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Abstract

Critical to many modern forensic investigations is the chemical attribution of the
origin of an illegal drug. This process greatly relies on identification of compounds
indicative of its clandestine or commercial production. The results of these studies can
yield detailed information on method of manufacture, sophistication of the synthesis
operation, starting material source, and final product. In the present work, chemical
attribution signatures (CAS) associated with the synthesis of the analgesic 3-
methylfentanyl, N-(3-methyl-1-phenethylpiperidin-4-yl)-N-phenylpropanamide, were
investigated. Six synthesis methods were studied in an effort to identify and classify
route-specific signatures. These methods were chosen to minimize the use of scheduled
precursors, complicated laboratory equipment, number of overall steps, and demanding
reaction conditions. Using gas and liquid chromatographies combined with mass
spectrometric methods (GC-QTOF and LC-QTOF) in conjunction with inductively-
coupled plasma mass spectrometry (ICP-MS), over 240 distinct compounds and elements
were monitored. As seen in our previous work with CAS of fentanyl synthesis the
complexity of the resultant data matrix necessitated the use of multivariate statistical
analysis. Using partial least squares discriminant analysis (PLS-DA), 62 statistically
significant, route-specific CAS were identified. Statistical classification models using a
variety of machine learning techniques were then developed with the ability to predict the
method of 3-methylfentanyl synthesis from three blind crude samples generated by

synthetic chemists without prior experience with these methods.



Introduction

Critical to law enforcement and related intelligence efforts to combat illicit drug
abuse are analytical methods that can provide some level of attribution for drug source
identification. This attribution typically relies on the chemical attribution signatures
(CAS) present in a drug sample. CAS can be defined as synthesis precursors and
byproducts, impurities, degradation products, and metabolites in various biological
matrices. The most informative CAS are those that are persistent in the materials made
via a specific route, those that remain unchanged after operational surfaces, and those that
are present independent of synthesis chemist, laboratory, and facilities. Many reports
have detailed the forensic application of a variety of analytical techniques for the
characterization of these organic species in often complex matrices. Analytical tools
generally include various forms of chromatographic separation combined with
spectrometric detection schemes. Gas and high-pressure liquid chromatographies (GC
and HPLC, respectively) combined with mass spectrometric (MS) detection have
traditionally been the workhorses of such studies.! Though they each have specific merits
and drawbacks, both are geared exclusively towards the identification of organic species
and are generally used independently of one another. Our previous work?¢ has shown
the power of integrating the signatures identified with these two organic detection
methods into a single chemometric methodology, and explored the utility of including
inorganic CAS detected by ICP-MS. %

3-Methylfentanyl has a potency (often reported as an EDso) reported to be roughly
three orders of magnitude greater than that of morphine, making it 10-15 times stronger

than its parent opioid, fentanyl, (N-(1-phenethylpiperidin-4-yl)-N-phenylpropionamide).®



This potency has restricted 3-methylfentanyl’s usefulness as an analgesic; instead it is
largely used recreationally, where mere grams of the opioid can be formulated into
thousands of doses for subsequent sale. Considering the relatively low cost of production
and high return on sale of the material, it is not surprising to see the marked uptick in
general opioid use and number of overdose cases in both the United States and abroad.*
As with our previous investigation into the chemical attribution of fentanyl, the
routes in the current work were selected to share various synthetic steps. The strategy was
adopted to 1) reflect likely syntheses used in clandestine laboratories and 2) to test the
ability of the model to discriminate between very similar reaction schemes. Also akin to
our previous work, all syntheses rely on the same general pathway: the formation of an

intermediate piperidinone followed by reductive amination and acylation.

3MNPP 3MANPP 3MF

Scheme 1. General synthetic strategy for the generation of 3-methylfentanyl (3MF)
starting with 3-methyl-N-phenethylpiperidin-4-one (3MNPP) and using 3-methyl-1-
phenethyl-N-phenylpiperidin-4-amine (3MANPP) as the intermediate.

In half of the synthetic routes studied, a commercially sourced 3-methylpiperidin-
4-one was used. In the remaining three routes, however, methylation of piperidon-4-one

was performed in one of two ways, namely using the reducing agents sodium hydride

(NaH) or lithium diisopropylamide (LDA). In-house generation of this precursor seems



likely, as the commercial price for the methylated version is upwards of $100/g compared
to $1-$10/g for 4-piperidone hydrochloride.

From a forensic analytical perspective, synthetic schemes that share a number of
starting materials or synthetic steps can complicate chemical attribution due to a small
number of unique signatures, particularly when present at trace levels. In our FY14 CFP
work, we extracted comprehensive exact mass information from LC-QTOF data in
addition to using electron impact (EI) and chemical ionization (CI) GC/MS data.
Inorganic material present in crude samples were detected and semi-quantified using
ICP-MS. In the current work on 3MF, several instrumental and sample preparation
techniques were improved upon to enhance instrumental sensitivity and the amount and
quality of data. To compliment the use of LC-QTOF, GC-QTOF was used to extract
high-resolution mass spectrometric data from the more volatile organic species present in
crude 3MF samples. This GC-QTOF was recently acquired in the Forensic Science
Center with internal funding, and gives us additional GC-MS sensitivity as well as the
ability to obtain exact mass information. In addition, the crude samples were completely
microwave digested before subsequent analysis by ICP-MS using a microwave digester
that was also recently acquired in the FSC using internal and other sponsor funding. The
impact of these strategies is discussed.

The three analytical techniques used herein provided over 200 unique synthesis-
related signatures and a full panel of elemental data was acquired by ICP-MS. The
continued complexity of the resultant signature data, however, demanded the use of
statistical techniques to extract relevant CAS. Therefore, multivariate statistical analyses

were employed to extract the main sources of variance among the six synthetic routes.



Resulting models were shown to be able to identify compounds of significance as
chemical attribution signatures. Blind syntheses were then performed by two synthetic
chemists not previously involved with the work. Choosing three routes known only to the
two chemists, three crude samples of 3MF were generated and analyzed using the
multivariate models, which classified the unknown sample data against the training data.
Despite apparent dissimilarities between the training and unknown data sets, the models
were able to confidently assign the correct route in most cases. For samples where
classification was ambiguous, the models were able at the very least to eliminate a

significant number of the routes studied.

Experimental
Synthetic Approach

The routes chosen for this study were selected to generate the 3MF in ways that
closely mimic probable illicit manufacturing methods. These methods use 3MNPP as the
synthetic foundation. While commercially available 3-methylpiperidin-4-one was used in
three of the six routes studied, its cost pre unit weight is relatively high. In the remaining
routes, then, in-house synthesis of 3-methylpiperidin-4-one was performed. Though the
synthesis of fentanyl-like compounds dates back to the 1960s in work by Janssen,® it
involves techniques believed to be too complicated or expensive for clandestine
laboratories such as hydrogenations with precious metal catalysts. Therefore, the
alternative routes chosen use common, easily accessible components and relatively mild

reaction conditions — namely the Valdez and Siegfried methods (vide infra).



As with the FY14 work on fentanyl, the six chosen methods offer variations on
the attachment of the different 3MF functional groups on the piperidine ring. 3-methyl-1-
phenethyl-N-phenylpiperidine-4-amine (3MANPP), the direct precursor to 3MF, was
generally formed from 3MNPP using the Valdez method (i.e. via reductive amination).®
Only in one case ($VSS) was a two-step condensation-reduction method processed used
involving sodium triacetoxyborohydride (STAB) (i.e. the Siegfried method’). Similarly,
3MF was generally formed using propionyl chloride and N,N-diisopropylethylamine
(DIPEA, Valdez method), though in two cases pyridine used as the base (Siegfried route).
To summarize: 1) when commercially available 3-methylpiperidon-4-one was used,
variations using some combination of Valdez and Siegfried routes from 3MNPP to 3MF
were used; and 2) when 3-methylpiperidon-4-one was synthesized in-house, only the
Valdez methods for 3MF synthesis were used. In this way, signatures relating to hydride-
or LDA-mediated methylation of 3-methylpiperidone could be isolated from signatures
associated with 3SMANPP and 3MF synthesis using the Siegfried route instead of the
Valdez method. The interconnectedness of the routes is shown in Scheme 2, and a
summary table of routes is given in Table 1. Samples were generated in triplicate, and
given the six routes, a total of 18 test samples of crude 3MF product were available for

analysis.
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Scheme 2. Overall synthetic pathway to 3MF. Routes are coded via four letters,
“XXXX.” The orange subscripts refer to the position in the code. “L” = LDA-mediated
methylation; “H” = sodium hydride-mediated methylation; “V” = Valdez method®; “S” =
Siegfried method.” Use of a “$” in the first position indicates commercial 3-
methylpiperidin-4-one was used. For example, LVVV describes a route that uses LDA to
methylate piperidinone HCI, Cs2COs to for 3SMNPP, STAB and AcOH for reductive
amination, and alkylation in the presence of DIPEA.

Table 1. Breakdown of the six 3MF synthetic routes. For the top four routes, the
methylation is completed as the first step either through LDA mediation or by using the
commercial source. For the bottom two routes, NPP is made first with subsequent
methylation with LDA or sodium hydride reagents. Commonalities among routes are
highlighted through colored fields; unique steps are left white.

-methyl-
Route Code | , >-methy 3MANPP 3MF
piperidon-4-one
SVVV C il Cs2C03, ACN, 80°C, AcOH, STAB, DCM, DCM, DIPEA,
ommerciat source 16h RT,24 h 0°C>RT, 24h
. Cs2COs3, ACN, 80°C, AcOH, STAB, DCM, DCM, pyridine,
$VVS Commercial source 161 RT. 24 1 RT. 24 h
. Cs2COs3, ACN, 80°C, AcOH, DCM, RT, 24 DCM, pyridine,
$VSS Commercial source 164 he RT. 24 h
LVVV LDA, THF, -78°C, Cs2COs3, ACN, 80°C, AcOH, STAB, DCM, DCM, DIPEA,
Mel, RT, 24h 16 h RT,24h 0°C>RT, 24 h
Route Code NPP 3MNPP 3MANPP 3MF
VHVV [ COWXO IRl NaH, NMP, Mcl, | AcOH, STAB, DCM, RO ANLTN
16 h 0°C>RT, 16 h RT,24h 0°C>RT, 24 h
VLVV O eO W OISOl [ DA THF,-73°C, | AcOH,STAB,DCM, ENeIENIJIN
16 h Mel, RT, 24h RT,24h 0°C>RT, 24 h




Materials

Unless otherwise stated, all reagents and solvents were obtained from commercial
suppliers (Sigma-Aldrich (St. Louis, MO), Alfa Aesar (Ward Hill, MA), J.T. Baker
(Avantor Performance Materials, Center Valley, PA), Fisher Chemical (Fairlawn, NJ)

and used as received.

Synthesis
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3-Methyl-4-piperidinone HCI (200 mg, 1.34 mmol) was taken up in acetonitrile
(10 mL) in a 20 mL scintillation vial equipped with a stir bar. To the solution, cesium
carbonate (1.1 g, 3.34 mmol, 2.5 equiv.) was added followed by the dropwise addition of
phenylethyl bromide (618 mg, 3.34 mmol). The mixture was heated to 80 °C overnight.
The following day, the mixture was partitioned (DCM?//H20) and the organic phase

washed with brine (1 x 10 mL), dried over anhydrous sodium sulfate and evaporated in

vacuo at 50 °C to yield a light brown oil.

2 DCM = dichloromethane
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STAB
DCM, RT, 24 h

The oil residue from the previous step (131 mg, ~ 0.60 mmol) was taken up in

DCM (5 mL) in a 20 mL scintillation vial equipped with a stir bar. This mixture was
added to a mixture of aniline (57 pL) and acetic acid (80% in water, 45 pL) in DCM (10
mL) in another 20 mL scintillation vial. The mixture was then treated with sodium
triacetoxyborohydride (STAB, 127 mg) and stirred overnight. The following day, the
mixture was partitioned (DCM//H2O) and the organic layer was dried over anhydrous

sodium sulfate and evaporated to dryness to furnish a yellow oil.
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DCM, DIPEA
0°C toRT, 24h

The above mixture (88 mg, ~ 0.30 mmol) was taken up in DCM (3 mL) in a 20
mL scintillation vial equipped with a stir bar. The mixture was cooled to 0 °C and treated
sequentially with diisopropylethylamine (105 pL, 0.60 mmol) and propionyl chloride (53
uL, 0.60 mmol). The mixture was allowed to reach RT, and stirred overnight at this

temperature. The next day, the mixture was partitioned (DCM//H20) and the organic



layer was dried over anhydrous sodium sulfate and evaporated to dryness to furnish a

yellow oil.
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3-Methyl-4-piperidinone HCI (200 mg, 1.34 mmol) was taken up in acetonitrile
(10 mL) in a 20 mL scintillation vial equipped with a stir bar. To the solution, cesium
carbonate (1.1 g, 3.34 mmol, 2.5 equiv.) was added followed by the dropwise addition of
phenylethyl bromide (618 mg, 3.34 mmol). The mixture was heated to 80 °C overnight.
The following day, the mixture was partitioned (DCM//H,0) and the organic phase
washed with brine (1 x 10 mL), dried over anhydrous sodium sulfate and evaporated in

vacuo at 50 °C to yield a light brown oil.
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The oil residue from the previous step (131 mg, ~ 0.60 mmol) was taken up in

DCM (5 mL) in a 20 mL scintillation vial equipped with a stir bar. This mixture was

added to a mixture of aniline (57 pL) and acetic acid (80% in water, 45 pL) in DCM (10



mL) in another 20 mL scintillation vial. The mixture was then treated with sodium
triacetoxyborohydride (127 mg) and stirred overnight. The following day, the mixture
was partitioned (DCM//H20) and the organic layer was dried over anhydrous sodium

sulfate and evaporated to dryness to furnish a yellow oil.
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The above residue (283 mg, ~ 0.96 mmol) was taken up in DCM (8 mL) in a 20
mL scintillation vial equipped with a stir bar. The yellow solution was treated
sequentially with pyridine (139 [JL, 1.73 mmol) and propionyl chloride (151 [/L). The
resulting mixture was vigorously stirred at RT overnight. The following day, the mixture
was partitioned (DCM//H20) and the organic layer was dried over anhydrous sodium

sulfate and evaporated in the rotavap to yield a light brown oil.

SVSS

0

ACN
’ \ 80°C,16 h

3-Methyl-4-piperidinone HCI (200 mg, 1.34 mmol) was taken up in acetonitrile

(10 mL) in a 20 mL scintillation vial equipped with a stir bar. To the solution, cesium



carbonate (1.1 g, 3.34 mmol, 2.5 equiv.) was added followed by the dropwise addition of
phenylethyl bromide (618 mg, 3.34 mmol). The mixture was heated to 80 °C overnight.
The following day, the mixture was partitioned (DCM//H20) and the organic phase
washed with brine (1 x 10 mL), dried over anhydrous sodium sulfate and evaporated in

vacuo at 50 °C to yield a light brown oil.
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The reaction mixture obtained above (258 mgs of oil) was taken up in DCM (5
mL) and added to a stirred solution of aniline (111 pL) and acetic acid (80% in water, 90
puL) in DCM (10 mL) in a 20 mL scintillation vial equipped with a stir bar. The mixture
was vigorously stirred overnight at RT. The following day, the mixture was partitioned
(DCM//H20) and the organic layer was dried over sodium sulfate and evaporated to

dryness to furnish a yellow oil (net weight = 461 mg).
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NaBH,, MeOH
0°C toRT, 24 h.

The imine mixture obtained above (461 mg, ~ 1.58 mmol) was dissolved in

MeOH (3 mL) in a 20 mL scintillation vial equipped with a stir bar and cooled to 0 °C



with an ice bath. To the mixture, sodium borohydride (175 mg, 4.74 mmol, 3.0 equiv.)
was added in small portions and the resulting suspension (yellow) was stirred at RT
overnight. The next day, the vial was diluted with water (6 mL) and partitioned
(DCM//H20). The organic phase was dried over anhydrous sodium sulfate and

evaporated in vacuo to yield a yellow oily residue.
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DCM, pyridine
RT, 24 h

The above residue (283 mg, ~ 0.96 mmol) was taken up in DCM (8 mL) in a 20
mL scintillation vial equipped with a stir bar. The yellow solution was treated
sequentially with pyridine (139 pL, 1.73 mmol) and propionyl chloride (151 pL). The
resulting mixture was vigorously stirred at RT overnight. The following day, the mixture
was partitioned (DCM//H20) and the organic layer was dried over anhydrous sodium

sulfate and evaporated in the rotavap to yield a light brown.

VLVV

2.9 g (19 mmol) of pulverized piperidinone HCI was loaded into a round flask
with a stir bar. 60 mL of acetonitrile was added and the slurry set to stir. 13.5 g (41
mmol) pulverized cesium carbonate was added in portions. 3.1 g (17 mmol) 2-
bromoethylbenzene was added and a reflux condenser was attached. The mixture was
refluxed at 60 °C for 5 hours and cooled to RT. The mixture was filtered into a separatory

funnel and partitioned (DCM//H20). The organic phase was isolated and washed with



brine (3 x 20 mL) and saturated sodium bicarbonate (3 x 20 mL). The solution was dried

with sodium sulfate, filtered, and evaporated yielding 2.75 g of NPP as a yellow oil.
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The resultant material (150 mg, < 0.74 mmol) was dissolved in anhydrous THF (5
mL) and the orange suspension was cooled to -78 °C. LDA (95 mg, 0.88 mmol) was
added in small portions to the mixture and this was stirred for 10 minutes at -78 °C.
Methyl iodide (55 pL, 0.88 mmol) was added using a pipette and the resulting mixture
was allowed to slowly warm up to RT and stirring was continued overnight. The
following day, the mixture was partitioned (DCM//H20) and the organic layer was dried

over anhydrous sodium sulfate and evaporated to dryness to furnish an amber-yellow oil.

: NH
Aniline, AcOH fNj/

gy
N
STAB
DCM, RT, 24 h

The oil residue from the previous step (131 mg, ~ 0.60 mmol) was taken up in

DCM (5 mL) in a 20 mL scintillation vial equipped with a stir bar. This mixture was
added to a mixture of aniline (57 pL) and acetic acid (80% in water, 45 pL) in DCM (10

mL) in another 20 mL scintillation vial. The mixture was then treated with sodium



triacetoxyborohydride (127 mg) and stirred overnight. The following day, the mixture
was partitioned (DCM//H20) and the organic layer was dried over anhydrous sodium

sulfate and evaporated to dryness to furnish a yellow oil.
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The above mixture (88 mg, ~ 0.30 mmol) was taken up in DCM (3 mL) in a 20
mL scintillation vial equipped with a stir bar. The mixture was cooled to 0 °C and treated
sequentially with diisopropylethylamine (105 pL, 0.60 mmol) and propionyl chloride (53
uL, 0.60 mmol). The mixture was allowed to reach RT, and stirred overnight at this
temperature. The next day, the mixture was partitioned (DCM//H,0) and the organic
layer was dried over anhydrous sodium sulfate and evaporated to dryness to furnish a

yellow oil.

VHVV

2.9 g (19 mmol) of pulverized piperidinone HCI was loaded into a round flask
with a stir bar. 60 mL of acetonitrile was added and the slurry set to stir. 13.5 g (41
mmol) pulverized cesium carbonate was added in portions. 3.1 g (17 mmol) 2-
bromoethylbenzene was added and a reflux condenser was attached. The mixture was
refluxed at 60°C for 5 hours and cooled to room temperature. The mixture was filtered

into a separatory funnel and partitioned (DCM//H>0). The organic phase was isolated and



washed with brine (3 x 20 mL) and saturated sodium bicarbonate (3 x 20 mL). The
solution was dried with sodium sulfate, filtered, and evaporated yielding 2.75 g of NPP as

a yellow oil
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The above yellow oil (160 mg, ~ 0.79 mmol) was dissolved in NMP (3 mL) in a
20 mL scintillation vial equipped with a stir bar and cooled to ~ 0 °C using an ice bath.
Sodium hydride (60% dispersion in oil, 34 mg, 1.1 equiv.) was added in one portion and
evolution of a gas (H2) was observed. The resulting orange suspension was treated with
methyl iodide (54 pL, 1.1 equiv. to FSC2-33) and the mixture stirred at RT overnight.
The following day, the dark orange mixture was partitioned (DCM//H20) and the organic
layer was dried over anhydrous sodium sulfate and evaporated to dryness to furnish an

amber-yellow oil.
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The oil residue from above (100 mg, ~ < 0.46 mmol) was taken up in DCM (5

mL) in a 20 mL scintillation vial equipped with a stir bar. This mixture was added to a



mixture of aniline (46 pL, 2.5 equiv.) and acetic acid (80% in water, 115 pL) in DCM (10
mL) in another 20 mL scintillation vial. The mixture was then treated with sodium
triacetoxyborohydride (58 mg) and stirred overnight. The following day, the mixture was
partitioned (DCM//H20) and the organic layer was dried over anhydrous sodium sulfate

and evaporated in vacuo to dryness to furnish a yellow oil.
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DCM, DIPEA
0°C toRT, 24 h

The above oily residue (78 mg, ~ < 0.27 mmol) was taken up in DCM (3 mL) in a
20 mL scintillation vial equipped with a stir bar. The mixture was cooled to 0 °C and
treated sequentially with diisopropylethylamine (93 pL, 0.53 mmol) and propionyl
chloride (47 pL, 0.53 mmol). The mixture was allowed to reach RT, and stirred
overnight at this temperature. The next day, the mixture was partitioned (DCM//H>0)
and the organic layer was dried over anhydrous sodium sulfate and evaporated in vacuo

to dryness to furnish a dark yellow oil.

IN444

4.75g of 1-Boc-4-piperidone was dissolved in 100 mL of dry THF and cooled
with a -78 °C dry ice/acetone bath under a flow of argon. 25 mL of 1.0 M LDA in THF
was added dropwise and stirred for 1 hour at low temperature. 1.8 mL of methyl iodide

was added and the mixture was brought to RT and stirred overnight. Aqueous workup



afforded 3.7 g of a yellow oil which was dissolved in 25mL of dry dichloromethane,
cooled to 5 °C,and treated with 20 mL of 2.0 M HCIl in diethyl -ether,
dropwise. Precipitation begins shortly after the addition of the acid. The mixture was
left to stir overnight. The solid was isolated by decantation, washed with
dichloromethane, and dried yielding roughly 2 g of 3-methylpiperidone HCI salt.
3-Methyl-4-piperidinone HCI (200 mg, 1.34 mmol) was taken up in acetonitrile
(10 mL) in a 20 mL scintillation vial equipped with a stir bar. To the solution, cesium
carbonate (1.1 g, 3.34 mmol, 2.5 equiv.) was added followed by the dropwise addition of
phenylethyl bromide (618 mg, 3.34 mmol). The mixture was heated to 80 °C overnight.
The following day, the mixture was partitioned (DCM//H,0) and the organic phase
washed with brine (1 x 10 mL), dried over anhydrous sodium sulfate and evaporated in

vacuo at 50 °C to yield a light brown oil.
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DCM, RT, 24 h

The oil residue from the previous step (131 mg, ~ < 0.60 mmol) was taken up in

DCM (5 mL) in a 20 mL scintillation vial equipped with a stir bar. This mixture was
added to a mixture of aniline (57 pL) and acetic acid (80% in water, 45 pL) in DCM (10
mL) in another 20 mL scintillation vial. The mixture was then treated with sodium

triacetoxyborohydride (127 mg) and stirred overnight. The following day, the mixture



was partitioned (DCM//H20) and the organic layer was dried over anhydrous sodium

sulfate and evaporated to dryness to furnish a yellow oil.
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DCM, DIPEA
0°CtoRT, 24h

The above mixture (88 mg, ~ < 0.30 mmol) was taken up in DCM (3 mL) in a 20
mL scintillation vial equipped with a stir bar. The mixture was cooled to 0 °C and treated
sequentially with diisopropylethylamine (105 pL, 0.60 mmol) and propionyl chloride (53
uL, 0.60 mmol). The mixture was allowed to reach RT, and stirred overnight at this
temperature. The next day, the mixture was partitioned (DCM//H,0) and the organic
layer was dried over anhydrous sodium sulfate and evaporated to dryness to furnish a

yellow oil.

Instrumental Analysis
LC-QTOF

A quantitative weight of each crude fentanyl product was transferred to a 4 mL
glass vial and diluted to 10 mg/mL in acetonitrile. From each solution, dilutions were
performed to yield a final series of 20 pg/mL solutions in 75/25 water/acetonitrile. An
Agilent 1260 LC equipped with an Atlantis T3 reverse phase column (C18, 150 mm x 2.1
mm, 3 pum particle size, Waters, Milford, MA) was used for the separation of all

compounds. Time-of-flight mass spectrometric detection was performed in positive ion



mode with a Bruker micrOTOF-Q III (Bruker Daltonics, Billerica, MA) equipped with an
electrospray ionization (ESI) source and operated in Auto MS/MS mode (m/z 50-1000).
Three precursor ions were monitored at a given time (m/z 50-450) with active exclusion
after three spectra. MS was performed with a capillary voltage of 4500 V, a dry gas flow
rate of 4 L/min at 180 °C, quadrupolar ion and collision energies of 4.0 eV and 8.0 eV,
respectively, and a spectral acquisition rate of 2 Hz.

The mobile phase consisted of water with 0.1% formic acid (A) and acetonitrile
with 0.1% formic acid (B); flowrate of 0.25 mL/min. The gradient profile started with
95% A for 2 min, ramped to 20% A over 7 minutes, held for 14.75 minutes, ramped
quickly back to 95% over 0.25 min, and held for 8§ min for column regeneration. Five
microliters of the liquid sample were introduced via an autosampler (Agilent B1329B) to
the injection port. The detector was tuned and calibrated using the 20 pL injection loop of
a 6-port valve on the MS using Agilent’s ESI-L. Low Concentration Tuning Mix (G1969-
85000). Compounds relevant to each synthetic route were identified based on computer-
aided identification of MS/MS peaks using Bruker’s Compass for otofSeries 1.5
software. Detailed analysis of each sample was done manually with peak areas calculated
by manually integrating the extracted ion chromatogram (EIC) of the base peak. After
route-specific compounds were identified for each route, a target table was created and

searched against all 18 samples.

GC-QTOF
A quantitative weight of each crude fentanyl product was transferred to a 2 mL

glass vial and diluted to 10 mg/mL using dichloromethane. Dilutions were then



performed in dichloromethane to yield a series of 20 pg/mL solutions. An Agilent
Technologies (Santa Clara, CA) 7890B GC equipped with an Agilent HP-5MS column
(5%-Phenyl-methylpolysiloxane, 30 m x 0.25 mm x 0.25 um) was used for the
chromatographic separation. A carrier gas of helium (99.999%, Praxair, Inc., Danbury
CT) was used, and the GC was operated in constant flow mode (1.0 mL/min). One
microliter of the liquid sample was introduced via an autosampler (Agilent 7890 series)
to the injection port held at 250°C, splitless injection. The oven temperature was held at
40°C for 3 minutes, then ramped at 8°C/min to 300°C and held for 3 minutes. Detection
was performed with an Agilent 7200 Accurate-Mass Q-TOF MS detector and operated
using EI (70 eV) and an emission current at 10 pA. The system was operated in scan
mode (m/z 29-600, 8 spectra/s) with the source and quadrupole mass analyzer held at
230°C and 150°C, respectively. A solvent delay of 3 minutes was used. The detector was
auto-tuned and was mass calibrated using a perfluorotributylamine (PFTBA) solution
before running each sample. Compounds were identified based on spectral comparison to
the NIST Mass Spectral Library (v 2014) as well as manual comparison to mass spectra
published in the literature. Peak areas were calculated from extracted ion chromatograms
of the base peak identified for each compound using manual integration in the

MassHunter software (v B.07.00).

ICP-MS
Sample preparation prior to ICP-MS analysis was performed via microwave
digestion of the crude samples in acidic solution. 10 mL of 3 M nitric acid were added

100 mg of crude material \which was then sonicated to homogenize the solution as much



as possible and quantitatively transferred into microwave digestion vessels with an
additional 2 mL of 3 M nitric acid. The vessels were installed on the rotary stage and
inserted into a MARS 6 microwave digester (CEM Corp., Matthews, NC). Samples were
then processed using a standard pharmaceutical digestion protocol supplied by the
instrument’s manufacturer.

Elemental analysis was performed using an Agilent Technologies (Santa Clara,
CA) 8800 Triple Quadrupolar ICP-MS (ICP-QQQ). Initially, a semi-quantitative scan
was performed to determine elements of interest within the sample sets. Down-selected
analytes were then measured quantitatively with the following parameters: carrier gas
(0.65 L/min), nebulizer pump (0.50 rps), spray chamber temperature (15 °C), and dilution
gas (0.40 L/min). Argon was used as plasma, carrier, and dilution gas. In the collision
cell, a helium flow of 4.0 mL/min was used. The measurements were performed as three
replicates, with 50 sweeps per replicate. Integration time per mass was held at 0.10 sec.
The rinse time was set to 30 sec at 0.3 rps of the nebulizer pump, followed by 10 sec at
0.3 rps. Sample introduction was performed using an ASX-500 autosampler (Cetac,
Omaha, NE). Peak area determination and quantitation were performed using

MassHunter software (4.1 C.01.01).

Data Analysis

Partial Least Squares Discriminant Analysis (PLS-DA), a supervised technique
that facilitates classification, was performed using Solo (V8.0, Eigenvector Research Inc.,
Wenatchee, WA). This software was also used to perform the Support Vector Machines

analyses described in detail below. Mathematica 9.0 (Wolfram, Champaign, IL, USA)



was used for two other machine learning techniques, namely logisitic regression and
neural network analyses. The data sets fed into all algorithms were identical regardless of
software package and included peak areas (LC-QTOF and GC-QTOF) and accurate

concentrations (ICP-MS).

Results and Discussion

Signature Identification

From the exhaustive list of signatures revealed by LC (given in Appendix A), we
investigated the extent to which MS/MS spectra could be used to posit structures
associated with each peak’s exact mass. From MS/MS fragment exact masses,
substructural units of the parent molecule can be used to reconstruct its original identity.
Table 2 shows the results of proposed structures using this methodology. Note that it was
outside the scope of work to confirm these assignments with commercial standards or in-
house synthesis, but these proposed structures are the most consistent with available data
and most likely reaction chemistries.

Early eluting compounds largely correspond to the bases (pyridine or DIPEA)
used for the final acylation step, which converts 3SMANPP to 3MF. Note that signature 3
is most likely a synthesis impurity in DIPEA. Compounds 11-43 in Table 2 are
intermediates associated with incomplete reductive amination of 3MNPP. For example,
the ketone group of unreacted NPP or 3MNPP is reduced to a hydroxyl group
(compounds 11, 15, 16). LDA- or NaH-mediated methylation creates the intended

3MNPP (compound 13) but also creates compounds with higher degrees of methylation



(compounds 25, 29).° The reduced NPP and 3MNPP can react in the final step with
propionyl chloride to create the ester moeties of compounds 40 and 43. Because the
conversion of 3SMNPP to 3MANPP was apparently the lowest yielding step (see below),
one would expect to see a significant amount of fentanyl. Indeed, this expectation was
observed (compound 49). Direct reaction between excess aniline and propionyl chloride
and to a lesser extent AcOH is responsible for compounds 65 and 66, respectively.

The majority of early eluting species from GC data correspond to highly volatile
reagents and their impurities such as pyridine, aniline, and DIPEA. Also observed were
unreacted 2-bromoethyl benzene and its likely impurities, 2-chloroethyl benzene and
benzeneacetaldehyde. Compounds of moderate volatility correspond to many of those
detected by LC-QTOF. For example, N-phenyl propanamide (LC signature 66), 3-
methyl-1-phenethylpiperidin-4-one ~ (LC signature 13), and  dimethyl-1-
phenethylpiperidin-4-one® (LC signatures 25, 29) were detected by both techniques.
Despite their relatively low volatility and their large retention times (32-33 min), fentanyl
and two 3-methylfentanyl peaks (corresponding to the 3R (cis) and 3S (trans)
enantiomers) were also detected by GC-QTOF.

It is important to mention that while we are able to assign identities/structures to
the above compounds, the vast majority of those discussed above are not ultimately
considered CAS by statistical modeling. Most of those compounds (as determined via

LC) can only be represented as formulae or exact masses.

® Negligible amounts of compounds with higher degrees of methylation were detected in
crude samples that started with commercially available product. Detection of these
compounds strongly suggests in-house synthesis of the starting material, 3-
methylpiperidin-4-one, for the routes chosen for the present study.

¢ Indeterminate methyl group substitution pattern without standard reference materials.



Table 2. LC signatures for which proposed structures were derived.
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Enantiomeric Profiling of 3-Methylfentany!

Also investigated was the degree to which the various synthetic routes produced
the R vs. S enantiomers of 3-methylfentanyl, as this number might in principle be an
additional “signature” by which the routes can be distinguished. Several attempts at using
LC to separate the two enantiomers were unsuccessful, whether using a typical reverse
phase column or a chiral column recommended by Phenomenex. GC, however, was able
to cleanly separate the two species (with retention times of 33.28 and 33.65 min;
previous work suggests that the early eluter corresponds to the more stable trans/3S
configuration®). Three of the synthetic routes produced enough 3MF to yield peaks with
sufficient signal-to-noise. The average ratios of the cis to trans 3MF were 3.88 + 0.23 for
$VVV, 3.99 £ 0.25 for $VVS and 4.26 + .85 for LVVV. Statistical comparisons of these
averages suggests there is no significant different in 3MF enantiomeric composition for
these three routes, one of which generated the starting material using LDA. Additionally,
these values are somewhat higher than those from the Espoto/Winek study (1.73 — 2.96
cis:trans) but are consistent is the observation that the cis 3MF is preferentially
synthesized. As the remaining three routes studied presently did not produce sufficient
3MF, however, we cannot draw more insightful conclusions on the potential utility of this

measure as an additional signature.

4 The work of Esposito and Winek posits that the compound associated with the lower
abundance ratio of both m/z = 160 and 203 to the base peak m/z = 259 corresponds to the
more stable trans configuration of 3MF where the methyl group and amide nitrogen are
in equatorial and axial positions, respectively. Esposto, F.; Winek, C. J. Forensic Sci.
1991, 36, 86-92.



Observations on Low Yields of 3-Methylfentany!

During the synthesis of 3-methylfentanyl, it was noted that the overall yield of the
target compound via some routes was extremely low (<4-5%) by GC-MS analysis,
particularly for routes $VSS, VHVV, and VLVV. As it is an estimate based on GC-MS
analysis of the crude mixtures along the steps comprising a given route, the actual final
yield of the product is not known but can be placed at <10% with great certainty.

Two factors observed during the synthesis can be highlighted to help explain
these low yields. The first one has to do with the routes where the a-methylation needed
to be performed. The methylation step is actually a two-step procedure that involves the
formation of an enolate ion from the ketone or imine species generated from the starting
material and subsequent alkylation to yield the a-methylated product (Scheme 3). The
enolate (or enamine arising from the imine) is prone to hydrolysis reverting back to the
starting ketone. Furthermore, it is water sensitive, which would also convert it back to
the starting material. Another added issue with this initial manipulation is the use of a
hindered, amine base to form the enolate (or enamine) that unfortunately is also water
sensitive even when carefully controlling the dryness of the organic solvent (THF for
example) with molecular sieves or other dehydrating agents. Yields for this
transformation are usually low, ranging between 30-40% when not conducted under
stringently dry conditions (i.e. argon atmosphere, flame-dried glassware, heat-activated

molecular sieves, etc.)
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Scheme 3. Methylation of starting ketone and competing pathways for the reaction.

The second factor, which we believe is more deleterious to overall yield, is the
low-yielding reductive amination step. When carrying out the reductive amination on the
generated 3-methylpiperidinones, it was observed by GC-MS that the conversion of the
starting 3-methylketone to the final amine product was amazingly low (<5% conversion
noted by GC-MS). The reductive amination is a two-step process — imine formation
followed by hydride reduction. GC-MS studies revealed that the initial formation of the
iminium intermediate was the low yielding step thus affecting the downstream reduction
to the amine (Scheme 4). The reaction was studied to find a way to increase the overall
yield of the amine, but even when using large excess of the amine to the ketone and
performing the reduction at elevated temperature (80 °C), a larger yield was never
accomplished. Although reductive aminations of 3-methylcyclohexanones have been
reported in good yields (>80%), these involve the use of smaller, inherently more

nucleophilic amines to form the iminium species.
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Scheme 4. Steric factor between aniline and the methyl group governing the first step of
the reductive amination step resulting in an overall low yielding transformation.
Data Transformation

In statistical analyses such as those described below, each chemical signature (i.e.
the peak area of each chromatographic peak fed into the software) is considered to be a
“predictor,” and it is important to understand the distribution characteristics of the
predictor values before any such analysis is performed. Histograms and boxplots can
yield decent qualitative information as to the distribution of predictor values (i.e. peak
areas) in a given sample. However, Q-Q plots are more powerful in quickly assessing the
normality of a data set (a fundamental assumption of many statistical regression and
classification algorithms). The left panel of Figure 1 gives the Q-Q plot for the raw peak
areas for one of the LVVV data sets; clearly these data do not follow a normal
distribution. Most mass spectral data, particularly those from the metabolomics
community, rely on log-normalizing the data prior to other transformations. This

treatment was given to the current data sets, the results of which are given in the right-



hand panel of Figure 1 for the representative dataset. The data conform to the reference
line, indicating the base-ten logarithm yields reasonably normally distributed data.
Critical to both the stability of statistical calculations and the robustness of the
resultant classification models are appropriate data preprocessing and transformation of
these predictor values. For example, the most common and straightforward treatment
involves centering and scaling the data, or subtracting the mean predictor value and
standard deviation of predictor values within a given dataset, respectively. This ensures
that each predictor has a zero mean and a common standard deviation of unity, so all
predictors (signatures) have equal contributions to the model, regardless of absolute

abundance.
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Figure 1. Normal Q-Q plots for a representative LVVV sample. Left panel: Raw LC+GC
data showing non-normally distributed data. Right panel: Logio-transformed raw LC+GC
data showing log-normal behavior of the analytical data.

Accounting for zeros (i.e. “missing values”) is another problematic issue that

must be addressed. When a peak is recorded as “0” in the data set, it does not strictly

mean that that signature is absent. Rather, it simply means that it is under the detection



limit of the instrument. Often, the detection limit itself is used in place of a zero value. A
random number between zero and this limit is also possible. We chose a value of 0.0001
to replace all zeroes, which was subsequently converted to negative four in log-space.
This practice is often seen in various “omics” communities. Centering and scaling of the
logio-transformed data was then done for each crude sample using means and standard
deviations of the corresponding data. Note that as with our previous work on fentanyl, it
is important that LC data, GC data, and ICP-MS be treated separately, as they are
acquired on different instruments with different responses and dynamic ranges.

For the three unknown data sets, the same statistics for mean centering and scaling
were used. Specifically, the average mean and standard deviation of the training sets were
used to transform test data, since it is assumed that the test data are fully blind (i.e. their

underlying statistics are unknown).

Dimensionality and Feature Selection

A major issue with statistical analysis of chemical data is that while a very large
amount of variables can be measured (i.e. peak areas) it is generally difficult to provide a
similarly large number of sample replicates. This results in what is often referred to as the
“curse of dimensionality.” Lacking the sample size to support the results derived from the
high-dimensional data set degrades the predictive power of classification and machine
learning algorithm.’ Thus, the issue of “over-fitting” the data is problematic, one that
overemphasizes patterns that are not reproducible (i.e., outliers, noise, etc.) and makes it

difficult to generalize to new samples. While we will work with the full datasets in the



current work (with acknowledging the negative impact of over-fitting) we also refer to
our previous work to reduce the dimensionality of the dataset through statistical means.

Partial least squares (PLS) was used to assist in reducing the dimensionality of the
predictor (i.e. variable) space. It has been well established that there exists a clear benefit
in choosing PLS over other conventional methods (e.g. principal components analysis,
PCA) for this reduction when followed by attempted classification. This fact results from
PLS’ seeking to optimize group separation guided by information between groups, rather
than PCA’s optimizing on overall variance. Either way, efforts to eliminate predictors
(referred to as “feature selection”) that contain little to no information about the
underlying variance should improve the performance of any classification model.

While a handful of methods exist for feature selection, we chose to focus on
selectivity ratios (SR). We found previously that this metric was useful in the objective
identification of important CAS. A high SR value indicates the spectral variable
contributes much toward discrimination amongst samples (i.e. explains a significant
amount of total variance). A lower threshold SR value of 1.5 was chosen to select
features that would be used to generate a reduced predictor set for classification purposes.
This value also allowed for each route to have at least one LC signature identified as an

important feature.

Samples and Predictors by PLS
Though PLS was employed primarily for feature selection, its results can also be
used to assess the in- and between-class separation through scores values of the latent

variables. Figure 2 shows a two-dimensional scores plot on LVs 1 and 2 for the full



LC+GC data set (141 LC inputs and 26 GC inputs). Note that in-class variability is low,
since scores of the various routes cluster tightly (i.e. the three synthetic replicates of each
route are similar to each other). Between-class separation, however, is observed to be
quite high (i.e. the different synthetic routes are quite different from each other). Also,
similar routes lie along various lines within the space. That is, scores from samples using
the commercial starting material all lie along one line, while routes than use LDA-
mediated methylation lie along another. The hydride-mediated route VHVV appears
separate from the others though is closest to its cousin, VLVV. In summary, samples with
similar chemistries can be visualized easily through the reduced dimensionality of PLS

scores plots.
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Figure 2. PLS-derived scores plot for the first and second latent variables (LVs) of the 18
training data sets. Gray dashed lines indicate groupings according to synthetic
similarities.

PLS scores can also be used to assess in a qualitative sense the similarity of the

unknown samples to those that formed the training set for our classification models.



Figure 3 shows a three-dimensional scores plot of a cross-validated (see below for
details) PLS model. The 18 training set data are given as spheres. Added to this plot are
the scores (as cubes) associated with the three datasets for the unknown pathways derived
using the model. The x-y projection (gray shadows) is equivalent to the graph given in
Figure 2. Note that the square shadows, corresponding to the unknown sample data
(given in red for emphasis), do not necessarily closely cluster with the known sample
scores. © This fact highlights both the necessity of statistical analyses to solving
classification problems due to complex, ambiguous data and that different chemists in
different laboratories, though following a standard procedure, clearly affect dramatically

the ultimate signature profile of a crude synthesis material.
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¢ It is useful to point out now that the “unknown” samples 1, 2, and 3 were later revealed
to result from routes LVVV, $VSS, and VLVV, respectively.



Figure 3. Three-dimensional PLS-derived scores plot for first three LVs using the full
LC+GC data set. X-Y projection in gray is given to help visualize separation between
classes (plot same as in Figure 2, unknown sample shadows are in red). Cubes are blind
data scores using the 18-sample training set; routes are labeled to be consistent with
discussion found in main text.

Table 2 gives the results of feature selection using the PLS analysis. SR values are
group-specific, so they can be tied directly to various synthetic routes and used as
objectively determined CAS. These predictors were then isolated from the raw data sets
and processed as described above to yield a reduced data set of 40 LC inputs and 7 GC

inputs. We refer to this dataset as “Red2.” Information on a second reduced dataset,

“Redl,” is found below.

Table 2. Route specific CAS identified using a PLSDA-derived selectivity
ratio, SRmin = 1.5.* These predictors were used to form the Red2 dataset.

Method (Class) LC-MS GC-MS ICP-MS

$Vvv 7,116,130, 136 G --

§VVS 16 L] --

$VSS 2,4,22,42, 65, 68,124 L --

VHVV 9, 71, 98, 108, 114, 115, 123, | F,U --
125, 126

VLVV 20, 34, 87,99, 113, 118, 120 -- --

LVVV 19, 23, 25, 26, 27, 30, 35, 36,37, | R --
38,77,137

* Added to help aid in discrimination between $VVS and $VSS: 15, 31, 32, 43, 47, 51,
52, 54, 62, 67, 90, 96, 97, 132, 134. These predictors were added to those from Red2 to
make the Redl dataset.

Cross-validation and Prediction using Support Machine Vectors
In our previous work with fentanyl, we employed PLS Discriminant Analysis
(PLSDA) for both feature selection and classification. PLSDA, however, generally

classifies using binary results. That is, the probability that an unknown sample is



classified to a particular route will either be a “1” or a “0.” In Eigenvector’s Solo
software’s GUI, then, classification results from PLSDA offer little flexibility in
assessing the degree to which unknowns belong to the other five routes in addition to that
of the “most probable route.” Additionally, invoking PLSDA for classification relies on
specifics assumptions about the distributions of the predictors. Assuming that underlying
distributions are either not well-characterized or just unknown, nonlinear discriminant
analyses were investigated as being perhaps more suitable for classification. '

Support vector machines (SVM) are a class of nonlinear statistical models that
have become some of the most flexible modeling tools available.!' The development of a
basic classification model using SVMs involves only two variables, the cost- and kernel-
parameters. The more important of the two, the cost parameter (c), quantitates the penalty
associated with erroneous classification (lower values equates with high tolerance for
misclassification). Cross-validation of the model assigns the values of these two
parameters, but discussion of how to properly cross-validate is also important. Due to the
small sample size, random sampling of test data was chosen. That is, the software
randomly chooses a subset of the training data to reserve as test data. The remaining
training data is used to develop a model; the test data that was set aside is used for cross-
validation. This is done for a certain number of repetitions to attain stable estimates of
model performance. In general, it is desirable to have about 75-80% of the data present
in the training set and the remainder reserved for validation. For the current work, four
sets were used and 100 cross-validation repetitions were used to attain good performance
stability. The results of cross-validation yielded models able to assign correctly all 18

samples. Note that this method of cross-validation was applied regardless of the



classification technique used, and keeping this method consistent allows for proper
comparison of the models’ results.

Three classification methods were studied for their ability to assign synthesis
routes to the three unknown samples. They all vary in the details of their algorithms, but
they all seek in one way or another to discover an underlying variable space that
represents significant differences among the signature profiles of various synthetic routes.
These techniques are known as support vector machines discriminant analysis (SVMDA),
neural networks (NN), and logistic regression (LR). SVMDA and NN algorithms are
popular tools when underlying relationships between predictors and response(s) are
potentially nonlinear and unknown. Logistic regression is also used frequently and, while
being a type of linear regression model, can predict responses for categorical
classifications. That is, this type of model is good for predicting discrete outcomes like
those encountered presently (i.e. either the route is VLVV, for example, or it is not).

In all, three datasets were analyzed for their ability to classify the three unknown
crude 3MF samples:

1) Full GC+LC data set using all 167 predictors (141 from LC, 26 from GC).

2) A reduced data (Red2) set using only predictors with SR > 1.5 as determined

from PLSDA analysis of the Full GC+LC data set (40 from LC, 7 from GC).

3) A second reduced data set (Redl) which includes all predictors from Red2

plus additional predictors with SR > 1.5 as determined from the PLSDA

analysis of data from $VSS and $VVS alone (55 from LC, 7 from GC).



Again, it is important to stress that the reduced data sets were generated in an attempt to
address the problem of over-fitting the data. It is likely, however, that still too many
variables remain given the small size of the training set (n = 18 sample data sets).

Results from unknown route classification using Solo’s SVM Discriminant
Analysis (SVMDA) package are given in the left-most column in Figure 4. Results of
running the model with different subsets of the original data are color-coded: red = full
data set, green = “Red1” set, and blue = “Red2” set. Recall that Red2 (blue) used only
those predictors for which SR > 1.5 using the full data set. Due to the general inability of
any algorithm to discriminate confidently between $VVS and $VSS for unknown Test
Sample Two, the set Red1 was developed to include those additional predictors.

Note that for all three unknown samples, classification probabilities are low; not
one route stands apart significantly from the others. This is likely due to the fact that the
model is too tightly tuned regardless of what sample set size you consider (full vs.
reduced). The current SVMDA model used, generated largely as a black box, cannot be
therefore easily generalized to new samples. The combination of the overly tuned model
(i.e. high cost parameter reducing generalization) with the model being overfit (i.e. too
high a predictor space for the number of samples) results in great uncertainty in the
SVMDA predictions. Despite these facts, note that maximum probabilities predict Routes

One, Two and Three to be LVVYV, $VVS, and VLVV, respectively.
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Figure 4. Classification results summary. Left: SVM; Middle: NN; Right: LR. Red: full
data set; green: Redl data set; blue: Red2 data set. Routes are given in descending order.
Numerical probabilities have been removed for clarity, but gray lines represent
probability, p = 0.25, 0.5, 0.75, and 1.0.

It is generally considered that NNs can be used to derive predictions on class
assignments that are at least as competitive as or better than other machine learning
counterparts.'®!? Results from the NN analysis of the three data sets is shown in the
middle panel of Figure 4. It is apparent that the trends are similar to SVMDA with
regards to the most-probable route, though there appears to be more “confidence” in class
assignments. This observation, however, may simply be due to a less tightly modeled
training set, or that the hidden variables calculated by the NN algorithm can at least rule
out certain synthesis routes more efficiently that the current SVMDA models.

Logistic regression (LR) is typically used for predictions where the outcome is
discrete (i.e. “is” or “isn’t” or, stated otherwise, the dependent variable is catagorical)."

This type of model is particularly effective when the goal is solely classification. Note

that classification probabilities are given for the three routes and three data set sizes in the



right-hand panel of Figure 4. The binary nature of the classification is most likely
responsible for overall higher probabilities as compared to the other two routes. This fact
may make the classifications look artificially confident. Nevertheless, the results seem to

agree with those from the other two methods.

Models in Conjunction

Because none of the models presently is perfect (indeed, there is never one right
answer when dealing with classification statistical analyses) it is often useful to look at
results in concert. Considering all of the data and models in Figure 4, there exists
agreement among all three algorithms in assignment of the unknown crude samples
despite being all black box approaches. Results are summarized as follows:

1) Test Sample One is clearly assigned to LVVV; NN and LR have almost
negligible probabilities of being otherwise save for minor assignment to VLVV or
VHVV.

2) Test Sample Two seems to be either $VVS or $VSS with LR favoring $VVS for
all reduced data sets and $VSS for the unabridged data.

3) Test Sample Three is either VHVV or VLVV according to SVM and NN; LR
favors VLVV over others.

4) In general there is more ambiguity in assignment for sample datasets with more
variables, but even more parsimonious data sets present issues with classification.
Without less black box approaches, identifying the reasons and quantifying the

resultant effects is challenging.



5) Consulting the chemists that performed the blind syntheses, two of the three
routes were assigned correctly.

Table 3. Summary table of predicted and actual routes for unknown 3MF crude samples.

Unknown Sample ID Predicted Actual
Test Sample One LVVV
Test Sample Two $VVS
Test Sample Three VLVV

Chemical Context for Classifications
Test Sample One

Classification of Test Sample One appears to be the least ambiguous; clearly all
algorithms favor assignment of LVVYV to this blind sample. This route is quite unlike the
others in that a) methylation of the piperidine ring was performed as part of the synthesis
and b) this step was performed first, before reaction with 2-phenylethyl bromide. Though
it may be considered closely related to VLVV in terms of reagents, clearly the order of
synthetic steps causes significant underlying differences as revealed by the large

separation by LV scores seen in Figures 1 and 2.

Test Sample Two

Overall, there appears to be the most confusion when classifying Test Sample
Two. Indeed, this was the only one of the three test samples to be incorrectly identified
on average. That is, the analyses seem to favor $VVS when the actual route used was
$VSS. Recall that the differences between these two routes sits with the reductive
amination step: $VVS relies on the Valdez method, which wuses sodium
triacetoxyborohydride at RT whereas $VSS relied on Siegfried’s use of sodium

borohydride, methanol, and reduced temperatures. At the end of either synthesis, little



conclusive evidence of their use (in the form of unique small molecules) will be found,
particularly by LC. GC might be able to recover evidence of volatile methanol, but its
presence will most likely be lost in the solvent delay. Solid Phase Micro-Extraction
(SPME) methods coupled to GC-MS might then be a useful addition to the suite of

analytical tools used.

Test Sample Three

Though this blind route was on average classified correctly as VLVV, there was
some non-negligible probability that the route was VHV'V, particularly for the SVM and
NN analyses. Like the ambiguity with Test Sample Two, we believe there is a rational,
chemical explanation for this fact. The difference between VLVV and VHVYV is basically
the reagents used to perform the methylation of 3-methylfentanyl’s central piperidine
ring: either lithium diisopropylamine (LDA) or sodium hydride. There are several issues
with expecting unique signatures associated with this method:

1) Neither sodium nor hydride ions will be detected; ICP-MS might be thought of as
helpful but in general sodium is found to be an unreliable element to monitor due
to its ubiquity in synthesis.

2) Lithium may be useful but for the current data sets, all samples seemed to have
some nonnegligible amount with no apparent trends or correlations to specific
routes.

3) Direct evidence of diisopropylamine (from LDA’s use) will be difficult as
acylation in the final step converts this to N,N-diisopropylpropionamide, which is

already a signature associated with using DIPEA as the base during acylation for



the Valdez step. Both VLVV and VHVV use this base, negating this amide
compound a unique signature for the LDA route, VLVV.
Ultimately, however, the data analyses on average predict correctly that VLVV was the

method used to synthesize Test Sample Three.

ICP-MS

Both semi-quantitative and quantitative ICP-MS results were used to assess any
added value to the classification models. Semi-quantitative data was subjected to feature
selection algorithms in an attempt to first find elements that were of statistical importance
to describing overall variance. From the training data those elements were determined to
be Co, Cu, Zn, Sn, and Sb. Samples were then rerun for quantitation purposes. Those data
were then considered by statistical analysis as part of a “quantitative” LC+GC+ICP data
set.

Quantitative data from the five elements selected from statistical analysis of
semiquant data was incorporated into the unabridged LC+GC data set. Classification
results using these data are given in Figure 5 in blue’. In general, even the quantitative
data only adds to the ultimate misclassification of the unknown samples. Overall, the use
of elemental data seems to only confound the statistical classification of new data relative
to the training set. This is most likely due to a combination of factors, the testing of
which was outside the scope of this work. Complete sample digestion would seem to

homogenize the samples, making them more representative of the entire synthesis process

T Though not very instructive, analysis of the full GC+LC data set including semiquant
ICP-MS data is also given for completion in green. The conclusion that ICP data only
degrades model accuracy still applies.



(reagent trace metals, for example). However, these elemental profiles are most likely
extremely dependent on synthetic chemist, particular reagent lots, glassware used, etc.
and may only appear reproducible under highly controlled conditions like those used to

generate the training sample set. Further research into these ideas is recommended.

Route One

Route Two

Route Three

VvV $vvs $Vss VLWV VHVV LVVV

Figure 5. Comparison of NN classification analyses for LC+GC data (red), LC+GC with
full semiquant ICP data (green), and LC+GC with quantitative ICP data from Co, Cu, Zn,
Sn, and Sb (blue). Grey dashed lines represent p = 0.25, 0.50, and 0.75 for classification.
Conclusions

A variety of machine learning techniques were used to identify methods of
synthesis of unknown crude 3-methylfentanyl samples based on LC-, GC, and ICP-MS
analytical data. PLS scores showed that replicates of synthesis training data were similar
and that samples of different routes were easily separable. More importantly, PLS was
used to generate two reduced data sets in an attempt to address overfitting associated with

the “curse of dimensionality.” Neural networks, support vector machines, and logistic

regression all predicted similar routes for the three unknown samples with varying levels



of apparent confidence. Model results were taken in concert due to the black box nature
of the classification algorithms. Model predictions were correct for the most part, with a
clear chemical rationale present for samples that were not classified with high certainty.
ICP was shown to only confuse classification, and it was posited that this issue was due
to high variability in elemental composition with respect to chemist, equipment, and
synthetic conditions. Further investigation into the ultimately utility of ICP as a CAS tool

1s recommended.
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Appendix A. Comprehensive signature list of LC-QTOF data. “Source” refers the to
route for which a particular compound was originally detected.

ID RT (min)  Exact Mass Formula Source 1D RT (min)  Exact Mass Formula Source
1 1.7 80.0478 C5H6N SVSS 72 13 290.2688 C16H36N03 SV
2 2 152.0702 C8H10NO2 SVSs 73 131 451.2955 VLVV
3 2.1 116.1432 C7H18N VHVV 74 131 453.2887 C31H37N20 SV
4 2.2 108.0804 C7H10N SVSs 75 13.2 230.2482 C14H32NO VHVV
5 23 130.1584 C8H20N SVwW 76 13.2 274.2742 C16H36N02 SVss
6 23 315.2432 C20H31N20 SVW 77 13.2 348.1863 ? VHVV
7 23 333.2539 C20H33N202 SVwW 78 13.2 455.3031 C29H40N2NaO SV
8 23 373.3042 C20H41N204 VLVV 79 133 330.222 C24H28N VLVV
9 5.4 113.0598 C6H902 SVW 80 134 226.179 C13H24NO2 SVsS
10 5.5 222.1497 C13H20NO2 VLVV 81 134 228.1594 C12H22NO3 SV
11 6.1 206.1539 C13H20NO LVVV 82 134 247.1805 C15H23N20 LVVV
12 6.4 252.1586 C14H22NO3 SVW 83 134 415.2961 C25H39N203 VLVV
13 8.7 218.1533 C14H20NO SVwW 84 135 216.1385 C14H18NO SV
14 8.7 236.1651 C14H22NO2 SVW 85 135 266.1725 C15H24N0O3 VHVV
15 9.4 220.1702 C14H22NO LVVV 86 13.6 318.3007 C18H40NO3 LVVV
16 10.1 220.1702 C14H22NO LVVV 87 13.6 440.273 C29H34N30 VLVV
17 10.1 264.1965 C16H26N0O2 VLVV 88 13.6 493.323 C34H41N20 LVVV
18 104 198.1295 C14H16N SVW 89 13.7 303.2074 C18H27N202 SV
19 10.5 250.1803 C15H24N0O2 LVVV 90 13.7 304.1586 ? SVsS
20 10.5 264.1965 C16H26N0O2 VLVV 91 13.8 158.1538 C9H20NO SV
21 10.5 290.1786 C17H24NO3 SVW 92 139 213.1463 ? VHVV
22 10.6 287.1383 C16H19N203 SVSs 93 139 288.2528 C16H34NO3 SVsS
23 10.6 407.27 C27H37N202 LVVV 94 139 507.3396 C35H43N20 LVVV
24 10.6 434.3192 C28H40N30 SVW 95 14 136.0747 C8H10NO VLVV
25 10.7 232.1703 C15H22NO LVVV 96 14 178.1237 C11H16NO LVVV
26 10.7 244.1696 C16H22NO LVVV 97 141 113.0591 C6H902 VHVV
27 10.7 389.2595 C26H33N20 LVVV 98 141 191.0685 C9H12Na03 VHVV
28 10.8 448.3349 C29H42N30 SVW 99 141 232.1695 C15H22NO VLVV
29 10.9 232.1703 C15H22NO LVVV 100 141 272.1622 C15H23NNa02 VLVV
30 10.9 403.2747 C27H35N20 LVVV 101 14.2 303.1712 C17H23N203 SV
31 111 275.2123 C17H27N20 SVW 102 14.2 309.1959 C20H25N20 VLVV
32 11.2 308.1853 C17H26N0O4 SVW 103 143 274.1351 C18H16N3 SVsS
33 11.2 341.222 C21H29N202 LVVV 104 143 293.1102 ? SVsS
34 113 276.1608 C16H22NO3 VLVV 105 143 398.3666 C24H48N0O3 SVss
35 11.3 403.2747 C27H35N20 LVVV 106 145 236.1628 C12H23NNaO2 VHVV
36 114 244.1696 C16H22NO LVVV 107 14.8 150.0912 C9H12NO SV
37 114 246.1847 C16H24NO LVVV 108 14.8 169.0858 C9H1303 VHVV
38 114 417.2903 C28H37N20 LVVV 109 14.8 206.1176 C12H16NO2 SV
39 115 214.1201 C14H16NO SVwW 110 14.8 228.0993 C12H15NNa02 SV
40 115 262.1795 C16H24NO2 SVW 111 15 274.1794 C17H24NO2 SV
41 11.6 355.2382 C22H31N202 LVVV 112 15 296.162 C17H23NNa0O2 SVww
42 11.7 136.0751 C8H10NO LVVV 113 15 332.1883 C20H22N5 VLVV
43 11.7 276.1961 C17H26NO2 SVW 114 154 169.0858 C9H1303 VHVV
44 11.8 290.1786 C17H24NO3 VLVV 115 154 247.0956 ? VHVV
45 11.8 323.2124 C21H27N20 VLVV 116 154 312.197 C20H26N0O2 SV
46 11.9 218.212 C12H28NO2 VHVV 117 155 306.2433 C19H32NO2 SV
47 12 234.2069 C12H28NO3 VHVV 118 155 413.2229 C27H29N202 VLVV
48 12 281.2015 C19H25N2 LVVV 119 15.6 325.1916 C20H25N202 LVVV
49 12 337.2272 C22H29N20 SVwW 120 15.7 379.2039 C26H28Na0 VLVV
50 121 292.1907 C17H26NO3 SVSs 121 15.7 443.2721 ? SV
51 12.2 351.2436 C23H31N20 SVwW 122 15.8 393.2529 C25H33N202 SV
52 12.3 332.2222 C20H30NO3 SVSs 123 15.9 254.155 C17H20NO SV
53 12.3 345.1974 C23H25N20 SVW 124 159 381.2176 C23H29N203 SVww
54 124 185.1134 C8H18Na03 VHVV 125 16.1 282.1859 C19H24NO SV
55 125 295.2171 C20H27N2 LVVV 126 16.1 304.1685 C21H22NO SVsS
56 125 349.2279 C23H29N20 VHVV 127 16.1 348.1577 ? SVss
57 125 367.236 C23H31N202 SVSS 128 16.2 354.2883 C18H36N502 VLVV
58 125 407.2695 C26H35N202 SVSs 129 16.3 200.202 C12H26NO SVsS
59 125 453.2753 VLVV 130 16.3 393.2165 C24H29N203 SV
60 12.6 246.2429 C14H32NO2 VHVV 131 16.4 289.1443 C17H2104 VLVV
61 12.6 262.237 C14H32NO3 SVSS 132 16.5 241.1479 ? SVss
62 12.6 365.2232 C23H29N202 SVW 133 16.5 246.1476 C13H32NNaO3 SVsS
63 12.6 492.3235 C30H42N303 SVW 134 16.5 395.2341 C24H31N203 SVww
64 12.7 94.0638 C6H8N LVVV 135 16.6 235.1449 C13H19N202 LVVV
65 12.7 136.0751 C8H10NO SVSS 136 16.7 405.2554 C26H33N202 SVww
66 12.7 150.0912 C9H12NO SVW 137 17 339.2074 C21H227N202 LVVV
67 12.7 202.2177 C12H28NO VHVV 138 17.3 339.2074 C21H227N202 LVVV
68 12.7 232.0937 C13H14NO3 SVSs 139 18 281.1739 ? SVsS
69 12.8 144.1371 C8H18NO SVwW 140 18.1 353.2224 C22H29N202 LVVV-3
70 129 172.0731 C9H11NNaO VHVV 141 204 287.2227 C17H27N4 LVVV
71 13 209.0793 ??? VHVV




Appendix B. Comprehensive GC signature list with chemical names given for library
match factors (reverse, forward, or both) greater than 850. If the name is in italics, the
match favor was between 800 and 850.

ID RT (min) Exact Mass Chemical Name

A 3.8 79.0414 pyridine

B 5.17 72.0805 diisopropylethylamine

C 6.92 104.0614 styrene

D 7.62 57.0332 propanoic acid, anhydride

E 8.91 93.0559 aniline

F 10.32 91.0536 Benzeneacetaldehyde

G 10.7 78.0468 benzene

H 11.68 91.0537 2-chloroethyl benzene

I 11.91 72.0802 Acetamide, N,N-dipropyl-

J 12.28 86.096 N,N-bis(1-methylethyl)-propanamide

K 13.31 91.0539 2-bromoethyl benzene

L 16.08 104.0615 Propanoic acid, 2-phenylethyl ester

M 16.5 93.0568 Acetamide, N-phenyl

N 17.2 106.0648 Benzenamine, N-ethyl-

(0] 17.77 93.0569 Propanamide, N-phenyl

P 19.39 93.0568 Dipropionylaniline

Q 22.43 126.0907 4-Piperidone, 3-methyl-1-phenethyl

R 22.49 140.1065 Piperidin-4-one, 2,3-dimethyl-1-phenethyl-

S 23 140.1063 Piperidin-4-one, 2,3-dimethyl-1-phenethyl-

T 25.08 170.1166 1-phenethyl-4-propionyloxypiperidine

U 25,43 184.1326 1—Aminocyclopentanecqrboxylic acid, N-
isobutoxycarbonyl-, isohexyl ester

Vv 26.36 104.0613 Butylphosphonic acid, di(2-phenylethyl) ester

W 26.59 104.0616 pimelic acid, di(phenethyl) ester

X 33.27 245.1641 Fentanyl

Y 33.28 259.1783 3-Methylfentanyl

Z 33.65 259.1799 3-Methylfentanyl




Appendix C. PLSDA-derived CAS broken down by synthesis route. GC CAS have names only. Blanks indicate a reasonable formula

could not be derived from the LC-QTOF exact mass data.

SVVV

1D

R.T. (min) Exact Mass

Formula/Name

7
116
130
136

SVVS

2.3
154
16.3
16.7
10.7

333.2539
312.197

393.2165

405.2554
78.0468

C20H33N202
C20H26N0O2

C24H29N203

C26H33N202

benzene

R.T. (min) Exact Mass

Formula/Name

10.1
11.91
12.28

220.1702
72.0802
86.096

C14H22NO

Acetamide, N,N-dipropyl-
N,N-bis(1-methylethyl)-propanamide

R.T. (min) Exact Mass

Formula/Name

2
2.2
10.6
11.7
12.7
12.7
15.9
16.08

152.0702
108.0804
287.1383
136.0751
136.0751
232.0937
381.2176
104.0615

C8H10NO2
C7HI1ON

C16H19N203

C8H10NO
C8H10NO

C13H14NO3
C23H29N203
Propanoic acid, 2-phenylethyl ester

R.T. (min) Exact Mass

Formula/Name

108
114
115
123
125
126

5.4
13
141
14.8
154
154
15.9
16.1
16.1
10.32
25.43

113.0598
209.0793
191.0685
169.0858
169.0858
247.0956
254.155
282.1859
304.1685
91.0536
184.1326

C6H902

C9H12Na03

C9H1303
C9H1303

C17H20NO
CI19H24NO
C21H22NO

Benzeneacetaldehyde

VLVV
ID R.T. (min) Exact Mass Formula/Name
20 10.5 264.1965 C16H26N02
34 113 276.1608 C16H22NO3
87 13.6 440.273 C29H34N30
99 141 232.1695 C15H22NO
113 15 332.1883 C20H22N5
118 15.5 413.2229 C27H29N202
120 15.7 379.2039 C26H28Na0O

LVVV
ID R.T. (min) Exact Mass Formula/Name
19 10.5 250.1803 C15H24N02
23 10.6 407.27 C27H37N202
25 10.7 232.1703 C15H22NO
26 10.7 244.1696 C16H22NO
27 10.7 389.2595 C26H33N20
30 10.9 403.2747 C27H35N20
35 113 403.2747 C27H35N20
36 114 244.1696 C16H22NO
37 114 246.1847 C16H24NO
38 114 417.2903 C28H37N20
77 13.2 348.1863

137 17 339.2074 C21H227N202
R 22.49 140.1065  2,3-dimethyl-1-phenethylpiperidin-4-one
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