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Introduction N Model description

Additive manufacturing processes offer the ability to create metallic
components with complex shapes without the expense and time A user defined melt pool is scanned through the
commitment required with traditional approaches. However, the simulation domain on a specified trajectory.
complex, non-uniform temperature histories of these processes The material is represented as a cubic lattice of
result in materials with complex, anisotropic microstructures. sites with “spins” that represent specific grains.
Here, a Potts Kinetic Monte Carlo When the melt pool travels through a lattice site,
method is introduced to model the spins are randomized and any existing grain
microstructure evolution N | assignment is lost. Rapid grain growth occurs In
during additive manufacturing and Powder feed Y the high temperature region surrounding the
autogenous welding processes, el 'tf,’i’f(ness melt pool, and results in the formation of
. along with approaches to quantify SeEnchecton 0o elongated grains oriented along the temperature
Natlonal and validate the results. Schematic of LENS additive manufacturing gradient. Simulated melt pool and in-
I_aboratones process with adjustable process parameters process simulation domain

Qualitative Comparison with experiment

Exceptional Autogenous welding Laser Engineered Net Shaping (LENS)

Service Autogenous welding experiments involve a single-pass of Additive manufacturing
a heat source (typically an electron or laser beam) YZ Plane - XY Plane XZ Plane
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, o An important feature of additive microstructures is the anisotropic nature of
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Wi :4. _H,;_ ";"_‘ experimental EBSD images with simulated grain structures. The simulations
671\ “":‘if ., ;?. “ij provide a reasonable reproduction of essential microstructure characteristics
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Quantitative Analysis Methods

Representation Correlations Reduction Building

SPPARK simulation results allow for the application of several quantitative
approaches, including 2D slice analysis, full 3D grain shape studies, and emerging
data science approaches using n-point statistics and principle component analysis.
Direct, quantitative comparisons between simulation and experimental
microstructures, such as grain size, shape, and orientation distributions, are also
possible.
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3D analysis of grain shape can be
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Ongoing work

Current work is focused on improving the simulation’s integration within
the process-structure-property linkage through the implementation of
more realistic melt pool physics and the implementation of component-
shaped domains for mechanical behavior simulations.
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