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The simplest Self-Consistent Field models find the distribution ) e,
of fluid electrons in a muffin-tin potential
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A representative ion is taken to exist in a Wigner-Seitz sphere with radius
= (3Q/4m)"3, where Q is the volume taken by an atom or ion in an
|sotroplc medium at a glven material density.
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Example Thomas-Fermi SCF model An initial guess is made for the

Solid Cuat 7=100eV | electrostatic potential V(r) in the ion
sphere. This potential is used to determine
an electron density distribution p(r),
which 1s in turn used to generate a new
potential.

The procedure is iterated until self-
consistent V(r) and p(r) are obtained,
giving also Z; and p.
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Thomas-Fermi models treat electrons as a
fluid. “Muffin-tin” models force the potential
to zero at the ion-sphere boundary
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Quantum Mechanical SCF models treat all ) i,
. . Laboratories
electrons with wavefunctions
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QM models capture bound-state shell structure and Freidel
oscillations in the continuum, but may still force the potential to
zero at the ion-sphere boundary




Stopping Powers are calculated following Wang et al. ) i,
(cf. Faussurier) using data from Average Atom model MUZE
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Stopping power is the integral of JE A [ Z02\2 [
stopping number L(p,V) over (_) —_ (_) j p(r)L(p,V)4mridr
average-atom electron density p(r): dx m |V 0

The stopping number is related to the i © dk (kV 1
dielectric -- currently using RPA L(p,V) L(p,V)= mdw( cho) 1 )
from Arista & Piriz, PRA 35, 3450 (1987) T®o k¥ :
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These all-electron calculations take about a minute for a single p,T point




These stopping powers (AA-LDA) described Zylstra’s recent A e,
measurements of 14 MeV proton stopping reasonably well .
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FIG. 4 (color online). Downshift (AE) for cold (a) and warm (b) AZ
shots compared to theory. The solid points are data (denoted by 60 F _{_ - 4 60} -
shot number), and theories are hollow points. The uncertainties in
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Mean ionization potential can be calculated FIG. 5 (color online). Mean ionization potential (1) inferred

simplv bv averaaind E... .. + E for all from the stopping-power data in the cold (a) and warm (b) cases
ply by 9ING Evpinding Fermi compared to the Andersen-Ziegler empirical fits (7 ), the ideal

electrons in the Average Atom calculation plasma case (a,,), and electronic structure theory.




Future work: use neutral pseudo-atom (NPA) model that
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captures ion structure beyond the muffin-tin approximation, ) e
and refine g(k,®) used for calculation of L(p,v,T)
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With a suitable definition of p°", a self- 08
consistent screening density pscr = pNPA _ pion ¢

can be determined and used with Quantum
Ornstein-Zernike relations to find g;(r) and .

The potential does not vanish at the
ion sphere boundary, and a neutral
pseudo-atom can be defined with

jau r PNPAdr =2

nuc

This is distinct from the muffin-tin
average atom with
J‘r< Ro pAA dr = Znuc

S;(k), along with the dielectric g(k,m) 0




In parallel with the Average-Atom based work (Hansen), ) e,
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Magyar et al. are investigating a TD-DFT-based approach
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Figure 2: The Stopping of Deuterium in Deuterium (p= 0.7 gcc). Several curves
represent different trajectories through the disordered supercell.
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Conclusions i) Natona

« We are calculating stopping powers using both Average-Atom-LDA
and TD-DFT approaches; both depend on exchange-correlation functionals

« The Average-Atom approach has additional dependence on dielectric and
collision models; we are working to increase self-consistency by
incorporating ideas from Starrett and Saumon (this will reduce “knobs™)

« Both approaches generate XRTS scattering signals in addition to dE/dx —
these two observables sample electronic response and together offer a
powerful way to discriminate among self-consistent quantum models

« We urgently need precise experimental data from quiescent, uniform
samples in the warm and hot dense matter regimes —
the most useful comparisons will be of direct observables (e.g. XRTS and
self-emission signals) rather than scalar values interpreted through
(possibly inconsistent) models




