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_ Cyber attacks on ICS are o the rise... @i,

NEXT GENERATION CYBER ATTACKS TARGET OIL AND GAS

SCADA
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2




_ The Problem e

Laboratories

= |CSis avulnerable and valuable target for attackers

= Security was largely an afterthought in the pre-stuxnet world

= |CS devices are old and have minimal processing capability
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= Many papers focus on using machine learning to detect new
attacks

= Machine learning experts have shown that these techniques
are not useful for determining meaningful outliers, only
recognizing patterns

= Recurrent nature of ICS networks lends itself well to this idea

= Multiple papers have been published about the potential of
machine learning applicability in this domain

= Only a couple proof of concepts (using SOM with Bro and
SVM with live data), but still produce an unreasonable

number of false positives
4




Objectives () .

Method Results and . -
: : . ,, . Impact Future Work
Overview Analysis

1. Detect various ICS network anomalies or failures with few or no false
positives

2. Analyze the accuracy from different points of presence on the network
3. Stress the robustness of the solutions with numerous red herring events
4. Create a semi-real-time solution

5. Develop a general solution with minimal human intervention
requirements for new event detection
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* Generate “sensor trees” that take in buffered network data (pcaps,
netflow, etc.) to determine if an event occurred

* Trees are generated using a genetic programming algorithm. Machine
learning algorithms can be trained to recognize patterns, which lends
itself well to the recurrent nature of ICS networks

* Each tree is responsible for one event (ie, a specific router going down, any
router going down, etc)

* Multiple trees can be placed in multiple locations, depending on the
training data available, the amount of events that need to be detected, the
required level of accuracy, and the desired presence on the network

e Leaf nodes of the trees are extracted numeric metrics from the network
data, normalized to values between 0 and 1
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* Internal nodes are fuzzy logic operators that relate the features (or
metrics) together

e Buffered data allows for semi-real-time analysis. Multiple buffer sizes
were tested, but ultimately ~20 minute buffers produced optimal results

e Data was collected using Minimega to make a “training set” as input to the
fitness function — ultimately a supervised reinforcement learning approach

* Features vary in complexity
* High level features such as packet type collocation

* Simple metrics such as average packets sent per minute




Network Diagrams

e rideg: )
Overview

¢
(9

S o B
' Routers ‘

66
6 €

Four Router/RTU ‘ Routerl Router24
pairs for every
corerouter

Ii
i

RTu1l RTU24

Fig. 1. A subset of our 24-bus network

Results and
Analysis

= =
]
} | -
[C ]
I I l
8 = 4 [
FEP2  FEP3 c::erﬂl Historian  HMI

=

Sandia
National
Laboratories

Impact Future Work

W
D
<
)
o

An example of devices connected to a router in the 24-bus network




_ Data Collection () =

' : Results and -
SCOvetvten _ ‘ . Impact Future Work
e verview Analysis

= Collected data from various ‘tap’ locations through out the network,
gathering pcaps and netflow data

= Attempting to detect 3 events: any router down, specific router down,
specific FEP down

= Performed 20 different data collection chunks, where each lasts for ~20
minutes, and from 3 different ‘tap’ locations, resulting in 1200 minutes
(20x20x3) of data
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TABLE 1
EXPERIMENT DESCRIPTIONS

Exp. No. Fail Event Tap Location
1 Specific router Next to target router
2 Specific router Several hops, next to RTU
3 Specific router Several hops, next to FEP
4 Any router Next to router
S Any router Next to RTU
6 Any router Next to FEP
7 Specific FEP Several hops, next to router
8 Specific FEP Several hops, next to RTU
9 Specific FEP | Several hops, next to diff. FEP

10




Feature Extraction (M) e

7 ; Results and .
COvetvied _ ‘ . Impact Future Work
S verview Analysis

= The feature extraction functions and genetic programming (GP)
framework was developed in Python 2.7 ( > 1000 LoC).

= |mported various python modules (dpkt, pcap, and pyevolve) to aid in
rapid development

= Developed over 10 specific features to extract from the data

= Some example features were:

Packet type collocation
Average flow time
Communication pattern breaks
Average packet length
Average TTL
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Individual Feature Accuracy on Experiment 4
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Fig. 3. Individual feature accuracy on Experiment 4
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TABLE III
GP PARAMETERS

Parameter Default Exp. 5 Exp. 6
I 100 200 200
A 20 40 40
max depth 4 4 5
selection k-tourn. k-tourn. k-tourn.
survival k-tourn. k-tourn. k-tourn.
k 7 5 5
Crossover single-point | single-point | single-point
mutation sub-tree sub-tree sub-tree
mutation rate A5 8 .85
termination 5000 eval. 5000 eval. 5000 eval.
Acceptance Thresh. 9 75 5

*Parsimony pressure introduced to prefer smaller solutions with equal fitness
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= Parameters were chosen to be “generic defaults”

= Algorithm would likely perform better with proper parameter tuning (ie,
meta-algorithm or hand-tuning)

= Algorithm performs really well without tuning

" |ntended to be used by people that are not machine learning experts, so
no emphasis was placed on this
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Algorithm 1 Fitness function pseudocode

function gef_fitness(tree)
total < 0
for all data € data_sets do
val < eval_tree(tree)
if val > accept_thresh && event then
total + total + num_not_event
end if
if val <1 — accept_thresh && not_event then
total < total + num_cvent
end if
end for
return total
end function

15




Experiments ) .

: ; Results and .
Cheeiiay _ “ . Impact Future Work
verview Analysis

= 80% of the data was used for training, 20% used for testing

=  Each of the experiments from Table | were run 30 times with 5-point
cross-validation such that each dataset from Table Il was in the testing set
at least once
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Training Fitness for Specific Router Failure Event
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Training Fitness for Any Router Failure Event
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Training Fitness for Specific FEP Failure Event
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Fig. 7. Accuracy per experiment, averaged over all runs and cross validations
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= When parameters are not optimized, there is a chance of overfitting

=  The GP algorithm could force the trees to over-train to the training set
and perform worse on the eventual testing set

= Analysis shows that this occurs on several folds of a few of our imperfect
experiment results

= This the trade-off with avoiding intensive parameter tuning
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Sample Overfitting Plot for Experiment 5
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Sample Overfitting Plot for Experiment 6
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=  Complexity of resultant trees varies depending on the training set
provided and point of presence on the network

= Solutions make logical sense when evaluated

= Some redundant logic exists (ie, NOT-NOT-NOT-feature) but parsimony
pressure filters out most of those issues

= This method works best when the trees are trained on data collected
nearest to the event in question

= For truly optimal results, multiple trees would be generated for one event
and aggregated; due to low processing cost, they can be correlated to
make a decision
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=  General solution to the problem

= All major processing is done a-priori, and the resultant solutions are
models that do not need to “learn” more

= Can be deployed in semi-real-time to sit quietly on nearly any node or
several different nodes at once

=  Small network presence can be achieved — needs to just have access to
the necessary data for the feature extraction algorithms

= Could be ported to accept data from multiple other network nodes,
aggregate it, and evaluate the data; does not need to be directly in the
network loop

= When an event is detected, the resultant action can be anything the
operator desires (ie, send an alert)
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= No parameter tuning is required, so operators not versed in machine
learning can run the algorithm with great results

=  Stressed the method by causing many false events atypical of real
environment, such as multiple devices failing and coming back up in order
to “trick” it, but still got solid results . Would perform even better in a
normal ICS environment with less noise

= Resulting trees can process data quickly and require little computing
power

= Different types of data can be introduced, such as system logs, images,
etc. if the proper feature extraction algorithms accompany the data

= Can easily be abstracted to an ensemble approach, such as using multiple
evolved trees to create a Learning Classifier System (LCS), or using a
classification algorithm as a single feature in the trees
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= Any other event can theoretically be detected using the same method if
appropriate training data is given

= This method is only as strong as the feature extraction algorithms

= For detecting other events, new feature extractions will likely need to be
implemented that fit the situation

=  Other possible events that could be detected:

m PLC process logic update

: PLC firmware update

: Abnormal values sent by PLC

: Data exfiltration

: PLC communication with new nodes or at odd intervals
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1. Reinforce the results by using a HITL or pure-hardware approach as
opposed to a simulated environment with Minimega

2. Use the approach to detect the more nuanced events listed in the
previous slide

3. Run multiple trees in a live system to detect a specific set of failures,
then attack the system

4. Minimize the amount of data given to the algorithm to further stress its
robustness

5. Gather specific statistics about processing power requirements 2o
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