic differentiation, or by symbolic algebra programs. Different au-
thors have cited different reasons for using the particular method of their
choice. This paper presents work where all three approaches were used and
the strengths and weaknesses of each approach are considered. It is found
that all three methods produce code that is sufficiently performant for prac-
tical applications, despite the fact that our symbolic algebra generated code
and our automatic differentiation code still have scope for significant op-
timization. The automatic differentiation approach is the best option for
producing readable and maintainable code.

Email address: hvandam@bnl.gov (Hubertus J. J. van Dam)

Preprint submitted to Computer Physics Communications May 9, 2016

A comparison of different methods to implement higher

order derivatives of density functionals

Hubertus J. J. van Damb

bBrookhaven National Laboratory, Upton, NY 11973

1. Introduction

The calculation of properties plays an important role in electronic struc-
ture studies. Properties can be expressed as derivatives of the energy with
respect to nuclear coordinates, external electric or magnetic fields, or combi-
nations thereof. In a recent review [1] Table 1 provides an excellent overview
of such derivatives of the energy and the associated physical properties. In
density functional theory the given order of differentiation for a particular
property translates into the requirement for derivatives of the density func-
tional to the same order.

The motivation for this work stems from the requirements for higher order
derivatives for the vibrational frequencies, NMR shieldings, the TDDFT [2],
and the TDDFT gradient [3] capabilities in NWChem [4]. In addition NWChem
supports both Gaussian basis set and planewave [5] DFT capabilities for
which a shared functional library is desirable. Previously derivatives of func-
tionals were handcoded. The introduction of the TDDFT grdient code with
the associated requirement for third order derivatives essentially forced the
decision to look at alternative implementation approaches. Although the
functionals implemented for NWChem are not distributed separately the
open source license of the program as a whole enables re-use in other pack-
ages.

As described by Perdew et al. [6] functionals can be classified into different
categories: Local Spin Density (LSD); Generalized Gradient Approximation
(GGA); and meta-GGA functionals. The LSD functionals depend on the
local spin-densities ρα and ρβ only. GGA functionals depend on the densities

Email address: hvandam@bnl.gov (Hubertus J. J. van Dam)

Preprint submitted to Computer Physics Communications May 9, 2016

Table 1: The number of partial derivatives of a particular order as a function of the type
of density functional and the order of differentiation for the spin unrestricted case

Order LSD GGA meta-GGA
1 2 5 7
2 3 15 28
3 4 35 84
4 5 70 210

like LSD does but in addition also depend on the gradient of the density
through [7, 8]

γαα(r) = ∇ρα(r) · ∇ρα(r) (1)

γαβ(r) = ∇ρα(r) · ∇ρβ(r) (2)

γββ(r) = ∇ρβ(r) · ∇ρβ(r) (3)

Meta-GGAs, futhermore, also depend on the kinetic energy density (see [9]
apart from the factor 1/2)

τα(r) =
1

2

∑
i∈{occ.}

|∇φαi (r)|2 (4)

τβ(r) =
1

2

∑
i∈{occ.}

|∇φβi (r)|2 (5)

One way to assess the challenge of implementing the required derivatives is
to look at the number of expressions needed. In Tables 1 and 2 the number
of partial derivatives and the total number of expressions to evaluate up to
a given order of differentiation are listed for different classes of functionals.

These tables are relevant from three perspectives. Firstly, they give an
impression of the scale of the effort involved in implementing the derivatives
of the functionals themselves. Secondly, to calculate a property at least as
many terms as there are derivatives of the functional up to the order involved
have to be anticipated and implemented. Thirdly, the more derivatives and
terms a property requires the more expensive calculating that property is
going to be. This suggests that there is a limit to the highest order property
to be considered for practical applications.

Other authors have also realized that implementing derivatives of density
functionals is a non-trivial issue. J̈emmer et al. [10] pioneered the use of sym-
bolic algebra packages with Mathematica in applications to DFT. This was

3

Table 2: The total number of expressions, including the energy expression, up to a given
order of differentiation to evaluate as a function of density functional and the order of
differentiation for the spin unrestricted case. E.g. for properties involving second order
derivatives of LDA there is the energy expression, two first order derivatives wrt. the spin
densities, and three second order derivatives making a total of six expressions to evaluate

Order LSD GGA meta-GGA
1 3 6 8
2 6 21 36
3 10 56 120
4 15 126 330

followed by Strange et al. [11] publishing the Dfauto script using Maple [12] to
generate source code for density functionals and their first order derivatives.
Based on this work the author generated a collection of density functional
subroutines [13] including second order derivatives.

The idea of having libraries of density functionals gained broader appeal
leading to more efforts along these lines [14, 15, 16]. Interestingly, the lat-
ter three efforts all use different approaches to generating the source code
they distribute. Sa lek et al. [14] use a symbolic algebra approach, Ekström
et al. [15] use automatic differentiation, whereas Marques et al. [16] rely on
hand coding. All of these papers present their arguments for the approach
chosen but some of the arguments seem peculiar. These choices may be due
to limited experience with the other available options. Below we review all
three approaches and complement the insight from the three developments
mentioned with our own experience with each and every one of them. The
recommendation arrived at is that automatic differentiation and symbolic
algebra approaches complement eachother. Using both is probably the most
effective way of writing efficient and tested code for higher order derivatives
of density functionals. However extensive testing remains a requirement and
non-trivial efforts are still needed in particular when problems with an im-
plementation emerge.

The remainder of the paper discusses considerations of numerical preci-
sion that pertain to the evaluation of derivatives in section 2. In section 3
the different coding approaches are discussed and contrasted. Section 4 com-
pares the performance of the codes obtained by different methods. Section 5
summarizes the main findings.

4

2. Numerical analysis

Issues related to numerical analysis surface in multiple forms when eval-
uating derivatives of density functionals. For testing implementations of
derivatives using finite differences seems an obvious choice. In practice this
approach has some caveats as the accuracy is non-trivial to assess which will
be explained in the next subsection.

The topic of generating numerically stable code has also been raised be-
fore. In this work an apparently benign step was found to generate serious
numerical problems after differentiation which will be described in detail.
These numerical difficulties arise from carelessly applying the rules of differ-
entiation in the context of finite precision arithmetic, regardless of the tools
used. In section 3 we will refer to this problem to dispell the claim that ”the
AD library provides highly accurate implementations for both the function
value and the derivatives of intrinsic mathematical functions, [hence] there
is less possibility for a loss of precision compared to code generated by a
symbolic algebra package.” [15] Instead all methods discussed can generate
equally precise results as long as one appreciates the strengths and weak-
nesses of each and adapts the way the method is deployed accordingly.

2.1. Finite difference evaluation of gradients

An integral part of implementing any expression is testing for any possible
coding errors or numerical instabilities. Both Marques et al. [16] and Sa lek
et al. [14] used finite difference gradients to test their derivatives. While
this is a straightforward approach to estimating derivatives assessing the
accuracy is non-trivial. This problem follows from two opposing error sources.
Approximating a function as a linear function leads to small errors for small
step sizes, whereas using finite precision arithmetic leads to small errors for
large step sizes. Following the approach by Gill et al. [17] it can be shown
that given a function f(x) the total absolute error in the gradient calculated
using the central difference formula is

R =
ε

2h
|f(x)|+

∣∣∣∣h212
f ′′′(a)

∣∣∣∣ , a ∈ [x− h, x+ h] (6)

where ε is the machine precision which is 1.0e− 15 when using double preci-
sion. The optimal h can be found by minimizing Eq. 6 but it is clear that the
result will depend on the third order derivative of the function. Therefore,

5

in practice the optimal value of h is not used. A reaonable alternative is to
choose h = δx where δ a small number [17].

When using the central difference formula to test implementations of
derivatives the relative error (R/f ′(x)) is more important than the absolute
error as this indicates how many digits of the result are significant. Evaluat-
ing the relative error for a simple functional of the form ρn (e.g. if n = 4/3
this is essentially LSD exchange [18, 19], and if n = 5/3 this is the LSD
kinetic energy functional [20, 21])

R(ρ)

f ′(ρ)
=

ε

2δ
+
n(n− 1)(n− 2)δ2

12
(7)

is obtained with the additional approximation that a = ρ. Thus the relative
error depends on the functional only through the value of n and is indepen-
dent of the value of ρ. In this case the central difference formula is a good
way to estimate the value of the gradient.

However, chosing a slightly different functional such as ρ4/3+ρ5/3 and the
relative error becomes

R(ρ)

f ′(ρ)
=

3ε

2δ

1 + ρ1/3

4 + 5ρ1/3
− δ2

54
(8)

which is already a function of ρ and the form of the functional expression.
Therefore, although the central difference formula is easy to implement

and often useful to get an estimate of a derivative assessing how accurate that
estimate is in general non-trivial. This assessment depends on the functional
itself and therefore needs to be redone for every functional and for every
linear combination of functional terms. Moreover, it also requires the third
order derivative of the functional to assess the accuracy of the first order
derivative. This makes robust application of this technique non-trivial and
even using it for testing purposes some care is required.

2.2. Numerical stability and the chain rule

The topic of numerical stability has been raised before both by Sa lek et
al. [14] and Ekström et al. [15]. In the context of this work numerical stabil-
ity is considered in as far as it facilitates the accurate calculation of density
functionals as well as all relevant derivatives. Important is also to distinguish
problems that may be related to the particular tools used and problems re-
lated to the density functional expressions themselves. Over the course of

6

the history of density functional theory a number of functionals have been
proposed that later turned out to have some numerical problems. Of course
one could try some approximations, such as series expansions or splines to
eliminate these problems. However, one can argue that such approaches
do not implement the functional reported in the literature. In practice the
only proper way to deal with this problem is to propose another functional
that does not have the identified problem. Some examples of this kind of
resolution are: the PW91 functional [22] was discovered to generate some
spurious wiggles in the potential [23] and this was resolved with the PBE
functional [24], the Long-range Corrected (LC) functionals [25] were found
to have some instabilities and the short range expression was replaced with
a more stable form [26], various meta-GGAs [27, 28, 29, 30, 31] were found
to have singularity problems [32] which, for the Minnesota functionals, were
addressed in the M08 functional [33]. These kinds of developments are an
integral part of doing science and no code generation tool can fix the defi-
ciencies of published functionals.

A different matter entirely are cases where a given functional can be
implemented in different ways with different numerical properties. The dis-
cussion by Sa lek et al. was related to the work by Tawada et al. [26] and does
not fall into this category as they proposed to change the functional form. To
illustrate how different implementations may have different numerical prop-
erties we consider the use of the dimensionless parameter χ introduced by
Becke [34] but first formulated in its current form by Becke [35] as

χ =
|∇ρ|
ρ4/3

(9)

. In practice χ should always appear in even powers for any analytically
well behaved functional [35]. Hence there are two possible formulations to
implement such a functional. If χ is represented by the variable ”s” and χ2

is represented by the variable ”t” and ”g” represents

g = (∇ρ) · (∇ρ) (10)

then one naive formulation would be

s =

√
g

ρ4/3
(11)

t = s2 (12)

7

Table 3: Numerical examples of calculating derivatives of (
√
g)2 for different orders of

differentiation using the chain rule, for simplicity assuming that ρ = 1

g
∂(
√
g)2

∂g

∂2(
√
g)2

∂g2
∂3(
√
g)2

∂g3

3.0e+00 1.0 -0.2776e-16 -0.5551e-16
7.0e-04 1.0 0.1137e-12 0.2328e-09
6.0e-08 1.0 -0.9313e-09 -0.9375e-01
5.0e-12 1.0 0.1526e-04 0.2097e+07
5.0e-16 1.0 -0.1250e+00 -0.5629e+15
3.0e-20 1.0 0.2048e+04 -0.7556e+23
Exact 1.0 0.0 0.0

the other formulation is

t =
g

ρ8/3
(13)

Obviously the second derivative of t wrt. g should be zero and by differenti-
ating Eq. 13 this is easily obtained regardless of the technique used.

Applying the chain rule to Eqs. 11 and 12, however, obtains

∂s

∂g
=

1

2ρ4/3
√
g

(14)

∂2s

∂g2
= − 1

4ρ4/3g3/2
(15)

as well as

∂2t

∂g2
= 2s

∂2s

∂g2
+ 2

(
∂s

∂g

)2

(16)

To obtain the correct result the two terms in Eq. 16 have to cancel exactly.
If evaluated analytically these expressions will produce the correct results.
Evaluated numerically the second derivative will typically not produce the
correct value due to a catastrophic cancelation of significant digits. The
error made will be of the order of ε/g. I.e. the error will be particularly large
for small gradients. Furthermore this problem gets worse for higher order
derivatives generating errors of ε/gn−1 where n is the order of differentiation.

Clearly evaluating derivatives by differentiating Eq. 13 is to be preferred
over differentiating Eqs. 11 and 12. The role of the technology used is that

8

a symbolic algebra engine is likely to discover and eliminate the superflous
square root, whereas an automatic differentiation library based on operator
overloading cannot perform such a substitution. In the latter case it is the
sole responsibility of the programmer to manually eliminate the superfluous
square root to prevent numerical problems. Hence it is not necessarily true
that automatic differentiation tends to generate derivatives with higher pre-
cision. Regardless of the tools used the programmer needs to understand the
numerical implications of how an expression is formulated and the limits of
tools in achieving precise derivatives. Obviously in this particular example
manually removing the square roots is highly recommended to eliminate any
risks regarding the precision of the derivatives, and to avoid wasting compute
cycles.

3. Implementing higher order derivatives

Regardless of the numerical challenges to implement functionals the bar
is raised when higher order partial derivatives are required. The increasing
number of expressions to evaluate as well as the increasing complexity of
the expressions is largely responsible for this. In practice there are three
different ways to doing this. Either the derivatives are coded by hand, either
a symbolic algebra engine is used to derive the equations and generate the
code, or an automatic differentiation approach is used to replace the basic
operations in a functional expression with ones that evaluate the expression
and its derivatives. Below these three approaches are discussed in detail to
clarify their properties.

3.1. Implementing higher order derivatives by hand

The Libxc library published by Marques et al. [16] has been implemented
by hand. They seem to not have considered the automatic differentiation
option. Instead they do contrast their approach to differentiation by finite
differences and symbolic algebra generated code. Differentiation by finite
differences was considered unsuitable as it introduces increasing numerical
errors when applied to higher order derivatives. This in addition to the
issues considered in Section 2.1.

The objection leveled against against symbolic algebra generated code
was based on the verbosity of the code as well as the code being essentially
unreadable to humans. This issue will be revisited in the section on symbolic
algebra.

9

While manual coding of derivatives offers excellent flexibility in deriving
and structuring the code in any way that is conducive to writing correct and
readable code, it is the human effort required that is the main stumbling
block. Certainly deriving the relatively large number of expressions needed
at third order derivatives even for GGAs (not to mention meta-GGAs) is a
daunting prospect. Above and beyond that a resulting implementation needs
to be tested, and if errors are uncovered their source needs to be found so they
may be corrected. This implies considerably more work in particular if an
error is related to a mistake early in a derivation. All these aspects suggest
that this approach is an option of last resort, but it will never become a
routine approach.

This fact is reflected in the experience of developing NWChem where a
decade after the release of the DFT Hessians still not all functionals could be
used due to lacking second order derivatives. Even in the Libxc library only
LSD functionals are differentiated up to third order. The GGA functionals
only offer up to second order partial derivatives. Thereby underscoring how
severely limited this approach is by the human resource implications it has.

3.2. Implementing higher order derivatives by symbolic algebra

The field of symbolic algebra was born in 1954 when for the first time a
computer was used to prove a theorem [36]. The emerging efforts saw the
development of a program for solving symbolic integration problems written
in Lisp in 1963 [37]. Extensions on this approach led to symbolic algebra
systems like Macsyma [38], Maxima [39], Maple [12], Mathematica and oth-
ers. Today these packages support a broad range of functionality, but for
this paper the differentiation and source code generation capabilities are of
particular interest.

In the field of DFT Strange et al. [11] were the first to use symbolic algebra
packages to generate implementations of density functionals for Molpro [40].
Sa lek et al. [14] published a library of density functional implementations
with a similar approach. The main objective of using symbolic algebra was
to reduce the human effort needed and maximize the automation of code
generation. However, they conceded that the detection of numerical instabil-
ities is difficult, and hence an extensive framework for testing the functional
and its partial derivatives is needed. For this purpose they decided to exploit
finite difference methods.

Obviously as discussed above there are limitations to the extend that fi-
nite difference methods can be used to test derivatives of density functionals.

10

Another challenge that symbolic algebra engines present stems from the way
they work. In hand written code one will break an expression up into man-
ageable parts, derive the appropriate derivatives for the parts, and assemble
the functional overall by combining the parts in a suitable way. Symbolic al-
gebra engines by contrast take all expressions defining a functional and these
expressions are substituted into oneanother to construct one large expres-
sion. For example the PKZB [28] functional uses a modified PBE [28, 24]
functional which in turn relies on the PW91 [41] LSD functional. A sym-
bolic algebra tool substitutes the modified PBE and PW91 LSD expressions
into PKZB and generates one expression for all of PKZB. The latter may
be then be differentiated in the desired ways. Subsequently the catalog of
expressions is translated into Fortran. The resulting code has no structure to
help anyone understand the expressions it is implementing. Furthermore, if a
functional invokes another functional multiple times then all these instances
are explicitly incorporated in the overall expression leading to a very verbose
implementation.

In reality this verbosity problem can be addressed with some additional
effort. In the PKZB example one can refer to the PBE component with-
out providing an explicit specification of the PBE part. Symbolic algebra
tools can still differentiate the expressions but will give a symbolic spec-
ification of the required derivative of the unspecified sub-expression (e.g.
′diff(PBE(ρ, γ), ρ, 1) for the first derivative of PBE wrt. the density) in the
generated Fortran code. These symbolic specifications contain sufficient in-
formation to establish the required subroutine call and which output variables
need to be referenced. Hence a script can be written that translates the raw
symbolic algebra generated Fortran into a proper Fortran implementation.
This way the high level structure of the expressions can be preserved. In
addition the code generation becomes more efficient as for each routine more
compact expressions are processed. In this work these implementations are
referred to as structure preserved generated code.

Like Sa lek et al. we chose Maxima [39] as the symbolic algebra engine.
This decision was driven by the open source license that NWChem is released
with. It would have been contradictory to provide a code under an open
source license but then force any interested developers to acquire commercial
tools. Nevertheless, if anyone wants to use a commercial tool additional
driver scripts for those tools can be added.

As indicated in [14] the Funclib library does not provide code that checks
for zero densities which tend to cause singularities in second and higher

11

Table 4: The code skeleton filled out by the symbolic algebra code generator

do iq = 1, nq ! loop over grid points
if (ipol.eq.1) then ! ipol=1: closed shell; ipol=2: open shell

if (rhoa.gt.tol rho) then
<the closed shell implementation>

endif
else

if (rhoa.gt.tol rho.and.rhob.gt.tol rho) then
<the unrestricted open shell implementation>

else if (rhoa.gt.tol rho.and.rhob.le.tol rho) then
<the alpha spin only implementation>

else if (rhoa.le.tol rho.and.rhob.le.tol rho) then
<the beta spin only implementation>

endif
endif

enddo

order derivatives. Our approach follows the work of Strange et al. [11] in this
respect. The idea is to draw up a code skeleton of relevant tests and fill each
branch with code for that specific case, as shown in Table 4.

Like Sa lek et al. and Strange et al. the code optimization capabilities
of the symbolic algebra tool are used. To underscore the importance of
doing so the code generation script was run with and without optimization
to generate code for three correlation functionals, PW91LDA [41], PBE [24],
and PKZB [28], of increasing complexity namely LSD, GGA, and meta-
GGA. In addition these functionals build on oneanother in that PKZB uses
a modified PBE, and PBE in turn relies on PW91LDA. The time to generate
the code as well as the size of the resulting source file are listed in Table 5.
While the code generation time without optimization is about a factor of
4 shorter the source code generated is much larger. In particular as the
Fortran 2008 standard [42] allows for a maximum of 255 continuation lines
we found compilers rejecting this code. By contrast having Maxima optimize
the expressions reduced the code size by a factors of 43 for LSD, 937 for
GGA, and 915 for the meta-GGA functional simply by breaking out common
sub-expressions. The resulting codes were sufficiently compact for compilers

12

Table 5: The wallclock timings in hours, minutes and seconds and the source code file
sizes in megabytes of the symbolic algebra code generation for correlation functionals of
increasing complexity without expression optimization, with expression optimization, and
with optimization and structure preservation. For the structure preserved case the timings
and file sizes are the accumulative results for the functional subroutine and the subroutines
of all its sub-expressions.

Functional Without Optimization With Optimization Structure Preserved
Time Source size Time Source size Time Source size

PW91LDA [41] 00:01:09 3.86 00:01:18 0.09 00:01:18 0.09
PBE [24] 01:17:59 299.98 03:58:48 0.32 00:24:25 0.34

PKZB [28] 03:33:59 1034.45 12:52:02 1.13 00:19:51 0.53

to accept them. In addition the work Maxima performed optimizing the
expressions eliminates work the compiler has to do at compile time. As the
code generation is part of a typical write once read many times scenario the
additional investment in time is certainly worthwhile.

Nevertheless it must be noted that the time to generate the source code
is non-trivial for more complicated functionals. Code generation times of 12
hours become a nuisance if multiple cycles of the specify-generate-test process
are required. With the structure preserved approach this problem is largely
alleviated. The code generation time for the PBE functional is reduced by
a factor 9.8 and for PKZB by a factor 39. Note that the accumulated code
generation time for the PKZB functional is shorter than that of the PBE
functional as the modified PBE functional used in PKZB is faster to generate
than the regular PBE functional. Hence the structure preserved approach
clearly has benefits beyond maintaining the code structure.

An advantage of using a symbolic algebra engine is that this machinery
can exploit all properties of the expression it is working on. In principle
this means that any simplifying transformation possible could be applied. In
practice the number and kinds of transformations applied are limited to keep
the execution time within reasonable limits. If desired certain transforma-
tions have to be issued explicitly. This requires a user to understand which
transformations are particularly beneficial and apply them. Hence a problem
as discussed in section 2.2 might be resolved automatically but there is no
guarantee of that.

13

3.3. Implementing higher order derivatives by automatic differentiation

Automatic differentiation was first introduced by Wengert [43]. In a two
page paper he showed that using the chain-rule of differentiation on every el-
ementary operation any program can be transformed into one that calculates
the derivatives of the expression it evaluates. Since then automatic differenti-
ation has developed into a discipline of its own and the community has devel-
oped a web-portal collecting papers and tools [44]. A variety of approaches is
available including source-to-source compilers, scripting languages, and lan-
guage specific libraries. However, it takes some time to evaluate the tools
on offer. Criteria of particular importance are whether the tool can generate
derivatives of the order required, and whether they can be applied to your
code. Many tools only provide first order derivatives, some provide first and
second order derivatives, and in only in rare cases higher order derivatives
are supported. Many of the source-to-source compilers are capable of han-
dling subsets of the target language rather than the full complexity of a given
language standard. As a result codes may require non-trivial modifications
before they can be processed.

However as the basic concepts are straightforward it is possible to develop
an approach for the specific problem of interest. This is particularly true to-
day now modern programming concepts of operator overloading are available
in common programming languages such as C++ or Fortran. Ekström et
al. [15] explored this approach using C++ templates to generate code for ar-
bitrarily high orders of derivatives of density functionals in XCFun. We were
motivated to investigate this approach because symbolic algebra approaches
had left us with incomprehensible code without an obvious way of testing it.
Instead of following the C++ path set out by Ekström et al. we explored a
Fortran based approach. As Fortran lacks the recursive coding capabilities of
C++ templates this meant that we are limited to a fixed order of differentia-
tion but we gain the ability to easily migrate our existing density functional
code base.

Ekström et al. provided a brief introduction into automatic differentia-
tion. Their approach is based on Taylor series presumably for the need to
generate arbitrary orders of differentiation through recursive code genera-
tion. We rely on the simpler chain-rule application. Hence we can be very
brief. Any code can be regarded as a sequence of elementary operations like
addition, subtraction, multiplication, division, exponentiation, and elemen-
tary functions such as sine, cosine, exponent, etc. Consider, for example a

14

Table 6: A simple Fortran data type for automatic differentiation up to second order
derivatives

type :: nwad dble
double precision :: d0 ! for the function value
double precision :: d1 ! for the first derivative
double precision :: d2 ! for the second derivative

end type nwad dble

simple elementary step such as

c = a ∗ b (17)

mathematically it is easy to derive the first and second order derivatives using
the chain rule as

∂c

∂x
=

∂a

∂x
∗ b+ a ∗ ∂b

∂x
(18)

∂2c

∂x2
=

∂2a

∂x2
∗ b+

∂a

∂x
∗ ∂b
∂x

+ a ∗ ∂
2b

∂x2
(19)

(20)

In order to exploit this using modern programming languages all that is
needed is to define a data type that stores a function value and in addition
its derivatives. For this particular example using Fortran that would be a
data type as given in Table 6. In addition the multiplication operator needs
to be redefined to deal with the derivatives as in Table 7. Assuming we
encapsulate the datatype and the operator in a Fortran module called NWAD
all that is needed to transform Eq. 17 into a piece of code that evaluates this
expression and all derivatives up to second order is to state in the program
that the NWAD module is to be used and to declare a, b, and c to be of
the data type NWAD DBLE. Obviously the initialization of the input data
and the extraction of the final results need some care, otherwise the compiler
takes care of the rest.

The example presented here is extremely simple as it assumes differenti-
ation with respect to only one variable. For differentiation with respect to
multiple variables there are two options. One can stick with the univariate
implementation of the operators and functions but evaluate the function as

15

Table 7: A simple Fortran multiplication operator evaluating derivatives up to second
order

interface operator (*)
module procedure nwad dble mult

end interface
function nwad dble mult(a,b) result (c)

type(nwad dble) :: a, b, c
c%d0 = a%d0 * b%d0
c%d1 = a%d1 * b%d0 + a%d0 * b%d1
c%d2 = a%d2 * b%d0 + a%d1 * b%d1 + a%d0 * b%d2

end function nwad dble mult

many times as there are partial derivatives of the order of interest using an
approach developed by Griewank et al. [45] and supported by Rapsodia [46].
Alternatively one can switch to a fully multivariate differentiation approach.
For density functional theory the multivariate approach is more suitable as
it introduces less overheads and the memory requirements for the variables
are manageable.

Ekström et al. implemented LSD and GGA functionals. These are func-
tionals in terms of two and five variables respectively, and the code evalu-
ating those differentiates with respect to the corresponding number of vari-
ables indiscriminately. In our implementation we explicitly keep track of the
variables an intermediate result depends on. This sparse approach leads to
shorter loops involving only the variables actually present. The overhead
of the variable administration is insignificant as only the binary operators
(i.e. addition, subtraction, multiplication, division, and exponentiation of
two NWAD DBLE variables) have to deal with merging sets of variables. All
other operators and functions leave the set of variables unchanged. In addi-
tion tables are needed that direct the results to the right memory location.
For example if the equation

h(x, y, z) = f(y) ∗ g(x, z) (21)

is to be evaluated two tables are needed to tell that derivatives wrt. to
y coming from the first position in f have to go to the second position in
h. Likewise a table is needed to redirect the variables of g. These tables

16

are needed only while executing a particular operator and can be discarded
afterwards.

Managing the variable sets is facilitated by fast bit operations. Assigning
the variables ρα, ρβ, γαα, γαβ, γββ, τα, and τβ each to a particular bit two
sets of variables can be merged by a binary OR operation which requires a
single instruction. Storing the resulting bit pattern in a integer allows sets
of variables to be compared using a straightforward integer comparison. If
in a binary operation both sets of variables are identical then a simpler loop
structure can be used that does not use redirection tables. Exploiting this
saved 10% on the execution time in our implementation.

One limitation of automatic differentiation approaches is that if a function
is defined in terms of some input variables, then only derivatives with respect
to those variables can be calculated. This implies that if a density functional
for a closed shell density is defined in terms of the total electron density,
the total density gradient, and the total kinetic energy density, then only
derivatives with respect to those variables can be obtained. In this case it is
impossible, for example, to obtain

∂f

∂γαα
or

∂f

∂γαβ
(22)

In most cases these quantities are not needed, except in cases like the TDDFT
excitation energy of triplet states generated from a closed shell ground state.
In that case a spin-dependent energy expression has to be evaluated at a
point where ρβ equals ρα. The simplest option is to resort to using the spin
unrestricted open-shell functional implementation at the expense of addi-
tional overheads. For the singlet TDDFT excited states the regular closed
shell functional implementations can be used.

From the discussion above it is clear that automatic differentiation oper-
ates from a very local viewpoint of an expression. It tackles the expression
by considering a single operator at a time. Hence the approach does not
exploit any global properties of the expressions and cannot make any simpli-
fying substitutions. Hence automatic differentiation cannot resolve the kind
of problems that were discussed in section 2.2. In this approach the imple-
mentor has to manually resolve such issues in the way the energy expression
is coded.

17

4. Performance

Apart from practicalities of coding density functionals and their deriva-
tives the efficiency of the resulting code has been raised as a concern [16, 15].
The first comment on this issue is that in many cases the efficiency of the
density functional evaluation is of minor importance. The main reason for
this is that the total cost of the functional evaluation scales linearly with the
number of grid points, and therefore essentially linearly with the molecule
size. The evaluation of the electron density and the Kohn-Sham matrix ele-
ments, for example, formally scale as O(N3), where N is proportional to the
molecule size. Hence when studying increasingly large systems the cost of the
functional evaluation typically becomes insignificant. This is true even when
using screening approaches to achieve limiting O(N) costs for the density
and matrix elements evaluation for large system sizes. This results from the
large difference in scaling behavior at small system sizes causing a significant
offset and prefactor in the overall limiting linear cost relation.

In our effort we started from hand written code and ported that to our
automatic differentiation framework. With a special compilation flag the
automatic differentiation code can be changed to write Maxima expressions
of the code it is evaluating. These expressions are subsequently differentiated
using symbolic algebra. This approach has the advantage that pre-existing
Fortran subroutines that typically provide only low order derivatives can
be used as a starting point for generating higher order derivatives using
automatic differentiation. The exact same energy expression can then be
fed to the symbolic algebra engine. The results from the symbolic algebra
generated code can be compared to those from the automatic differentiation
code to check for unexpected descrepancies.

Incidentally, as a by product we have all three kinds of implementations
available within the same code for a subset of the functionals. Hence we
should be in an good position to compare the performance of the resulting
functional implementations. Of course for such a comparison to be valid
all three approaches must be highly optimized such that the performance is
a reasonable reflection of the best performance attainable. We performed
benchmark calculations of our implementations with unrestricted open shell
calculations on benzene for 1st order, 2nd order and 3rd derivatives. We
found that our symbolic algebra generated code was 1.4, 2.3 and 2.3 times
slower than the hand written code for the respective derivatives. Our auto-
matic differentiation implementations were 2.9, 6.1 and 5.8 times slower than

18

the hand written code. In particular the latter fact is surprising as the over-
head of administrating the data dependencies should become less per floating
point operation when going to increasingly high orders of differentiation.

To shed light on this surprising result the performance was investigated
using the the Linux Perf tool [47]. This investigation revealed that the time
to solution correlated particularly well with both the number of L1 cache
misses and the number of conditional branching instructions. Our automatic
differentiation implementation is strongly affected by both. Because we use
a single data type to deal with all variables in the automatic differentiation
approach every instance needs to allocate sufficient space for derivatives with
respect to seven variables. In many situations significantly fewer variables
are actually used. As a result the code accesses the memory in a much more
fragmented way than strictly required by the form of the functionals gen-
erating relatively large numbers of cache misses. In addition our automatic
differentiation implementation also generates many conditional branching in-
structions as a result of our sparsity exploitation. Because of the sparsity
there are many short loops for which the exact iteration count is not known
at compile time. This condition prevents the compiler from eliminating these
loops, for example by loop unrolling.

A way to remedy both the conditional branch instruction and the cache
miss problems would be to introduce multiple data types each for different
numbers of variables, and at the same time disregard sparsity. This is similar
to the approach taken by Ekström et al. in the XCFun library [15]. I.e. an
LSD type for variables involving only densities, and a GGA type for variables
involving densities and density gradients, etc., could be defined. Instances of
these data types would involve only two and five variables respectively and
therefore be more compact than the data type we have used. In addition
looping over all variables in a data type would fix the loop lengths to constants
known at compile time allowing for more effective code optimization. To date
we have not untaken such a rewrite as the fraction of the execution time spent
on the functional evaluation, even with an inefficient implementation, is too
small to warrant investing the effort required.

Regarding the performance of the symbolic algebra generated code our
performance analysis showed that this code performs over 30% more float-
ing point operations than the corresponding hand written code. This result
is related to the expression optimization performed by Maxima. As stated
above the optimizer breaks out common sub-expressions. It does not however
replace sub-expressions with more efficient alternatives. For example, deriva-

19

tives of functionals involve ρ4/3 as well as ρ1/3. A human programmer would
calculate the former as ρ4/3 = ρ∗ρ1/3 as the multiplication requires less cycles
than the exponentiation. Maxima instead generates code that performs both
exponentiations. To persuade Maxima to generate more efficient expressions
additional rules are needed that explicitly substitute (ρ∗ρ1/3) for ρ4/3 so that
the optimizer recognizes the opportunity to reuse ρ1/3. Similar substitutions
are required in other cases such as square roots, polynomials and divisions.
Again we have not implemented these improvements as the effort required
outweighs the expected performance improvements of the application overall.

Summarizing the outcomes of the performance analysis the first point to
concede is that the performance of both the symbolic algebra as well as the
automatic differentiation approach presented here is a worst case scenario in
that both approaches can be optimized further. In particular the automatic
differentiation approach as we have implemented it suffers from cache misses
as well as loop overheads that when addressed should bring the performance
much closer to that of the hand written code. Hence the timings given here
cannot be interpreted as a fair assessment of the technique. Regardless of the
short comings of our implementation it is clear however that the performance
is sufficiently good for the capability to be useful in real applications. Even
when making the worst case assessment the time spend on the functional
evaluation is below 10% and this fraction will reduce further with increasing
molecule size.

Hence overall the approach to take depends on a number of factors. If
performance is critical to your application handwritten code still performs
the best, but symbolic algebra generated and automatic differentiation based
code is obtainable with much less human effort. The latter implementations
also perform at least well enough to be practically useful and very likely
would be competitive if one is prepared to invest enough optimization work
on the code generation and the automatic differentiation library. If read-
ability and maintainability of the code is a prime concern then automatic
differentiation is the best option. The operator overloading technique allows
the functional expression to be formulated in an easy to read form. At the
same time the fact that the operators are given in specific self contained func-
tions in principle allows each operator to be tested and verified individually.
In combination this allows for a verifiable implementation of functionals and
there derivatives. Neither hand written code nor symbolic algebra generated
code offer this to the same extent.

20

5. Conclusions

Three different approaches to creating code for higher order derivatives
of density functionals have been discussed. Writing the code by hand leads
to readable and maintainable code. When written well the code also shows
high performance. However, this approach is severely limited by the human
resource implications. This latter reason renders the approach impractical in
particular for going to increasing orders of differentiation.

Generating the source code through a symbolic algebra engine leads to
code that shows slightly degraded performance compared to hand written
code. Part of the performance degradation is, however, due to lacking opti-
mizations in regular implementations of symbolic algebra engines. Suitable
explicit substitutions aplied to the expressions just before the expression op-
timization should be able to improve the performance to one that is closer to
the hand written code. Problematic is that the code has little structure to
facilitate human comprehension. This is compounded by the fact that very
large subroutines are typically generated. Also the elapse time required to
generate the source code may be significant as examplified by the 12 hours
it took to generate code for the PKZB correlation functional. The latter two
issues can largely be addressed by the structure preserved approach whereby
a call structure similar to hand written code is maintained while still gen-
erating the code completely automatically. Nevertheless, even in the latter
approach the lack of mnemonic variable names still leaves extremely hard to
read code.

Automatic differentiation, in our implementation, simply requires a For-
tran implementation of the energy expression. This code can be transformed
into code that evaluates derivatives in addition to the original expression
simply be declaring the appropriate variables to be of a derived type. The
derived type operators overload the traditional Fortran operators with code
the computes derivatives in addition to the energy expression. As the origi-
nal code structure is maintained human comprehension is greatly facilitated.
As a result automatic differentiation is the best of all three approaches for
readability and maintainability. Our implementation, while sufficiently per-
formant to be practically usable, still performs significantly worse for higher
order derivatives than the hand written code, i.e. by a factor of about six.
This performance degradation is the result of our simple approach of just us-
ing a single data type for all possible situations while still exploiting sparsity.
This approach requires a datatype that has a large memory footprint leading

21

to large numbers of cache misses. In addition the code introduces many short
do-loops that the compiler cannot optimize effectively. These issues can be
addressed by creating different data types for different subsets of variables.
This will reduce the memory footprint of the data types and will generates
do-loops with explicit loop limits that can be optimized more effectively.

Regardless of the approach used to implement density functionals and
their derivatives the raw performance of the functional evaluation is typi-
cally not a prime concern. The reason is that the functional evaluation cost
depends only on the number of grid points and is therefore essentially linear
with respect to the number of atoms. Other factors such as the density and
Kohn-Sham matrix evaluation formally scale as the number of atoms cubed.

6. Acknowledgement

The research was performed using EMSL, a DOE Office of Science User
Facility sponsored by the Office of Biological and Environmental Research
and located at Pacific Northwest National Laboratory.

Appendix A. Location and structure of the density functional li-
brary

The implementations of the hand written, the automatic differentiation,
and the symbolic algebra generated described here resided in the NWChem
source tree in the locations shown in Table A.8. The source code pertaining
to this paper can be obtained with the command

svn checkout -r27732 https://svn.pnl.gov/svn/nwchem/trunk nwchem

22

Table A.8: The directory structure of NWChem associated with the density functional
implementations

nwchem
src

nwdft
xc the hand written functional implementations

nwxc the automatic differentiation and symbolic
algebra generated code

nwad the automatic differentiation library
maxima the symbolic algebra code

bin executable scripts to drive the code generation
input inputs for the functional expression printing
max Maxima expressions for the functionals
f77 Maxima generated Fortran code

References

[1] P. Pulay, Analytical derivatives, forces, force constants, molecular ge-
ometries, and related response properties in electronic structure theory,
Wiley Interdisciplinary Reviews: Computational Molecular Science 4 (3)
(2013) 169. doi:10.1002/wcms.1171.
URL http://dx.doi.org/10.1002/wcms.1171

[2] S. Hirata, M. Head-Gordon, Time-dependent density functional the-
ory for radicals, Chemical Physics Letters 302 (5-6) (1999) 375.
doi:10.1016/s0009-2614(99)00137-2.
URL http://dx.doi.org/10.1016/S0009-2614(99)00137-2

[3] D. W. Silverstein, N. Govind, H. J. J. van Dam, L. Jensen, Simulating
one-photon absorption and resonance raman scattering spectra using
analytical excited state energy gradients within time-dependent density
functional theory, Journal of Chemical Theory and Computation 9 (12)
(2013) 5490. doi:10.1021/ct4007772.
URL http://dx.doi.org/10.1021/ct4007772

23

[4] M. Valiev, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma,
H. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. Windus, et al.,
Nwchem: A comprehensive and scalable open-source solution for large
scale molecular simulations, Computer Physics Communications 181 (9)
(2010) 1477. doi:10.1016/j.cpc.2010.04.018.
URL http://dx.doi.org/10.1016/j.cpc.2010.04.018

[5] E. Bylaska, K. Tsemekhman, N. Govind, M. Valiev, Large-scale
plane-wave-based density functional theory: Formalism, parallelization,
and applications, Computational Methods for Large Systems (2011)
77doi:10.1002/9780470930779.ch3.
URL http://dx.doi.org/10.1002/9780470930779.ch3

[6] J. P. Perdew, A. Ruzsinszky, J. Tao, V. N. Staroverov, G. E. Scuse-
ria, G. I. Csonka, Prescription for the design and selection of den-
sity functional approximations: More constraint satisfaction with
fewer fits, The Journal of Chemical Physics 123 (6) (2005) 062201.
doi:10.1063/1.1904565.
URL http://dx.doi.org/10.1063/1.1904565

[7] F. Herman, J. P. Van Dyke, I. B. Ortenburger, Improved statistical ex-
change approximation for inhomogeneous many-electron systems, Phys-
ical Review Letters 22 (16) (1969) 807. doi:10.1103/physrevlett.22.807.
URL http://dx.doi.org/10.1103/PhysRevLett.22.807

[8] J. A. Pople, P. M. Gill, B. G. Johnson, Kohnsham density-functional
theory within a finite basis set, Chemical Physics Letters 199 (6) (1992)
557. doi:10.1016/0009-2614(92)85009-y.
URL http://dx.doi.org/10.1016/0009-2614(92)85009-Y

[9] A. D. Becke, Density-functional thermochemistry. iv. a new dynamical
correlation functional and implications for exact-exchange mixing, The
Journal of Chemical Physics 104 (3) (1996) 1040. doi:10.1063/1.470829.
URL http://dx.doi.org/10.1063/1.470829

[10] P. Jemmer, P. J. Knowles, Generation of functional derivatives in
kohn-sham density-functional theory, Computer Physics Communica-
tions 100 (1-2) (1997) 93. doi:10.1016/s0010-4655(96)00161-0.
URL http://dx.doi.org/10.1016/S0010-4655(96)00161-0

24

[11] R. Strange, F. Manby, P. Knowles, Automatic code generation in density
functional theory, Computer Physics Communications 136 (3) (2001)
310. doi:10.1016/s0010-4655(01)00148-5.
URL http://dx.doi.org/10.1016/S0010-4655(01)00148-5

[12] B. W. Char, K. O. Geddes, G. H. Gonnet, B. Leong, M. B. Monagan,
S. M. Watt, Maple v language reference manualdoi:10.1007/978-1-4615-
7386-9.
URL http://dx.doi.org/10.1007/978-1-4615-7386-9

[13] H. J. J. van Dam, P. Sherwood, Density functional repository, [Accessed:
21 Jan. 2015] (2006).
URL http://www.cse.scitech.ac.uk/ccg/dft/

[14] P. Sa lek, A. Hesselmann, A self-contained and portable density func-
tional theory library for use in ab initio quantum chemistry pro-
grams, Journal of Computational Chemistry 28 (16) (2007) 2569.
doi:10.1002/jcc.20758.
URL http://dx.doi.org/10.1002/jcc.20758

[15] U. Ekström, L. Visscher, R. Bast, A. J. Thorvaldsen, K. Ruud,
Arbitrary-order density functional response theory from automatic dif-
ferentiation, Journal of Chemical Theory and Computation 6 (7) (2010)
1971. doi:10.1021/ct100117s.
URL http://dx.doi.org/10.1021/ct100117s

[16] M. A. Marques, M. J. Oliveira, T. Burnus, Libxc: A library
of exchange and correlation functionals for density functional the-
ory, Computer Physics Communications 183 (10) (2012) 2272.
doi:10.1016/j.cpc.2012.05.007.
URL http://dx.doi.org/10.1016/j.cpc.2012.05.007

[17] P. E. Gill, W. Murray, M. A. Saunders, M. H. Wright, Com-
puting forward-difference intervals for numerical optimization, SIAM
Journal on Scientific and Statistical Computing 4 (2) (1983) 310.
doi:10.1137/0904025.
URL http://dx.doi.org/10.1137/0904025

[18] P. A. M. Dirac, Note on exchange phenomena in the thomas
atom, Math. Proc. Camb. Phil. Soc. 26 (03) (1930) 376.

25

doi:10.1017/s0305004100016108.
URL http://dx.doi.org/10.1017/S0305004100016108

[19] J. C. Slater, A simplification of the hartree-fock method, Phys. Rev.
81 (3) (1951) 385. doi:10.1103/physrev.81.385.
URL http://dx.doi.org/10.1103/PhysRev.81.385

[20] L. H. Thomas, The calculation of atomic fields, Math. Proc. Camb. Phil.
Soc. 23 (05) (1927) 542. doi:10.1017/s0305004100011683.
URL http://dx.doi.org/10.1017/S0305004100011683

[21] E. Fermi, Eine statistische methode zur bestimmung einiger eigen-
schaften des atoms und ihre anwendung auf die theorie des periodis-
chen systems der elemente, Zeitschrift fr Physik 48 (1-2) (1928) 73.
doi:10.1007/bf01351576.
URL http://dx.doi.org/10.1007/BF01351576

[22] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson,
D. J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applica-
tions of the generalized gradient approximation for exchange and corre-
lation, Phys. Rev. B 46 (11) (1992) 6671. doi:10.1103/physrevb.46.6671.
URL http://dx.doi.org/10.1103/PhysRevB.46.6671

[23] C. Filippi, C. J. Umrigar, M. Taut, Comparison of exact and approx-
imate density functionals for an exactly soluble model, The Journal of
Chemical Physics 100 (2) (1994) 1290. doi:10.1063/1.466658.
URL http://dx.doi.org/10.1063/1.466658

[24] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approx-
imation made simple, Physical Review Letters 77 (18) (1996) 3865.
doi:10.1103/physrevlett.77.3865.
URL http://dx.doi.org/10.1103/PhysRevLett.77.3865

[25] H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, A long-range correc-
tion scheme for generalized-gradient-approximation exchange func-
tionals, The Journal of Chemical Physics 115 (8) (2001) 3540.
doi:10.1063/1.1383587.
URL http://dx.doi.org/10.1063/1.1383587

[26] Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, K. Hirao, A long-
range-corrected time-dependent density functional theory, The Journal

26

of Chemical Physics 120 (18) (2004) 8425. doi:10.1063/1.1688752.
URL http://dx.doi.org/10.1063/1.1688752

[27] T. Van Voorhis, G. E. Scuseria, A novel form for the exchange-
correlation energy functional, The Journal of Chemical Physics 109 (2)
(1998) 400. doi:10.1063/1.476577.
URL http://dx.doi.org/10.1063/1.476577

[28] J. P. Perdew, S. Kurth, A. Zupan, P. Blaha, Accurate density func-
tional with correct formal properties: A step beyond the generalized
gradient approximation, Physical Review Letters 82 (12) (1999) 2544.
doi:10.1103/physrevlett.82.2544.
URL http://dx.doi.org/10.1103/PhysRevLett.82.2544

[29] J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria, Climbing the
density functional ladder: Nonempirical metageneralized gradient ap-
proximation designed for molecules and solids, Physical Review Letters
91 (14). doi:10.1103/physrevlett.91.146401.
URL http://dx.doi.org/10.1103/PhysRevLett.91.146401

[30] Y. Zhao, N. E. Schultz, D. G. Truhlar, Exchange-correlation functional
with broad accuracy for metallic and nonmetallic compounds, kinetics,
and noncovalent interactions, The Journal of Chemical Physics 123 (16)
(2005) 161103. doi:10.1063/1.2126975.
URL http://dx.doi.org/10.1063/1.2126975

[31] Y. Zhao, D. G. Truhlar, A new local density functional for main-group
thermochemistry, transition metal bonding, thermochemical kinetics,
and noncovalent interactions, The Journal of Chemical Physics 125 (19)
(2006) 194101. doi:10.1063/1.2370993.
URL http://dx.doi.org/10.1063/1.2370993

[32] J. Grafenstein, D. Izotov, D. Cremer, Avoiding singularity prob-
lems associated with meta-gga (generalized gradient approximation)
exchange and correlation functionals containing the kinetic energy
density, The Journal of Chemical Physics 127 (21) (2007) 214103.
doi:10.1063/1.2800011.
URL http://dx.doi.org/10.1063/1.2800011

27

[33] Y. Zhao, D. G. Truhlar, Exploring the limit of accuracy of the global hy-
brid meta density functional for main-group thermochemistry, kinetics,
and noncovalent interactions, Journal of Chemical Theory and Compu-
tation 4 (11) (2008) 1849. doi:10.1021/ct800246v.
URL http://dx.doi.org/10.1021/ct800246v

[34] A. D. Becke, Density functional calculations of molecular bond
energies, The Journal of Chemical Physics 84 (8) (1986) 4524.
doi:10.1063/1.450025.
URL http://dx.doi.org/10.1063/1.450025

[35] A. D. Becke, Density-functional exchange-energy approximation with
correct asymptotic behavior, Phys. Rev. A 38 (6) (1988) 3098.
doi:10.1103/physreva.38.3098.
URL http://dx.doi.org/10.1103/PhysRevA.38.3098

[36] J. Siekmann, G. Wrightson (Eds.), Automation of reasoning: Classical
papers on computational logic 1957-1966, Springer, Berlin Heidelberg,
1983.

[37] J. R. Slagle, A heuristic program that solves symbolic integration prob-
lems in freshman calculus, Journal of the ACM 10 (4) (1963) 507.
doi:10.1145/321186.321193.
URL http://dx.doi.org/10.1145/321186.321193

[38] J. Moses, Macsyma: A personal history, Journal of Symbolic Computa-
tion 47 (2) (2012) 123. doi:10.1016/j.jsc.2010.08.018.
URL http://dx.doi.org/10.1016/j.jsc.2010.08.018

[39] Maxima, a computer algebra system. version 5.34.0, [Accessed: 14 Jan.
2015] (2014).
URL http://maxima.sourceforge.net/

[40] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schtz, Molpro:
a general-purpose quantum chemistry program package, Wiley Interdis-
ciplinary Reviews: Computational Molecular Science 2 (2) (2011) 242.
doi:10.1002/wcms.82.
URL http://dx.doi.org/10.1002/wcms.82

[41] J. P. Perdew, Y. Wang, Accurate and simple analytic representation of
the electron-gas correlation energy, Phys. Rev. B 45 (23) (1992) 13244.

28

doi:10.1103/physrevb.45.13244.
URL http://dx.doi.org/10.1103/PhysRevB.45.13244

[42] JTC1/SC22/WG5, Information technology – programming languages –
fortran – part 1: Base language, [Accessed: 3 July 2015] (2010).
URL http://www.iso.org/iso/iso catalogue/catalogue tc/

catalogue detail.htm?csnumber=50459

[43] R. E. Wengert, A simple automatic derivative evaluation program, Com-
munications of the ACM 7 (8) (1964) 463. doi:10.1145/355586.364791.
URL http://dx.doi.org/10.1145/355586.364791

[44] Autodiff, Autodiff – community portal for automatic differentiation,
[Accessed: 14 Jan. 2015] (2015).
URL http://www.autodiff.org

[45] A. Griewank, J. Utke, A. Walther, Evaluating higher derivative tensors
by forward propagation of univariate taylor series, Mathematics of Com-
putation 69 (231) (2000) 1117. doi:10.1090/s0025-5718-00-01120-0.
URL http://dx.doi.org/10.1090/S0025-5718-00-01120-0

[46] I. Charpentier, J. Utke, Rapsodia: User manual, [Accessed: 25 Jan.
2015] (2014).
URL http://www.mcs.anl.gov/Rapsodia/userManual.pdf"

[47] Perf, performance counters for linux. version 2.6.32, [Accessed: 28 Oct.
2015] (2010).
URL https://perf.wiki.kernel.org/

29

