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The simplest Self-Consistent Field models find the distribution 
of fluid electrons in a muffin-tin potential  

Radius (atomic units)                 

Zeff(r) = -rV(r) 

4r2(r)                

Example: Thomas-Fermi SCF model

Solid Cu at T = 100 eV

An initial guess is made for the 
electrostatic potential V(r) in the ion 
sphere. This potential is used to determine 
an electron density distribution (r), 
which is in turn used to generate a new 
potential.

The procedure is iterated until self-
consistent V(r) and (r) are obtained, 
giving also Zi and .

A representative ion is taken to exist in a Wigner-Seitz sphere with radius 

R0 = (3/4)1/3, where  is the volume taken by an atom or ion in an 

isotropic medium at a given material density.

Thomas-Fermi models treat electrons as a 
fluid. “Muffin-tin” models force the potential 

to zero at the ion-sphere boundary



Quantum Mechanical SCF models treat all 
electrons with wavefunctions

QM models capture bound-state shell structure and Freidel
oscillations in the continuum, but may still force the potential to 

zero at the ion-sphere boundary

QMAA models* use bound and 
free wave functions to determine 
(r) = bound+continuum

*D. A. Liberman, Phys. Rev. B 20, 4981 (1979)
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Stopping Powers are calculated following Wang et al.
(cf. Faussurier) using data from Average Atom model MUZE

Stopping power is the integral of 
stopping number L(,V) over 
average-atom electron density (r): 

The stopping number is related to the 
dielectric -- currently using RPA L(,V) 
from Arista & Piriz, PRA 35, 3450 (1987) 

These all-electron calculations take about a minute for a single ,T point

*Wang, et al., Phys Plas 5, 2977 (1998); Faussurier et al., Phys Plas 17, 052707 (2010)

In the high-energy 
(Bethe) limit, L(,v) 
is independent of T

 dE/dx 
increases 

with Z*

Low-E: 
L(,v,T)

L(,V)

1s 
(bound)



These stopping powers (AA-LDA) described Zylstra’s recent 
measurements of 14 MeV proton stopping reasonably well

From Zylstra et al., Phys Rev Lett 114, 215002 (2015)

Mean ionization potential can be calculated 
simply by averaging Ebinding + EFermi for all 
electrons in the Average Atom calculation

The downshift of 14 MeV protons is 
determined by integrating calculated 
dE/dx over measured path length



Future work: use neutral pseudo-atom (NPA) model that 
captures ion structure beyond the muffin-tin approximation, 
and refine (k,) used for calculation of L(,v,T)

The potential does not vanish at the 
ion sphere boundary, and a neutral 
pseudo-atom can be defined with 

∫all R 
NPA dr = Znuc

This is distinct from the muffin-tin 
average atom with 
∫r< Ro 

AA dr = Znuc

*Starrett and Saumon, HEDP 10, 35 (2014)

R0

With a suitable definition of ion , a self-
consistent screening density scr = NPA – ion

can be determined and used with Quantum 
Ornstein-Zernike relations to find gii(r) and 

Sii(k), along with the dielectric (k,) 



In parallel with the Average-Atom based work (Hansen), 
Magyar et al. are investigating a TD-DFT-based approach

*Magyar, Shulenburger, and Baczewski, in preparation

The TD-DFT calculations 
are free from assumptions 
about the collision model 
and the dielectric function 
(they remain sensitive to 
the exchange-correlation 
functional and trajectory 

averaging)

(T = 10 kK)
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Conclusions

• We are calculating stopping powers using both Average-Atom-LDA 
and TD-DFT approaches; both depend on exchange-correlation functionals

• The Average-Atom approach has additional dependence on dielectric and 
collision models; we are working to increase self-consistency by 
incorporating ideas from Starrett and Saumon (this will reduce “knobs”)

• Both approaches generate XRTS scattering signals in addition to dE/dx –
these two observables sample electronic response and together offer a 
powerful way to discriminate among self-consistent quantum models

• We urgently need precise experimental data from quiescent, uniform
samples in the warm and hot dense matter regimes –
the most useful comparisons will be of direct observables (e.g. XRTS and 
self-emission signals) rather than scalar values interpreted through 
(possibly inconsistent) models


