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A Why do people do chemical kinetic
modeling?
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Predict what WiII happen as the boundAary conditions are changed
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6. Wechselgetriebe fiir vier Geschwindigkeiten
und Riicklauf:

M Angriff der Motorwelle, C Angriff der Cardanwelle;

Geschwindigkeitsréider I, I1, /11,1 V,durch Verschiebung

mit 1, 2, 3, 4 in Eingriff gebracht; Riicklaufrad R,

durch Linksschiebung mit I ¥ und 4 in Eingriff gebracht.

Need to understand the intermediate steps
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ROOe

*O0OQOOH

{

HOO*Q_,,O0H

! HOOQ_HO + H

*0Q_,0 +2 OH

Zador, J.; Taatjes, C. A.; Fernandes, R. X.
PECS 2011, 37, 341.

inetic Models for Oxidation Chemistry Require
Knowing Reactions of “Intermediates”

ROOH + O, chaln branching
+0
% RO- + OH

dlrect HO, elimination
HO + alkene

chain propagation
e -

QOOH + O, is responsible for chain branching

Until last year, no one had ever directly seen a
QOOH by any means

Chain branching step goes through dissociation
of a ketohydroperoxide

All these steps depend on molecular structure
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- 2 Advanced Engines Rely on Autoignition

CRE. i
| Chemistry to an Unprecedented Degree
Gasoline Engme Diesel Engme
o e 2030 NFVSO Goal
2 DOE initiative to link
o ‘> .
9 i alternative fuel and
o 2030 Business as Usual .
2 advanced engine
= | developments
$ @
High - Typical Car Today

e —

GHG Intensity of Energy Source
High Low

ion:

Fuel chemistry is important — but fuel stream is already changing!
New fuels = biofuels? can be disruptive, or they can be enabling
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2\ Tropospheric Autoxidation Forms

CRE
Highly Oxygenated Molecules

M. Ehn et al., Nature 506, 476-479 (2014)
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e QOOH chemistry is involved Vereecken et al., PCCP a-pinene (molecules om”)
9t 5241-5248 (2007) showed reaction pathway for a- T. Jokinen et al., Angew. Chenm. Int. £d.
pinene; recently others expanded to, e.g., ozonolysis of 53, 14596-14600 (2014)

other hydrocarbons.
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http://onlinelibrary.wiley.com/doi/10.1002/anie.201408566/full#fig1
http://onlinelibrary.wiley.com/doi/10.1002/anie.201408566/full#fig1

First approach — Global oxidation experiments

So what can we do?

(e.g., ozonolysis or ignition delay)

02-1=c7h1400h1-2 2.000e+11 0.000 26850.0 !12-1 5s c7h1502-1=c7h1400h1-3
:500e+10 0.000 20850.0 !12-1 6s c7h1502-1=c7h1400h1-4 3.125e+09 0.000 19050.0 !1
1 7s c7h1502-1=c7h1400h1-5 3.912e+08 0.000 22050.0 !12-I 8s c7h1502-2=c7h1400h2-1
3.000e+11 0.000 29400.0 !12-1 5p c7h1502-2=c7h1400h2-3 2.000e+11 0.000 26850.0 !12-
| 5s c7h1502-2=c7h1400h2-4 2.500e+10 0.000 20850.0 !12-I 6s c7h1502-2=c7h1400h2-5
3.125e+09 0.000 19050.0 !12-1 7s c7h1502-2=c7h1400h2-6 3.912e+08 0.000 22050.0 !12-
| 8s c7h1502-3=c7h1400h3-1 3.750e+10 0.000 24400.0 !12-1 6p c7h1502-3=c7h1400h3-2
2.000e+11 0. OOO 26850.0 !12-1 5s c7h1502-3=c7h1400h3-4 2.000e+11 0. OOO 26850.0 !12-

Ignition Delay Time (ms)
N
(=)
1

~5ms (950 K)

T
Ignition

NN
n-Heptane (n-C H, )

4.688e+09 0.000 22350.0 !12-1 7p !sc4h902=c4h8o

Eo0e+10 0.000 24400.0 112-16p !

08 09 10 L1 12 13
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Westbrook et al., Combust. Flame, 156 (2009)

1=c5h1000h1-4 3.125e+09 0.000 19050.0 112- I 7s 05h1102 1 c5h1000h1-5 5.860e+08

0.000 25550.0 !12-1 8p c5h1102-2=c5h1000h2-1 3.000e+11 0.000 29400.0 !12-1 5p
c5h1102-2=c5h1000h2-3 2.000e+11 0.000 26850.0 !12-1 5s c5h1102-2=c5h1000h2-4
2.500e+10 0.000 20850.0 !12-1 6s c5h1102-2=c5h1000h2-5 4.688e+09 0.000 22350.0 !12-
1 7p c5h1102-3=c5h1000h3-1 7.500e+10 0.000 24400.0 !12-I 6p c5h1102-3=c5h1000h3-2
4.000e+11 0.000 26850.0 !12-1 5s ! Ipc4h902=c4h8ooh1-22.000e+11 0.000 26850.0 !12-I
5s Ipc4h902=c4h8ooh1-3 2.500e+10 0.000 20850.0 !12-| 6s !pc4h902=c4h8ooh1-4
-13.000e+11 0.000 29400.0 !12-
Bp !sc4h902=c4h8ooh2-3 2.000e+11 0.000 26850.0 !12- 5s Isc4h902=c4h8ooh2-4

Probes overall process:

modeling and theory fill in
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ROOH + O,
+ HO,
direct HO, elimination

HO, + alkene

chain propagation
OH + O-heterocycle

0

1-butyl + Oy

So what can we do?
Take one step at a time?

Measure products from pulsed photolytically
initiated R + O, reactions

Change conditions and see what happens to time
behavior and product yields

Understand connection to potential energy surface

HO5 + 1-butene

]

O m/z =72 (Expt.)

— fit

........ 2-methyloxetane

= = Tetrahydrofuran

— Dimethyloxirane !
Ethyloxirane )

H
H.C (o3
~¢~ %CHz
H,
H
\
OH + ethyloxwane

~

2co

OH + zc CH
2-methyloxetane CH3

Hzc 0
CHz OH +
oxolane

|eubig uoiojoyd pejesbejul-ewi |

COMBUSTION RESEARCH FACILITY

@ Sandia National Laboratories



- —
-

N
CA’}}E So what can we do?

! Take one step at a time?

Theory can help open the black box  peasure products from pulsed photolytically
-- if experiments are detailed enough initiated R + O, reactions

| Re ROOH + 0, Change conditions and see what happens to time
¢+ 0, THo, behavior and product yields
ROO* N’fed HO, elimination How do we connect to the underlying potential?

HO, + alkene

1-butyl + Oy

chain propagation

HO5 + 1-butene
OH + O-heterocycle

A e
-
~ OH + ethyloxirane

H.C ?
|
OH + HzC—CQ
.. 2methyloxetane CH;3

Hzc 0
CHz OH +
oxolane

Stephen Klippenstein
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vy .. IB

:

Need as much detail as we can get - really would

2\
/- like to measure all the species all the time

y . . . .
Muge;%lﬁay s%la?tnmonlzatlon mass spectrometry

5 spectrometry)

ron radiation + single ion counting)
ultiplexed mass spectrometry)

(tunable VUV, ALS synchrotron)
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CRE.

2\

Photon Energy (eV)

Time (ms)

7

Cl-initiated oxidation
Time behavior of product

formation — prompt and

delayed

Photoionization spectra identify

product isomers
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| @ Isomeric product branching can show how

molecular structure affects QOOH

Diethyl ketone prototype for
tropospheric autoxidation

Ketone oxidation has possibility
of vinoxylic resonance
stabilization

Energy, . (kcal/mol)

Resonance-stabilized radicals less
reactive with O,

(Crounse et al. J. Phys. Chem. Lett. 4, 3513-3520 (2013))
Adam Scheer
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. CRE.

Diethyl ketone prototype for
tropospheric autoxidation

Ketone oxidation has possibility
of vinoxylic resonance
stabilization

Resonance-stabilized radicals less
reactive with O,

Resonance stabilization may

. (keal/maly

Fnerov.

Energy ., (kcal/mol)
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H.

C c
“cuy cHy

CH, + 0,

favor particular QOOH pathway

Substitution changes oxidation
chemistry — for ignition or for
the troposphere

Adam Scheer

Relative Ion Signal (Arb. Units)

550 K

—{1-2-MeTHF-3-one
——THP-4H-4-one
—O-m/z 100 DEK + Cl+ + O, ot
seeeim, /2103 d;-DEK + Cle + O, o
= = mz105deDEK+Cl+ 0, Noraz

ooooo

9.0

——
10.0
Photon Energy (eV)

—T—
10.5

11.0

Isomeric product branching can show how
molecular structure affects QOOH
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C"T
C/Y\QF So what can we do to learn more about QOOH?
Start at the next step?

Re

¢ ROOH + O, chaln branching
M RO-+OH

O

lrect HO, elimination

, + alkene

chain propagation
OH + O-heterocycle

Look at QOOH -- problem
is to make enough!
Judit Zador

UELEDnE3)dEZ nile 1)

]Zk (5 Iy, - b E)ED®
ke p/Q Zkr[f..l JilE )

P
.c——cav"f"

L e (RS
A B
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CRF So what can we do to learn more about QOOH?

Re

¢ ROOH + O, chaln branching
M RO- + OH

0 lrect HO, elimination

, + alkene

chain propagation
OH + O-heterocycle

Look at QOOH -- problem
is to make enough!

(CH,),C(CH,)OOH

Start at the next step!

Cl + t-butylhydroperoxide

-»» Increasing O, »»

M

UELEDnE3)dEZ nile 1)

]Zk (E ) (B9~ kalEmd (e

£ "R

Zk (£ AInilE )

M M'

2,2- dlmethyIOX|rane

M’
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C;\/}\QF So what can we do to learn more about QOOH?

J

E

Start at the next step!

ROOH + O, cham branching
M RO- + OH

lrect HO, elimination

, + alkene

chain propagation
OH + O-heterocycle

CH,
\ L Tcoo‘

HyC——C——OO0H

[OH], (10" molecule cm™)

3.5 o0, g

~
|-

H,C—C——00H —» H;C—C

CHy

—— Experiment
Model
| | |
50 100 150
t (us)

200

Product measurements can give direct
measurements of QOOH reactions

Zador, Huang et al., Phys. Chem. Chem. Phys. 15, 10753-10760 (2013)

COMBUSTION RESEARCH FACILITY

@ Sandia National Laboratories



/

A\

CRE So what can we do to learn more about QOOH?
y Start at the next step!

Re

¢ ROOH + O, chaln branching
A? RO- + OH

0 lrect HO, elimination

, + alkene

chain propagation
OH + O-heterocycle

* Elimination of OH from
QOOH is facile
Reaction of O, with
QOOH is similar to
reaction of R with O,

I

w
B U

SM&O(' 11!91331)
%
]
\
' |

[m}
g
= 2 L
x5 k.,=4.8x10"s" |e
8 1 - —
= 190 10000
PH {9t

C. F. Goldsmith,W. H. Green, & S. J. Klippenstein,
J. Phys. Chem A 116, 3325-3346 (2012)

Product measurements can give direct
measurements of QOOH reactions

Zador, Huang et al., Phys. Chem. Chem. Phys. 15, 10753-10760 (2013)
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c,:T
C//}\?F But can we directly measure QOOH itself?

We have a machine

Re Roo%m branching that can discriminate
i"% RO- + OH Isomers!
R(i()' wrect HO, elimination

HO, + alkene

chain propagation
OH + O-heterocycle

COMBUSTION RESEARCH FACILITY @ Sandia National Laboratories



‘ /\, |
@ Identification of isomers in MPIMS machine

relies on photoionization spectra

For stable products we can What do we do for something
buy or make calibrants that has never been seen?

~O— miz = 72 product
—— 2,2-dimethyl oxirane

Relative lon Signal

Theory, of course!

| I I II I I I I I | I I I I I I I I I |
9.0 9.5 10.0 10.5 11.0
Photon Energy (eV)
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/A An illustrative digression on another set of
|
oxidation “intermediates”

b

Ozonolysis makes carbonyl oxides, often known as Criegee
intermediates

Criegee intermediates also appear in QOOH + O, reactions

Until 2012, no one had directly measured a Criegee
intermediate reaction

\
o
/
o
—o0

O

N
/C C |

Problem was to make enough
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| @F Tunable synchrotron photoionization can identify

Criegee intermediates if we make them

Carl Percival, Dudley Shallcross

—O— mlz = 46 from CH,l + O,
Dimethyl Sulfoxide (DMSO) oxidation —|—— CH,00 (calculated) -
forms CH,0O0 (Asatryan and Bozzelli, — — Dioxirane (calculated)

PCCP 10, 1769 (2008), Taatjes et al., J. Am. &~ Formic acid (Cool et al.)
Chem. Soc. 130, 11883 (2008))

Time-of-flight can resolve CH,S from
CH,00

Ci—init{ated o
DMSO oxidation - (2(

300K 8Tor Vit
turns out th:

Criegee intel

et CHoS miz = 45.988

Integrated photoion signal

Kinetic Time (ms)
[$)]

BICH,00 miz = 46.006

Can makelotso .
look at react
tropospheric

100 105 110 115 120
Photon energy (eV)

Calculated photoionization spectra
4585 4590 4595 46.00 46.05 46.10 46.15 Welz et al., SCIenCe 335 204_207 (2012)

mlz
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¥ .. B
| %F We produced and characterized larger Criegee

Intermediates, e.g. acetaldehyde OXIde (CH,CHOO)

Similar strategy:

248 or 351 nm °
HyC—CHl,  ——» |+ H,C—CHI

. H
0, + HC—CHI —— |+ H3C/C\O/O
m/z = 60 =
2
wn
5
CH;CHOO exists in two distinct P
conformeric forms £
— : :
O O
+O/ slow +O/
| ]
C C :
PN
H CH3 H3C/\H IIIIlIIIlIIIIIIIlIIII
syn anti 90 92 94 96 98 100
Photoionization Energy (eV)
Taatjes, Welz et al., Science 340, 171-180 (2013) John Dyke, Ed Lee, Daniel Mok
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& But can we directly measure QOOH itself?

Butane oxidation — ketohydroperoxides

observed (Battin-Leclerc et al., Angew. Chem. 49, 3169 (2010);
Eskola et al. Proc. Combust. Inst. 35, 291-298 (2015))

Re
ROOH + O
¢ 2 Cha'" branching Ketone oxidation — resonance stabilized
+ HO, o- + OH QOOH are preferred
0

lrect HO, elimination What about more stable QOOH?
+ alkene s )

A
204 iR, ( Y J—

chain propagation -2 |
OH + O-heterocycle 1~ —

\J
“
Al

unimolecular

10 — decomposition

20 T(RO:
) S QOOH
S

30 —

0 PR
-40 — )\/ RO, OOHGB

Energy (kcal/mol)
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H
ST “H,Cl
>
Hq /
Hg
+ °ClI
Hg

N Mo _

o m/z = 93 (C,H)
= 8.3 eV
. - [0,]=1.7x10" cm? |
O
[
8L u
=
‘» ] L
C
(O]
'}
c | @ @ @@ @@ o) B
— |IIIIIIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|
0 10 20 30 40 50 60
Kinetic Time (ms)
20 —
John Savee a
Ewa Papajak T

124

(Ra)

(Rg)

Cycloheptadienyl + O,

Intensity (arb. units)

oo o b b boves b b by as bevan bonna bovna byaaa benaal
Tel miz = 125 (C,Hq05)

8.3 eV

[0,] = 1.7 x 10" cm®

125 126

(I) 10 20 30 40 50 60
(ms)

127 128 129 130 131 132

Mass (amu)
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(2 i
C/Y\?@ Evidence for QOOH

Oxygen Dependence, Exact Mass

e m/z=125amu only present when O, is present
e Exact m/z =125.06 amu confirms formula of C,H,0,

ot v b b b b b by b b by ey g |
0,] = 0 8.3 eV
- G 0-60 ms
7 — [0,]=15x10" cm? B
N - C,H,,*Cl -
o)
[
L
> 37 B
(7) C7H902 C7H10 Cl
- o C,HFCl  C,H*Cl \
| Gup— |
£ AT
: 4 AU A )
P T T [T T T T[T I T T [T T [T T T T[T T T[T T T [T T[T I T[T T [T I T T[TTTT[TTTT]
124.90 125.00 125.10 125.20 125 126 127 128 129 130 131
m/z m/z

Mass Resolution ~ 1600
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q—
) Evidence for QOOH
Photoionization Spectrum

e C(Calculated ionization energy perfect match to QOOH, not ROO

Ab Initio Adiabatic lonization _
miz =125

Enerqies — [Oz]o =1.5x 1017 Cm'3 T = 400 K “\
[M06-2X/6-311+G(2df,2p)] - 0-40ms

M
= % O
AE=852eV 5 Q
£
. ©
b, =
O AIE = 8.58 eV G\(e

HO—O

AIE = 7.20 eV el
O III7I5IIllslollllslsllllgﬁol

Photoionization Energy (eV)

J.D. Savee, E. Papajak, et al.,, Science 347, 643-646 (2015).
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f & Reaction of QOOH with O,

Kinetic Time Profiles

e Both rise and decay of C,H 0, faster as [O,] increases
Kise =(2.9£1.0) x 10> cm> s, kg, = (3.2 0.5) x 101 cm? 57!

~~ Q

(D 1 lz. A 8_3 ev, QOOHGB [ 900 ] 1 ] 1 ] 1 | 1 | 1 | 1 |

= w4 [0,] = 1.9 x 1076 cm-3 800 Kise = (2.9 £1.0)x 10 cm3®s™ -
(- 2 : < 7004 e —
> - % 600 % _______ L
_d 2 504  _.-1="" -

o — --" - -

ps o é - 'él N I B TR B

o _ | 00 —t+——"+—T1—"+—+T+—+—"=
~ ~ 707 Kecay = (3.2 £0.5) x 107" cm? s . _% -
=> w 041 =TT L
= = 50 I ° -
0 — — 8w+ _L.--T -
C S w0-a--C (b)
Q 20 I T I T I T I T I T I T I

(- 2 4 3 8 10 12 14
= T [0,] (107 em)

k(QOOH + O,) is much smaller than other “second O, additions”

Dissociation of resonance stabilized QOOH is slow
» Long lifetimes for resonance-stabilized QOOH.
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What does this tell us about oxidation?
What about that last step?

ROOH + O

R(i()' Nrect HO, elimination

'QOOH

*0O0QOO0H

!

HOO+Q,,00H

\ 4
' H00Q,,0 + OH

\ 4
*0Q_,0 +2 OH

s

, + alkene

hain propagation

Integrated m/z = 104 Signal

OH + O-heterocycle

9.0 9.5 10.0 10.5
Photon Energy (eV)

wam branching

RO- + OH

“Normal” autoignition
chemistry has OOQOOH
forming ketohydroperoxide
Ketohydroperoxide falls
apart to two radicals

Substitution can make the
chemistry “not normal”!

Ketohydroperoxide m/z = 104

COMBUSTION RESEARCH FACILITY

@ Sandia National Laboratories



What if QOOH doesn’t make a

ketohydroperoxide? |

Fermalised PIOIH H
oM

)

Resonance stabilization can
make QOOH less reactive " H .
: fL\iﬂH

| —OH —
& s i-B-peroay
—_ 1111111111111111111111111111111111111111111111111111111 —_—
N oI 8.3eV, QOOHGB B +H0 i--shifl
= R\ M A : nti only)
- — A4l50 _ _ I'l,e., L
c [0;]= 1.9 x 10" cm® 390, A _od"
. 7] B OH
o) (x| -menthen &1 f-WH-memihen -R-peroay| j’
f— i Ri
© - N .-
~ / e
> ] i-H-ghifl
"5; 500, P fanti snlyh 1
C
O]
-
C il we #H

llllIllll]llIIIllll]lllllllll]lllllllll]lllllllll]lllll

0 10 20 30 40 50
Kinetic Time (ms)

HO—O

tel HH - RO M -menihens 2yl
o L RT L1

-Hik L
Vereecken et al., Phys. Chem.

|~ CHOH
Chem. Phys. 9, 5241-5248 (2007) -
eveloperavide B2 EAOH-E=R0H-menthen-f-one
e : 2 e 2 200
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/\! |
| @ What if QOOH doesn’t make a
| ketohydroperoxide?

Tertiary carbons can prevent T. Jokinen et al., Angew. Chem. Int.
“normal” OOQOOH reaction Ed. 53, 14596-14600 (2014)

1200

1000—. /
800__ CsH1e
% 6004 K
g
400 CsH1
200 {
Ogd.ulh L.I 1'11 L —
110 120 130 140
m/z + Oy | isomerize
. . . HO\O ’ C|3H3
Oxidation of 2,5-dimethylhexane oo 1 o Hso\é/oz\g/CH\CHs
makes highly oxygenated species “3C\é/c\§/CH\CH3 * 0, L J)\O
Z. Wang et al., Combust. Flame, in press. éH3 .
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A\ :
| @ Ketohydroperoxides have now been observed

in many kinetic systems

Oxidation of 3-pentanone Neopentane oxidation also
shows KHP formation shows KHP formation

g KHP formation and decay at 550 K, 1770 Torr Normalization based on neopentane signal

@ — [0,]=6.70x 10" cm® @ %o o 0% 4

(] 18 -3

— [0,]=3.35x 10 000, 09 o

E [ 2]_ Lo 5 oQ9 ° 6)0 0o 00 O
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CRE What happens to y-ketohydroperoxides?

So far observed species are Jalan et al. pointed out that
gamma-ketohydroperoxides gamma-KHP can isomerize

o o (sd (o 0 ;é o | @

49.5 -
TS, 1
D | 347
: Jalan et al., J. Am.

Chem. Soc. 2013, 135,
11100-11114

o) 0 OH | o "~°
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0-0 bond fissign leads to chain 9.7
branching
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Klippenstein et al. predicted substantial
roaming in dissociation of methyl

hydroperoxide (Klippenstein, Georgievskii and
Harding; J. Phys. Chem. A 2011, 115, 14370-14381)

=]

GM'D' + «(OH

energy (kcal/mol)
=)

TIIVITIE

—

[
Lk
wn

| @ Dynamics and beyond -- could excited products
75 play a role?
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“Effect of non-thermal product
energy distributions on
ketohydroperoxide decomposition
kinetics”

Goldsmith, C. Franklin; Burke,
Michael P.; Georgievskii, Yuri;
Klippenstein, Stephen J.

Proc. Combust. Inst. 35, 283-290
(2015)
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Working inside the “black box” connects
fundamental kinetics to complex models

* Begin to investigate conditions more like
real combustion devices

CHj o
H3C\C|: N |
y C/ \o H20\ /CH2°
2 / /C
HO HaC

* So far only the simplest or most convenient
examples of intermediates -- try harder problems

e New measurement methods are opening things up -- others
are developing new tools to investigate these species
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