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Abstract

Critical to many modern forensic investigations is the chemical attribution of the 

origin of an illegal drug. This process greatly relies on identification of compounds 

indicative of its clandestine or commercial production. The results of these studies can 

yield detailed information on method of manufacture, sophistication of the synthesis 

operation, starting material source, and final product. In the present work, chemical 

attribution signatures (CAS) associated with the synthesis of the analgesic 3-

methylfentanyl, N-(3-methyl-1-phenethylpiperidin-4-yl)-N-phenylpropanamide, were 

investigated. Six synthesis methods were studied in an effort to identify and classify 

route-specific signatures. These methods were chosen to minimize the use of scheduled 

precursors, complicated laboratory equipment, number of overall steps, and demanding 

reaction conditions.  Using gas and liquid chromatographies combined with mass 

spectrometric methods (GC-QTOF and LC-QTOF) in conjunction with inductively-

coupled plasma mass spectrometry (ICP-MS), over 240 distinct compounds and elements

were monitored. As seen in our previous work with CAS of fentanyl synthesis the 

complexity of the resultant data matrix necessitated the use of multivariate statistical 

analysis. Using partial least squares discriminant analysis (PLS-DA), 62 statistically 

significant, route-specific CAS were identified. Statistical classification models using a 

variety of machine learning techniques were then developed with the ability to predict the 

method of 3-methylfentanyl synthesis from three blind crude samples generated by 

synthetic chemists without prior experience with these methods.



Introduction

Critical to law enforcement and related intelligence efforts to combat illicit drug 

abuse are analytical methods that can provide some level of attribution for drug source 

identification. This attribution typically relies on the chemical attribution signatures 

(CAS) present in a drug sample. CAS can be defined as synthesis precursors and 

byproducts, impurities, degradation products, and metabolites in various biological 

matrices. The most informative CAS are those that are persistent in the materials made 

via a specific route, those that remain unchanged after operational surfaces, and those that 

are present independent of synthesis chemist, laboratory, and facilities. Many reports 

have detailed the forensic application of a variety of analytical techniques for the 

characterization of these organic species in often complex matrices. Analytical tools 

generally include various forms of chromatographic separation combined with

spectrometric detection schemes. Gas and high-pressure liquid chromatographies (GC 

and HPLC, respectively) combined with mass spectrometric (MS) detection have 

traditionally been the workhorses of such studies.1 Though they each have specific merits 

and drawbacks, both are geared exclusively towards the identification of organic species

and are generally used independently of one another. Our previous work2a-d has shown 

the power of integrating the signatures identified with these two organic detection 

methods into a single chemometric methodology, and explored the utility of including 

inorganic CAS detected by ICP-MS.2e

3-Methylfentanyl has a potency (often reported as an ED50) reported to be roughly 

three orders of magnitude greater than that of morphine, making it 10-15 times stronger 

than its parent opioid, fentanyl, (N-(1-phenethylpiperidin-4-yl)-N-phenylpropionamide).3  



This potency has restricted 3-methylfentanyl’s usefulness as an analgesic; instead it is 

largely used recreationally, where mere grams of the opioid can be formulated into 

thousands of doses for subsequent sale. Considering the relatively low cost of production 

and high return on sale of the material, it is not surprising to see the marked uptick in 

general opioid use and number of overdose cases in both the United States and abroad.4

As with our previous investigation into the chemical attribution of fentanyl, the 

routes in the current work were selected to share various synthetic steps. The strategy was 

adopted to 1) reflect likely syntheses used in clandestine laboratories and 2) to test the 

ability of the model to discriminate between very similar reaction schemes. Also akin to 

our previous work, all syntheses rely on the same general pathway: the formation of an 

intermediate piperidinone followed by reductive amination and acylation.

Scheme 1. General synthetic strategy for the generation of 3-methylfentanyl (3MF)
starting with 3-methyl-N-phenethylpiperidin-4-one (3MNPP) and using 3-methyl-1-
phenethyl-N-phenylpiperidin-4-amine (3MANPP) as the intermediate.

In half of the synthetic routes studied, a commercially sourced 3-methylpiperidin-

4-one was used. In the remaining three routes, however, methylation of piperidon-4-one 

was performed in one of two ways, namely using the reducing agents sodium hydride 

(NaH) or lithium diisopropylamide (LDA). In-house generation of this precursor seems 



likely, as the commercial price for the methylated version is upwards of $100/g compared 

to $1–$10/g for 4-piperidone hydrochloride. 

From a forensic analytical perspective, synthetic schemes that share a number of

starting materials or synthetic steps can complicate chemical attribution due to a small 

number of unique signatures, particularly when present at trace levels. In our FY14 CFP

work, we extracted comprehensive exact mass information from LC-QTOF data in 

addition to using electron impact (EI) and chemical ionization (CI) GC/MS data. 

Inorganic material present in crude samples were detected and semi-quantified using 

ICP-MS. In the current work on 3MF, several instrumental and sample preparation 

techniques were improved upon to enhance instrumental sensitivity and the amount and 

quality of data. To compliment the use of LC-QTOF, GC-QTOF was used to extract 

high-resolution mass spectrometric data from the more volatile organic species present in 

crude 3MF samples. This GC-QTOF was recently acquired in the Forensic Science 

Center with internal funding, and gives us additional GC-MS sensitivity as well as the 

ability to obtain exact mass information. In addition, the crude samples were completely 

microwave digested before subsequent analysis by ICP-MS using a microwave digester 

that was also recently acquired in the FSC using internal and other sponsor funding. The 

impact of these strategies is discussed. 

The three analytical techniques used herein provided over 200 unique synthesis-

related signatures and a full panel of elemental data was acquired by ICP-MS. The 

continued complexity of the resultant signature data, however, demanded the use of 

statistical techniques to extract relevant CAS. Therefore, multivariate statistical analyses

were employed to extract the main sources of variance among the six synthetic routes. 



Resulting models were shown to be able to identify compounds of significance as 

chemical attribution signatures. Blind syntheses were then performed by two synthetic 

chemists not previously involved with the work. Choosing three routes known only to the 

two chemists, three crude samples of 3MF were generated and analyzed using the

multivariate models, which classified the unknown sample data against the training data. 

Despite apparent dissimilarities between the training and unknown data sets, the models 

were able to confidently assign the correct route in most cases. For samples where 

classification was ambiguous, the models were able at the very least to eliminate a 

significant number of the routes studied.

Experimental

Synthetic Approach

The routes chosen for this study were selected to generate the 3MF in ways that 

closely mimic probable illicit manufacturing methods. These methods use 3MNPP as the 

synthetic foundation. While commercially available 3-methylpiperidin-4-one was used in 

three of the six routes studied, its cost pre unit weight is relatively high. In the remaining 

routes, then, in-house synthesis of 3-methylpiperidin-4-one was performed. Though the 

synthesis of fentanyl-like compounds dates back to the 1960s in work by Janssen,5 it

involves techniques believed to be too complicated or expensive for clandestine 

laboratories such as hydrogenations with precious metal catalysts. Therefore, the 

alternative routes chosen use common, easily accessible components and relatively mild 

reaction conditions – namely the Valdez and Siegfried methods (vide infra).



As with the FY14 work on fentanyl, the six chosen methods offer variations on 

the attachment of the different 3MF functional groups on the piperidine ring. 3-methyl-1-

phenethyl-N-phenylpiperidine-4-amine (3MANPP), the direct precursor to 3MF, was 

generally formed from 3MNPP using the Valdez method (i.e. via reductive amination).6

Only in one case ($VSS) was a two-step condensation-reduction method processed used 

involving sodium triacetoxyborohydride (STAB) (i.e. the Siegfried method7). Similarly, 

3MF was generally formed using propionyl chloride and N,N-diisopropylethylamine 

(DIPEA, Valdez method), though in two cases pyridine used as the base (Siegfried route).  

To summarize: 1) when commercially available 3-methylpiperidon-4-one was used, 

variations using some combination of Valdez and Siegfried routes from 3MNPP to 3MF 

were used; and 2) when 3-methylpiperidon-4-one was synthesized in-house, only the 

Valdez methods for 3MF synthesis were used. In this way, signatures relating to hydride-

or LDA-mediated methylation of 3-methylpiperidone could be isolated from signatures 

associated with 3MANPP and 3MF synthesis using the Siegfried route instead of the 

Valdez method. The interconnectedness of the routes is shown in Scheme 2, and a

summary table of routes is given in Table 1. Samples were generated in triplicate, and 

given the six routes, a total of 18 test samples of crude 3MF product were available for 

analysis.



Scheme 2. Overall synthetic pathway to 3MF. Routes are coded via four letters, 
“XXXX.” The orange subscripts refer to the position in the code. “L” = LDA-mediated 
methylation; “H” = sodium hydride-mediated methylation; “V” = Valdez method6; “S” = 
Siegfried method.7  Use of a “$” in the first position indicates commercial 3-
methylpiperidin-4-one was used. For example, LVVV describes a route that uses LDA to 
methylate piperidinone HCl, Cs2CO3 to for 3MNPP, STAB and AcOH for reductive 
amination, and alkylation in the presence of DIPEA.

Table 1. Breakdown of the six 3MF synthetic routes. For the top four routes, the 
methylation is completed as the first step either through LDA mediation or by using the 
commercial source. For the bottom two routes, NPP is made first with subsequent 
methylation with LDA or sodium hydride reagents. Commonalities among routes are 
highlighted through colored fields; unique steps are left white.

Route Code
3-methyl-

piperidon-4-one
3MNPP 3MANPP 3MF

$VVV Commercial source
Cs2CO3, ACN, 80°C, 

16 h
AcOH, STAB, DCM, 

RT, 24 h
DCM, DIPEA,
0°CRT, 24h

$VVS Commercial source
Cs2CO3, ACN, 80°C, 

16 h
AcOH, STAB, DCM, 

RT, 24 h
DCM, pyridine, 

RT, 24 h

$VSS Commercial source
Cs2CO3, ACN, 80°C, 

16 h
AcOH, DCM, RT, 24 

hr
DCM, pyridine, 

RT, 24 h

LVVV
LDA, THF, -78°C, 

MeI, RT, 24h
Cs2CO3, ACN, 80°C, 

16 h
AcOH, STAB, DCM, 

RT, 24 h
DCM, DIPEA,
0°CRT, 24 h

Route Code NPP 3MNPP 3MANPP 3MF

VHVV Cs2CO3, ACN, 80°C,
16 h

NaH, NMP, MeI, 
0°CRT, 16 h

AcOH, STAB, DCM, 
RT, 24 h

DCM, DIPEA,
0°CRT, 24 h

VLVV
Cs2CO3, ACN, 80°C, 

16 h
LDA, THF, -78°C, 

MeI, RT, 24h
AcOH, STAB, DCM, 

RT, 24 h
DCM, DIPEA,
0°CRT, 24 h



Materials

Unless otherwise stated, all reagents and solvents were obtained from commercial 

suppliers (Sigma-Aldrich (St. Louis, MO), Alfa Aesar (Ward Hill, MA), J.T. Baker 

(Avantor Performance Materials, Center Valley, PA), Fisher Chemical (Fairlawn, NJ)

and used as received.

Synthesis

$VVV

3-Methyl-4-piperidinone HCl (200 mg, 1.34 mmol) was taken up in acetonitrile 

(10 mL) in a 20 mL scintillation vial equipped with a stir bar.  To the solution, cesium 

carbonate (1.1 g, 3.34 mmol, 2.5 equiv.) was added followed by the dropwise addition of 

phenylethyl bromide (618 mg, 3.34 mmol).  The mixture was heated to 80 °C overnight.  

The following day, the mixture was partitioned (DCMa//H2O) and the organic phase 

washed with brine (1 x 10 mL), dried over anhydrous sodium sulfate and evaporated in 

vacuo at 50 °C to yield a light brown oil.  

                                               
a DCM = dichloromethane



The oil residue from the previous step (131 mg, ~ 0.60 mmol) was taken up in 

DCM (5 mL) in a 20 mL scintillation vial equipped with a stir bar.  This mixture was 

added to a mixture of aniline (57 μL) and acetic acid (80% in water, 45 μL) in DCM (10 

mL) in another 20 mL scintillation vial.  The mixture was then treated with sodium 

triacetoxyborohydride (STAB, 127 mg) and stirred overnight.  The following day, the 

mixture was partitioned (DCM//H2O) and the organic layer was dried over anhydrous 

sodium sulfate and evaporated to dryness to furnish a yellow oil.

The above mixture (88 mg, ~ 0.30 mmol) was taken up in DCM (3 mL) in a 20 

mL scintillation vial equipped with a stir bar.  The mixture was cooled to 0 oC and treated 

sequentially with diisopropylethylamine (105 μL, 0.60 mmol) and propionyl chloride (53 

μL, 0.60 mmol).  The mixture was allowed to reach RT, and stirred overnight at this 

temperature.  The next day, the mixture was partitioned (DCM//H2O) and the organic 



layer was dried over anhydrous sodium sulfate and evaporated to dryness to furnish a 

yellow oil.

$VVS

3-Methyl-4-piperidinone HCl (200 mg, 1.34 mmol) was taken up in acetonitrile 

(10 mL) in a 20 mL scintillation vial equipped with a stir bar.  To the solution, cesium 

carbonate (1.1 g, 3.34 mmol, 2.5 equiv.) was added followed by the dropwise addition of 

phenylethyl bromide (618 mg, 3.34 mmol).  The mixture was heated to 80 °C overnight.  

The following day, the mixture was partitioned (DCM//H2O) and the organic phase 

washed with brine (1 x 10 mL), dried over anhydrous sodium sulfate and evaporated in 

vacuo at 50 °C to yield a light brown oil.  

The oil residue from the previous step (131 mg, ~ 0.60 mmol) was taken up in 

DCM (5 mL) in a 20 mL scintillation vial equipped with a stir bar.  This mixture was 

added to a mixture of aniline (57 μL) and acetic acid (80% in water, 45 μL) in DCM (10 



mL) in another 20 mL scintillation vial.  The mixture was then treated with sodium 

triacetoxyborohydride (127 mg) and stirred overnight.  The following day, the mixture 

was partitioned (DCM//H2O) and the organic layer was dried over anhydrous sodium 

sulfate and evaporated to dryness to furnish a yellow oil.

The above residue (283 mg, ~ 0.96 mmol) was taken up in DCM (8 mL) in a 20 

mL scintillation vial equipped with a stir bar.  The yellow solution was treated 

sequentially with pyridine (139 �L, 1.73 mmol) and propionyl chloride (151 �L). The

resulting mixture was vigorously stirred at RT overnight.  The following day, the mixture 

was partitioned (DCM//H2O) and the organic layer was dried over anhydrous sodium 

sulfate and evaporated in the rotavap to yield a light brown oil.

$VSS

3-Methyl-4-piperidinone HCl (200 mg, 1.34 mmol) was taken up in acetonitrile 

(10 mL) in a 20 mL scintillation vial equipped with a stir bar.  To the solution, cesium 



carbonate (1.1 g, 3.34 mmol, 2.5 equiv.) was added followed by the dropwise addition of 

phenylethyl bromide (618 mg, 3.34 mmol).  The mixture was heated to 80 °C overnight.  

The following day, the mixture was partitioned (DCM//H2O) and the organic phase 

washed with brine (1 x 10 mL), dried over anhydrous sodium sulfate and evaporated in 

vacuo at 50 °C to yield a light brown oil.  

The reaction mixture obtained above (258 mgs of oil) was taken up in DCM (5 

mL) and added to a stirred solution of aniline (111 μL) and acetic acid (80% in water, 90 

μL) in DCM (10 mL) in a 20 mL scintillation vial equipped with a stir bar.  The mixture 

was vigorously stirred overnight at RT.  The following day, the mixture was partitioned 

(DCM//H2O) and the organic layer was dried over sodium sulfate and evaporated to 

dryness to furnish a yellow oil (net weight = 461 mg).  

The imine mixture obtained above (461 mg, ~ 1.58 mmol) was dissolved in 

MeOH (3 mL) in a 20 mL scintillation vial equipped with a stir bar and cooled to 0 °C 



with an ice bath.  To the mixture, sodium borohydride (175 mg, 4.74 mmol, 3.0 equiv.) 

was added in small portions and the resulting suspension (yellow) was stirred at RT 

overnight.  The next day, the vial was diluted with water (6 mL) and partitioned 

(DCM//H2O).  The organic phase was dried over anhydrous sodium sulfate and 

evaporated in vacuo to yield a yellow oily residue.   

The above residue (283 mg, ~ 0.96 mmol) was taken up in DCM (8 mL) in a 20 

mL scintillation vial equipped with a stir bar.  The yellow solution was treated 

sequentially with pyridine (139 μL, 1.73 mmol) and propionyl chloride (151 μL).  The 

resulting mixture was vigorously stirred at RT overnight.  The following day, the mixture 

was partitioned (DCM//H2O) and the organic layer was dried over anhydrous sodium 

sulfate and evaporated in the rotavap to yield a light brown.

VLVV

2.9 g (19 mmol) of pulverized piperidinone HCl was loaded into a round flask 

with a stir bar. 60 mL of acetonitrile was added and the slurry set to stir. 13.5 g (41 

mmol) pulverized cesium carbonate was added in portions. 3.1 g (17 mmol) 2-

bromoethylbenzene was added and a reflux condenser was attached. The mixture was 

refluxed at 60 °C for 5 hours and cooled to RT. The mixture was filtered into a separatory 

funnel and partitioned (DCM//H2O). The organic phase was isolated and washed with 



brine (3 x 20 mL) and saturated sodium bicarbonate (3 x 20 mL). The solution was dried 

with sodium sulfate, filtered, and evaporated yielding 2.75 g of NPP as a yellow oil.

The resultant material (150 mg, < 0.74 mmol) was dissolved in anhydrous THF (5 

mL) and the orange suspension was cooled to -78 °C.  LDA (95 mg, 0.88 mmol) was 

added in small portions to the mixture and this was stirred for 10 minutes at -78 °C.  

Methyl iodide (55 μL, 0.88 mmol) was added using a pipette and the resulting mixture 

was allowed to slowly warm up to RT and stirring was continued overnight.  The 

following day, the mixture was partitioned (DCM//H2O) and the organic layer was dried 

over anhydrous sodium sulfate and evaporated to dryness to furnish an amber-yellow oil.

The oil residue from the previous step (131 mg, ~ 0.60 mmol) was taken up in 

DCM (5 mL) in a 20 mL scintillation vial equipped with a stir bar.  This mixture was 

added to a mixture of aniline (57 μL) and acetic acid (80% in water, 45 μL) in DCM (10 

mL) in another 20 mL scintillation vial.  The mixture was then treated with sodium 



triacetoxyborohydride (127 mg) and stirred overnight.  The following day, the mixture 

was partitioned (DCM//H2O) and the organic layer was dried over anhydrous sodium 

sulfate and evaporated to dryness to furnish a yellow oil.

The above mixture (88 mg, ~ 0.30 mmol) was taken up in DCM (3 mL) in a 20 

mL scintillation vial equipped with a stir bar.  The mixture was cooled to 0 °C and treated 

sequentially with diisopropylethylamine (105 μL, 0.60 mmol) and propionyl chloride (53 

μL, 0.60 mmol).  The mixture was allowed to reach RT, and stirred overnight at this 

temperature.  The next day, the mixture was partitioned (DCM//H2O) and the organic 

layer was dried over anhydrous sodium sulfate and evaporated to dryness to furnish a 

yellow oil.

VHVV

2.9 g (19 mmol) of pulverized piperidinone HCl was loaded into a round flask 

with a stir bar. 60 mL of acetonitrile was added and the slurry set to stir. 13.5 g (41 

mmol) pulverized cesium carbonate was added in portions. 3.1 g (17 mmol) 2-

bromoethylbenzene was added and a reflux condenser was attached. The mixture was 

refluxed at 60°C for 5 hours and cooled to room temperature. The mixture was filtered 

into a separatory funnel and partitioned (DCM//H2O). The organic phase was isolated and 



washed with brine (3 x 20 mL) and saturated sodium bicarbonate (3 x 20 mL). The 

solution was dried with sodium sulfate, filtered, and evaporated yielding 2.75 g of NPP as 

a yellow oil

The above yellow oil (160 mg, ~ 0.79 mmol) was dissolved in NMP (3 mL) in a 

20 mL scintillation vial equipped with a stir bar and cooled to ~ 0 °C using an ice bath.  

Sodium hydride (60% dispersion in oil, 34 mg, 1.1 equiv.) was added in one portion and 

evolution of a gas (H2) was observed.  The resulting orange suspension was treated with 

methyl iodide (54 μL, 1.1 equiv. to FSC2-33) and the mixture stirred at RT overnight.  

The following day, the dark orange mixture was partitioned (DCM//H2O) and the organic 

layer was dried over anhydrous sodium sulfate and evaporated to dryness to furnish an 

amber-yellow oil.

The oil residue from above (100 mg, ~ < 0.46 mmol) was taken up in DCM (5 

mL) in a 20 mL scintillation vial equipped with a stir bar.  This mixture was added to a 



mixture of aniline (46 μL, 2.5 equiv.) and acetic acid (80% in water, 115 μL) in DCM (10 

mL) in another 20 mL scintillation vial.  The mixture was then treated with sodium 

triacetoxyborohydride (58 mg) and stirred overnight.  The following day, the mixture was 

partitioned (DCM//H2O) and the organic layer was dried over anhydrous sodium sulfate 

and evaporated in vacuo to dryness to furnish a yellow oil.

The above oily residue (78 mg, ~ < 0.27 mmol) was taken up in DCM (3 mL) in a 

20 mL scintillation vial equipped with a stir bar. The mixture was cooled to 0 °C and 

treated sequentially with diisopropylethylamine (93 μL, 0.53 mmol) and propionyl 

chloride (47 μL, 0.53 mmol).  The mixture was allowed to reach RT, and stirred 

overnight at this temperature.  The next day, the mixture was partitioned (DCM//H2O) 

and the organic layer was dried over anhydrous sodium sulfate and evaporated in vacuo

to dryness to furnish a dark yellow oil.

LVVV

4.75g of 1-Boc-4-piperidone was dissolved in 100 mL of dry THF and cooled 

with a -78 °C dry ice/acetone bath under a flow of argon. 25 mL of 1.0 M LDA in THF 

was added dropwise and stirred for 1 hour at low temperature. 1.8 mL of methyl iodide

was added and the mixture was brought to RT and stirred overnight. Aqueous workup 



afforded 3.7 g of a yellow oil which was dissolved in 25mL of dry dichloromethane, 

cooled to 5 °C, and treated with 20 mL of 2.0 M HCl in diethyl ether, 

dropwise. Precipitation begins shortly after the addition of the acid. The mixture was 

left to stir overnight. The solid was isolated by decantation, washed with 

dichloromethane, and dried yielding roughly 2 g of 3-methylpiperidone HCl salt.

3-Methyl-4-piperidinone HCl (200 mg, 1.34 mmol) was taken up in acetonitrile 

(10 mL) in a 20 mL scintillation vial equipped with a stir bar.  To the solution, cesium 

carbonate (1.1 g, 3.34 mmol, 2.5 equiv.) was added followed by the dropwise addition of 

phenylethyl bromide (618 mg, 3.34 mmol).  The mixture was heated to 80 °C overnight.  

The following day, the mixture was partitioned (DCM//H2O) and the organic phase 

washed with brine (1 x 10 mL), dried over anhydrous sodium sulfate and evaporated in 

vacuo at 50 °C to yield a light brown oil.  

The oil residue from the previous step (131 mg, ~ < 0.60 mmol) was taken up in 

DCM (5 mL) in a 20 mL scintillation vial equipped with a stir bar.  This mixture was 

added to a mixture of aniline (57 μL) and acetic acid (80% in water, 45 μL) in DCM (10 

mL) in another 20 mL scintillation vial.  The mixture was then treated with sodium 

triacetoxyborohydride (127 mg) and stirred overnight.  The following day, the mixture 



was partitioned (DCM//H2O) and the organic layer was dried over anhydrous sodium 

sulfate and evaporated to dryness to furnish a yellow oil.

The above mixture (88 mg, ~ < 0.30 mmol) was taken up in DCM (3 mL) in a 20 

mL scintillation vial equipped with a stir bar.  The mixture was cooled to 0 oC and treated 

sequentially with diisopropylethylamine (105 μL, 0.60 mmol) and propionyl chloride (53 

μL, 0.60 mmol).  The mixture was allowed to reach RT, and stirred overnight at this 

temperature.  The next day, the mixture was partitioned (DCM//H2O) and the organic 

layer was dried over anhydrous sodium sulfate and evaporated to dryness to furnish a 

yellow oil.

Instrumental Analysis

LC-QTOF

A quantitative weight of each crude fentanyl product was transferred to a 4 mL 

glass vial and diluted to 10 mg/mL in acetonitrile. From each solution, dilutions were 

performed to yield a final series of 20 μg/mL solutions in 75/25 water/acetonitrile. An 

Agilent 1260 LC equipped with an Atlantis T3 reverse phase column (C18, 150 mm x 2.1 

mm, 3 μm particle size, Waters, Milford, MA) was used for the separation of all 

compounds. Time-of-flight mass spectrometric detection was performed in positive ion 



mode with a Bruker micrOTOF-Q III (Bruker Daltonics, Billerica, MA) equipped with an 

electrospray ionization (ESI) source and operated in Auto MS/MS mode (m/z 50-1000). 

Three precursor ions were monitored at a given time (m/z 50-450) with active exclusion 

after three spectra. MS was performed with a capillary voltage of 4500 V, a dry gas flow 

rate of 4 L/min at 180 °C, quadrupolar ion and collision energies of 4.0 eV and 8.0 eV, 

respectively, and a spectral acquisition rate of 2 Hz.

The mobile phase consisted of water with 0.1% formic acid (A) and acetonitrile 

with 0.1% formic acid (B); flowrate of 0.25 mL/min. The gradient profile started with 

95% A for 2 min, ramped to 20% A over 7 minutes, held for 14.75 minutes, ramped 

quickly back to 95% over 0.25 min, and held for 8 min for column regeneration. Five

microliters of the liquid sample were introduced via an autosampler (Agilent B1329B) to 

the injection port. The detector was tuned and calibrated using the 20 μL injection loop of 

a 6-port valve on the MS using Agilent’s ESI-L Low Concentration Tuning Mix (G1969-

85000). Compounds relevant to each synthetic route were identified based on computer-

aided identification of MS/MS peaks using Bruker’s Compass for otofSeries 1.5 

software. Detailed analysis of each sample was done manually with peak areas calculated 

by manually integrating the extracted ion chromatogram (EIC) of the base peak. After 

route-specific compounds were identified for each route, a target table was created and 

searched against all 18 samples.

GC-QTOF

A quantitative weight of each crude fentanyl product was transferred to a 2 mL 

glass vial and diluted to 10 mg/mL using dichloromethane. Dilutions were then 



performed in dichloromethane to yield a series of 20 μg/mL solutions. An Agilent 

Technologies (Santa Clara, CA) 7890B GC equipped with an Agilent HP-5MS column 

(5%-Phenyl-methylpolysiloxane, 30 m x 0.25 mm x 0.25 μm) was used for the 

chromatographic separation. A carrier gas of helium (99.999%, Praxair, Inc., Danbury 

CT) was used, and the GC was operated in constant flow mode (1.0 mL/min). One 

microliter of the liquid sample was introduced via an autosampler (Agilent 7890 series) 

to the injection port held at 250°C, splitless injection. The oven temperature was held at 

40°C for 3 minutes, then ramped at 8°C/min to 300°C and held for 3 minutes. Detection 

was performed with an Agilent 7200 Accurate-Mass Q-TOF MS detector and operated 

using EI (70 eV) and an emission current at 10 μA. The system was operated in scan 

mode (m/z 29-600, 8 spectra/s) with the source and quadrupole mass analyzer held at 

230°C and 150°C, respectively. A solvent delay of 3 minutes was used. The detector was 

auto-tuned and was mass calibrated using a perfluorotributylamine (PFTBA) solution

before running each sample. Compounds were identified based on spectral comparison to 

the NIST Mass Spectral Library (v 2014) as well as manual comparison to mass spectra 

published in the literature. Peak areas were calculated from extracted ion chromatograms 

of the base peak identified for each compound using manual integration in the 

MassHunter software (v B.07.00).

ICP-MS

Sample preparation prior to ICP-MS analysis was performed via microwave 

digestion of the crude samples in acidic solution. 10 mL of 3 M nitric acid were added 

100 mg of crude material \which was then sonicated to homogenize the solution as much 



as possible and quantitatively transferred into microwave digestion vessels with an 

additional 2 mL of 3 M nitric acid. The vessels were installed on the rotary stage and 

inserted into a MARS 6 microwave digester (CEM Corp., Matthews, NC). Samples were 

then processed using a standard pharmaceutical digestion protocol supplied by the 

instrument’s manufacturer.

Elemental analysis was performed using an Agilent Technologies (Santa Clara, 

CA) 8800 Triple Quadrupolar ICP-MS (ICP-QQQ). Initially, a semi-quantitative scan 

was performed to determine elements of interest within the sample sets. Down-selected 

analytes were then measured quantitatively with the following parameters: carrier gas 

(0.65 L/min), nebulizer pump (0.50 rps), spray chamber temperature (15 °C), and dilution 

gas (0.40 L/min). Argon was used as plasma, carrier, and dilution gas. In the collision 

cell, a helium flow of 4.0 mL/min was used. The measurements were performed as three 

replicates, with 50 sweeps per replicate. Integration time per mass was held at 0.10 sec. 

The rinse time was set to 30 sec at 0.3 rps of the nebulizer pump, followed by 10 sec at 

0.3 rps. Sample introduction was performed using an ASX-500 autosampler (Cetac, 

Omaha, NE). Peak area determination and quantitation were performed using 

MassHunter software (4.1 C.01.01).

Data Analysis 

Partial Least Squares Discriminant Analysis (PLS-DA), a supervised technique 

that facilitates classification, was performed using Solo (V8.0, Eigenvector Research Inc., 

Wenatchee, WA). This software was also used to perform the Support Vector Machines 

analyses described in detail below. Mathematica 9.0 (Wolfram, Champaign, IL, USA) 



was used for two other machine learning techniques, namely logisitic regression and 

neural network analyses. The data sets fed into all algorithms were identical regardless of 

software package and included peak areas (LC-QTOF and GC-QTOF) and accurate 

concentrations (ICP-MS).

Results and Discussion

Signature Identification

From the exhaustive list of signatures revealed by LC (given in Appendix A), we 

investigated the extent to which MS/MS spectra could be used to posit structures 

associated with each peak’s exact mass. From MS/MS fragment exact masses, 

substructural units of the parent molecule can be used to reconstruct its original identity. 

Table 2 shows the results of proposed structures using this methodology. Note that it was 

outside the scope of work to confirm these assignments with commercial standards or in-

house synthesis, but these proposed structures are the most consistent with available data 

and most likely reaction chemistries.

Early eluting compounds largely correspond to the bases (pyridine or DIPEA) 

used for the final acylation step, which converts 3MANPP to 3MF. Note that signature 3 

is most likely a synthesis impurity in DIPEA. Compounds 11-43 in Table 2 are 

intermediates associated with incomplete reductive amination of 3MNPP. For example, 

the ketone group of unreacted NPP or 3MNPP is reduced to a hydroxyl group 

(compounds 11, 15, 16). LDA- or NaH-mediated methylation creates the intended 

3MNPP (compound 13) but also creates compounds with higher degrees of methylation 



(compounds 25, 29).b The reduced NPP and 3MNPP can react in the final step with 

propionyl chloride to create the ester moeties of compounds 40 and 43. Because the 

conversion of 3MNPP to 3MANPP was apparently the lowest yielding step (see below), 

one would expect to see a significant amount of fentanyl. Indeed, this expectation was 

observed (compound 49). Direct reaction between excess aniline and propionyl chloride 

and to a lesser extent AcOH is responsible for compounds 65 and 66, respectively.

The majority of early eluting species from GC data correspond to highly volatile 

reagents and their impurities such as pyridine, aniline, and DIPEA. Also observed were

unreacted 2-bromoethyl benzene and its likely impurities, 2-chloroethyl benzene and 

benzeneacetaldehyde. Compounds of moderate volatility correspond to many of those 

detected by LC-QTOF. For example, N-phenyl propanamide (LC signature 66), 3-

methyl-1-phenethylpiperidin-4-one (LC signature 13), and dimethyl-1-

phenethylpiperidin-4-one c (LC signatures 25, 29) were detected by both techniques.

Despite their relatively low volatility and their large retention times (32-33 min), fentanyl 

and two 3-methylfentanyl peaks (corresponding to the 3R (cis) and 3S (trans)

enantiomers) were also detected by GC-QTOF.

It is important to mention that while we are able to assign identities/structures to 

the above compounds, the vast majority of those discussed above are not ultimately 

considered CAS by statistical modeling. Most of those compounds (as determined via 

LC) can only be represented as formulae or exact masses.

                                               
b Negligible amounts of compounds with higher degrees of methylation were detected in 
crude samples that started with commercially available product.  Detection of these 
compounds strongly suggests in-house synthesis of the starting material, 3-
methylpiperidin-4-one, for the routes chosen for the present study.
c Indeterminate methyl group substitution pattern without standard reference materials.



Table 2. LC signatures for which proposed structures were derived.
Signature 

ID
Proposed Chemical Formula Proposed Structure from MS/MS data

1 C5H5N

3 C7H17N

5 C8H19N

11 C13H19NO

13 C14H19NO

15, 16 C14H21NO

25, 29 C15H21NO

(or analog)

40 C16H23NO2

43 C17H25NO2

49 C22N28N2O

(fentanyl)

51 C23H30N2O

(3-methylfentanyl)

57 C23H30N2O2

(Signature Q from Signature Science Ref8)

65 C8H9NO

66 C9H11NO

82 C15H22N2O



Enantiomeric Profiling of 3-Methylfentanyl

Also investigated was the degree to which the various synthetic routes produced 

the R vs. S enantiomers of 3-methylfentanyl, as this number might in principle be an 

additional “signature” by which the routes can be distinguished. Several attempts at using 

LC to separate the two enantiomers were unsuccessful, whether using a typical reverse 

phase column or a chiral column recommended by Phenomenex. GC, however, was able 

to cleanly separate the two species (with retention times of 33.28 and 33.65 min;

previous work suggests that the early eluter corresponds to the more stable trans/3S

configurationd). Three of the synthetic routes produced enough 3MF to yield peaks with 

sufficient signal-to-noise. The average ratios of the cis to trans 3MF were 3.88 ± 0.23 for 

$VVV, 3.99 ± 0.25 for $VVS and 4.26 ± .85 for LVVV. Statistical comparisons of these 

averages suggests there is no significant different in 3MF enantiomeric composition for 

these three routes, one of which generated the starting material using LDA. Additionally, 

these values are somewhat higher than those from the Espoto/Winek study (1.73 – 2.96 

cis:trans) but are consistent is the observation that the cis 3MF is preferentially 

synthesized. As the remaining three routes studied presently did not produce sufficient 

3MF, however, we cannot draw more insightful conclusions on the potential utility of this 

measure as an additional signature.

                                               
d The work of Esposito and Winek posits that the compound associated with the lower 
abundance ratio of both m/z = 160 and 203 to the base peak m/z = 259 corresponds to the 
more stable trans configuration of 3MF where the methyl group and amide nitrogen are 
in equatorial and axial positions, respectively. Esposto, F.; Winek, C. J. Forensic Sci. 
1991, 36, 86-92.



Observations on Low Yields of 3-Methylfentanyl

During the synthesis of 3-methylfentanyl, it was noted that the overall yield of the 

target compound via some routes was extremely low (<4-5%) by GC-MS analysis, 

particularly for routes $VSS, VHVV, and VLVV. As it is an estimate based on GC-MS 

analysis of the crude mixtures along the steps comprising a given route, the actual final 

yield of the product is not known but can be placed at <10% with great certainty.

Two factors observed during the synthesis can be highlighted to help explain 

these low yields. The first one has to do with the routes where the α-methylation needed 

to be performed. The methylation step is actually a two-step procedure that involves the 

formation of an enolate ion from the ketone or imine species generated from the starting 

material and subsequent alkylation to yield the α-methylated product (Scheme 3). The 

enolate (or enamine arising from the imine) is prone to hydrolysis reverting back to the 

starting ketone.  Furthermore, it is water sensitive, which would also convert it back to 

the starting material.  Another added issue with this initial manipulation is the use of a 

hindered, amine base to form the enolate (or enamine) that unfortunately is also water 

sensitive even when carefully controlling the dryness of the organic solvent (THF for 

example) with molecular sieves or other dehydrating agents.  Yields for this

transformation are usually low, ranging between 30-40% when not conducted under 

stringently dry conditions (i.e. argon atmosphere, flame-dried glassware, heat-activated 

molecular sieves, etc.)



Scheme 3.  Methylation of starting ketone and competing pathways for the reaction.

The second factor, which we believe is more deleterious to overall yield, is the 

low-yielding reductive amination step. When carrying out the reductive amination on the 

generated 3-methylpiperidinones, it was observed by GC-MS that the conversion of the 

starting 3-methylketone to the final amine product was amazingly low (<5% conversion 

noted by GC-MS). The reductive amination is a two-step process – imine formation 

followed by hydride reduction. GC-MS studies revealed that the initial formation of the 

iminium intermediate was the low yielding step thus affecting the downstream reduction 

to the amine (Scheme 4).  The reaction was studied to find a way to increase the overall 

yield of the amine, but even when using large excess of the amine to the ketone and 

performing the reduction at elevated temperature (80 C), a larger yield was never 

accomplished.  Although reductive aminations of 3-methylcyclohexanones have been 

reported in good yields (>80%), these involve the use of smaller, inherently more 

nucleophilic amines to form the iminium species.



Scheme 4.  Steric factor between aniline and the methyl group governing the first step of 
the reductive amination step resulting in an overall low yielding transformation.

Data Transformation

In statistical analyses such as those described below, each chemical signature (i.e. 

the peak area of each chromatographic peak fed into the software) is considered to be a 

“predictor,” and it is important to understand the distribution characteristics of the 

predictor values before any such analysis is performed. Histograms and boxplots can 

yield decent qualitative information as to the distribution of predictor values (i.e. peak 

areas) in a given sample.  However, Q-Q plots are more powerful in quickly assessing the 

normality of a data set (a fundamental assumption of many statistical regression and 

classification algorithms). The left panel of Figure 1 gives the Q-Q plot for the raw peak 

areas for one of the LVVV data sets; clearly these data do not follow a normal 

distribution. Most mass spectral data, particularly those from the metabolomics 

community, rely on log-normalizing the data prior to other transformations. This 

treatment was given to the current data sets, the results of which are given in the right-



hand panel of Figure 1 for the representative dataset. The data conform to the reference 

line, indicating the base-ten logarithm yields reasonably normally distributed data. 

Critical to both the stability of statistical calculations and the robustness of the 

resultant classification models are appropriate data preprocessing and transformation of 

these predictor values. For example, the most common and straightforward treatment 

involves centering and scaling the data, or subtracting the mean predictor value and 

standard deviation of predictor values within a given dataset, respectively.  This ensures 

that each predictor has a zero mean and a common standard deviation of unity, so all 

predictors (signatures) have equal contributions to the model, regardless of absolute 

abundance.  

Figure 1. Normal Q-Q plots for a representative LVVV sample. Left panel: Raw LC+GC 
data showing non-normally distributed data. Right panel: Log10-transformed raw LC+GC 
data showing log-normal behavior of the analytical data. 

Accounting for zeros (i.e. “missing values”) is another problematic issue that 

must be addressed. When a peak is recorded as “0” in the data set, it does not strictly 

mean that that signature is absent. Rather, it simply means that it is under the detection 
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limit of the instrument. Often, the detection limit itself is used in place of a zero value. A 

random number between zero and this limit is also possible.  We chose a value of 0.0001 

to replace all zeroes, which was subsequently converted to negative four in log-space.

This practice is often seen in various “omics” communities. Centering and scaling of the 

log10-transformed data was then done for each crude sample using means and standard 

deviations of the corresponding data. Note that as with our previous work on fentanyl, it 

is important that LC data, GC data, and ICP-MS be treated separately, as they are 

acquired on different instruments with different responses and dynamic ranges.

For the three unknown data sets, the same statistics for mean centering and scaling 

were used. Specifically, the average mean and standard deviation of the training sets were 

used to transform test data, since it is assumed that the test data are fully blind (i.e. their 

underlying statistics are unknown).

Dimensionality and Feature Selection

A major issue with statistical analysis of chemical data is that while a very large 

amount of variables can be measured (i.e. peak areas) it is generally difficult to provide a 

similarly large number of sample replicates. This results in what is often referred to as the 

“curse of dimensionality.” Lacking the sample size to support the results derived from the 

high-dimensional data set degrades the predictive power of classification and machine 

learning algorithm.9 Thus, the issue of “over-fitting” the data is problematic, one that 

overemphasizes patterns that are not reproducible (i.e., outliers, noise, etc.) and makes it 

difficult to generalize to new samples. While we will work with the full datasets in the 



current work (with acknowledging the negative impact of over-fitting) we also refer to 

our previous work to reduce the dimensionality of the dataset through statistical means.

Partial least squares (PLS) was used to assist in reducing the dimensionality of the 

predictor (i.e. variable) space. It has been well established that there exists a clear benefit 

in choosing PLS over other conventional methods (e.g. principal components analysis, 

PCA) for this reduction when followed by attempted classification. This fact results from 

PLS’ seeking to optimize group separation guided by information between groups, rather 

than PCA’s optimizing on overall variance. Either way, efforts to eliminate predictors

(referred to as “feature selection”) that contain little to no information about the 

underlying variance should improve the performance of any classification model.

While a handful of methods exist for feature selection, we chose to focus on 

selectivity ratios (SR). We found previously that this metric was useful in the objective 

identification of important CAS. A high SR value indicates the spectral variable 

contributes much toward discrimination amongst samples (i.e. explains a significant 

amount of total variance). A lower threshold SR value of 1.5 was chosen to select 

features that would be used to generate a reduced predictor set for classification purposes.

This value also allowed for each route to have at least one LC signature identified as an 

important feature.

Samples and Predictors by PLS

Though PLS was employed primarily for feature selection, its results can also be 

used to assess the in- and between-class separation through scores values of the latent 

variables. Figure 2 shows a two-dimensional scores plot on LVs 1 and 2 for the full 



LC+GC data set (141 LC inputs and 26 GC inputs). Note that in-class variability is low,

since scores of the various routes cluster tightly (i.e. the three synthetic replicates of each 

route are similar to each other). Between-class separation, however, is observed to be 

quite high (i.e. the different synthetic routes are quite different from each other). Also, 

similar routes lie along various lines within the space. That is, scores from samples using 

the commercial starting material all lie along one line, while routes than use LDA-

mediated methylation lie along another. The hydride-mediated route VHVV appears 

separate from the others though is closest to its cousin, VLVV. In summary, samples with 

similar chemistries can be visualized easily through the reduced dimensionality of PLS

scores plots.

Figure 2. PLS-derived scores plot for the first and second latent variables (LVs) of the 18 
training data sets. Gray dashed lines indicate groupings according to synthetic
similarities.

PLS scores can also be used to assess in a qualitative sense the similarity of the 

unknown samples to those that formed the training set for our classification models. 



Figure 3 shows a three-dimensional scores plot of a cross-validated (see below for 

details) PLS model. The 18 training set data are given as spheres. Added to this plot are 

the scores (as cubes) associated with the three datasets for the unknown pathways derived 

using the model. The x-y projection (gray shadows) is equivalent to the graph given in 

Figure 2. Note that the square shadows, corresponding to the unknown sample data

(given in red for emphasis), do not necessarily closely cluster with the known sample 

scores. e This fact highlights both the necessity of statistical analyses to solving 

classification problems due to complex, ambiguous data and that different chemists in 

different laboratories, though following a standard procedure, clearly affect dramatically 

the ultimate signature profile of a crude synthesis material.

                                               
e It is useful to point out now that the “unknown” samples 1, 2, and 3 were later revealed 
to result from routes LVVV, $VSS, and VLVV, respectively. 



Figure 3. Three-dimensional PLS-derived scores plot for first three LVs using the full 
LC+GC data set. X-Y projection in gray is given to help visualize separation between 
classes (plot same as in Figure 2, unknown sample shadows are in red). Cubes are blind 
data scores using the 18-sample training set; routes are labeled to be consistent with 
discussion found in main text.

Table 2 gives the results of feature selection using the PLS analysis. SR values are 

group-specific, so they can be tied directly to various synthetic routes and used as 

objectively determined CAS. These predictors were then isolated from the raw data sets 

and processed as described above to yield a reduced data set of 40 LC inputs and 7 GC 

inputs. We refer to this dataset as “Red2.” Information on a second reduced dataset, 

“Red1,” is found below.

Table 2. Route specific CAS identified using a PLSDA-derived selectivity 
ratio, SRmin = 1.5.* These predictors were used to form the Red2 dataset. 

Method (Class) LC-MS GC-MS ICP-MS

$VVV 7, 116, 130, 136 G --
$VVS 16 I, J --
$VSS 2, 4, 22, 42, 65, 68, 124 L --

VHVV 9, 71, 98, 108, 114, 115, 123, 
125, 126

F, U --

VLVV 20, 34, 87, 99, 113, 118, 120 -- --
LVVV 19, 23, 25, 26, 27, 30, 35, 36, 37, 

38, 77, 137
R --

* Added to help aid in discrimination between $VVS and $VSS: 15, 31, 32, 43, 47, 51, 
52, 54, 62, 67, 90, 96, 97, 132, 134. These predictors were added to those from Red2 to 
make the Red1 dataset.

Cross-validation and Prediction using Support Machine Vectors

In our previous work with fentanyl, we employed PLS Discriminant Analysis 

(PLSDA) for both feature selection and classification. PLSDA, however, generally 

classifies using binary results. That is, the probability that an unknown sample is 



classified to a particular route will either be a “1” or a “0.”  In Eigenvector’s Solo 

software’s GUI, then, classification results from PLSDA offer little flexibility in 

assessing the degree to which unknowns belong to the other five routes in addition to that 

of the “most probable route.”  Additionally, invoking PLSDA for classification relies on 

specifics assumptions about the distributions of the predictors. Assuming that underlying 

distributions are either not well-characterized or just unknown, nonlinear discriminant 

analyses were investigated as being perhaps more suitable for classification.10

Support vector machines (SVM) are a class of nonlinear statistical models that 

have become some of the most flexible modeling tools available.11 The development of a 

basic classification model using SVMs involves only two variables, the cost- and kernel-

parameters. The more important of the two, the cost parameter (c), quantitates the penalty 

associated with erroneous classification (lower values equates with high tolerance for 

misclassification). Cross-validation of the model assigns the values of these two 

parameters, but discussion of how to properly cross-validate is also important. Due to the 

small sample size, random sampling of test data was chosen. That is, the software 

randomly chooses a subset of the training data to reserve as test data. The remaining 

training data is used to develop a model; the test data that was set aside is used for cross-

validation. This is done for a certain number of repetitions to attain stable estimates of 

model performance.  In general, it is desirable to have about 75-80% of the data present 

in the training set and the remainder reserved for validation. For the current work, four 

sets were used and 100 cross-validation repetitions were used to attain good performance 

stability. The results of cross-validation yielded models able to assign correctly all 18 

samples. Note that this method of cross-validation was applied regardless of the 



classification technique used, and keeping this method consistent allows for proper 

comparison of the models’ results.

Three classification methods were studied for their ability to assign synthesis 

routes to the three unknown samples. They all vary in the details of their algorithms, but 

they all seek in one way or another to discover an underlying variable space that 

represents significant differences among the signature profiles of various synthetic routes.

These techniques are known as support vector machines discriminant analysis (SVMDA), 

neural networks (NN), and logistic regression (LR). SVMDA and NN algorithms are 

popular tools when underlying relationships between predictors and response(s) are 

potentially nonlinear and unknown. Logistic regression is also used frequently and, while 

being a type of linear regression model, can predict responses for categorical

classifications. That is, this type of model is good for predicting discrete outcomes like 

those encountered presently (i.e. either the route is VLVV, for example, or it is not). 

In all, three datasets were analyzed for their ability to classify the three unknown 

crude 3MF samples:

1) Full GC+LC data set using all 167 predictors (141 from LC, 26 from GC).

2) A reduced data (Red2) set using only predictors with SR > 1.5 as determined 

from PLSDA analysis of the Full GC+LC data set (40 from LC, 7 from GC).

3) A second reduced data set (Red1) which includes all predictors from Red2 

plus additional predictors with SR > 1.5 as determined from the PLSDA 

analysis of data from $VSS and $VVS alone (55 from LC, 7 from GC).



Again, it is important to stress that the reduced data sets were generated in an attempt to 

address the problem of over-fitting the data. It is likely, however, that still too many 

variables remain given the small size of the training set (n = 18 sample data sets).

Results from unknown route classification using Solo’s SVM Discriminant 

Analysis (SVMDA) package are given in the left-most column in Figure 4. Results of 

running the model with different subsets of the original data are color-coded: red = full 

data set, green = “Red1” set, and blue = “Red2” set. Recall that Red2 (blue) used only 

those predictors for which SR > 1.5 using the full data set. Due to the general inability of 

any algorithm to discriminate confidently between $VVS and $VSS for unknown Test 

Sample Two, the set Red1 was developed to include those additional predictors. 

Note that for all three unknown samples, classification probabilities are low; not 

one route stands apart significantly from the others. This is likely due to the fact that the 

model is too tightly tuned regardless of what sample set size you consider (full vs. 

reduced). The current SVMDA model used, generated largely as a black box, cannot be 

therefore easily generalized to new samples. The combination of the overly tuned model 

(i.e. high cost parameter reducing generalization) with the model being overfit (i.e. too 

high a predictor space for the number of samples) results in great uncertainty in the 

SVMDA predictions. Despite these facts, note that maximum probabilities predict Routes 

One, Two and Three to be LVVV, $VVS, and VLVV, respectively.



Figure 4. Classification results summary. Left: SVM; Middle: NN; Right: LR. Red: full 
data set; green: Red1 data set; blue: Red2 data set. Routes are given in descending order. 
Numerical probabilities have been removed for clarity, but gray lines represent 
probability, p = 0.25, 0.5, 0.75, and 1.0. 

It is generally considered that NNs can be used to derive predictions on class 

assignments that are at least as competitive as or better than other machine learning 

counterparts.10,12 Results from the NN analysis of the three data sets is shown in the 

middle panel of Figure 4. It is apparent that the trends are similar to SVMDA with 

regards to the most-probable route, though there appears to be more “confidence” in class 

assignments. This observation, however, may simply be due to a less tightly modeled 

training set, or that the hidden variables calculated by the NN algorithm can at least rule

out certain synthesis routes more efficiently that the current SVMDA models. 

Logistic regression (LR) is typically used for predictions where the outcome is 

discrete (i.e. “is” or “isn’t” or, stated otherwise, the dependent variable is catagorical).10

This type of model is particularly effective when the goal is solely classification. Note 

that classification probabilities are given for the three routes and three data set sizes in the 



right-hand panel of Figure 4. The binary nature of the classification is most likely 

responsible for overall higher probabilities as compared to the other two routes. This fact 

may make the classifications look artificially confident. Nevertheless, the results seem to 

agree with those from the other two methods.

Models in Conjunction

Because none of the models presently is perfect (indeed, there is never one right

answer when dealing with classification statistical analyses) it is often useful to look at 

results in concert. Considering all of the data and models in Figure 4, there exists

agreement among all three algorithms in assignment of the unknown crude samples 

despite being all black box approaches. Results are summarized as follows:

1) Test Sample One is clearly assigned to LVVV; NN and LR have almost 

negligible probabilities of being otherwise save for minor assignment to VLVV or 

VHVV.  

2) Test Sample Two seems to be either $VVS or $VSS with LR favoring $VVS for 

all reduced data sets and $VSS for the unabridged data.

3) Test Sample Three is either VHVV or VLVV according to SVM and NN; LR 

favors VLVV over others.

4) In general there is more ambiguity in assignment for sample datasets with more 

variables, but even more parsimonious data sets present issues with classification. 

Without less black box approaches, identifying the reasons and quantifying the 

resultant effects is challenging.



5) Consulting the chemists that performed the blind syntheses, two of the three 

routes were assigned correctly. 

Table 3. Summary table of predicted and actual routes for unknown 3MF crude samples.
Unknown Sample ID Predicted Actual

Test Sample One LVVV LVVV
Test Sample Two $VVS $VSS

Test Sample Three VLVV VLVV

Chemical Context for Classifications

Test Sample One

Classification of Test Sample One appears to be the least ambiguous; clearly all 

algorithms favor assignment of LVVV to this blind sample. This route is quite unlike the 

others in that a) methylation of the piperidine ring was performed as part of the synthesis 

and b) this step was performed first, before reaction with 2-phenylethyl bromide. Though 

it may be considered closely related to VLVV in terms of reagents, clearly the order of 

synthetic steps causes significant underlying differences as revealed by the large 

separation by LV scores seen in Figures 1 and 2. 

Test Sample Two

Overall, there appears to be the most confusion when classifying Test Sample 

Two. Indeed, this was the only one of the three test samples to be incorrectly identified 

on average. That is, the analyses seem to favor $VVS when the actual route used was 

$VSS. Recall that the differences between these two routes sits with the reductive 

amination step: $VVS relies on the Valdez method, which uses sodium 

triacetoxyborohydride at RT whereas $VSS relied on Siegfried’s use of sodium 

borohydride, methanol, and reduced temperatures. At the end of either synthesis, little 



conclusive evidence of their use (in the form of unique small molecules) will be found, 

particularly by LC. GC might be able to recover evidence of volatile methanol, but its 

presence will most likely be lost in the solvent delay. Solid Phase Micro-Extraction 

(SPME) methods coupled to GC-MS might then be a useful addition to the suite of 

analytical tools used.

Test Sample Three

Though this blind route was on average classified correctly as VLVV, there was 

some non-negligible probability that the route was VHVV, particularly for the SVM and 

NN analyses. Like the ambiguity with Test Sample Two, we believe there is a rational, 

chemical explanation for this fact. The difference between VLVV and VHVV is basically 

the reagents used to perform the methylation of 3-methylfentanyl’s central piperidine 

ring: either lithium diisopropylamine (LDA) or sodium hydride. There are several issues 

with expecting unique signatures associated with this method:

1) Neither sodium nor hydride ions will be detected; ICP-MS might be thought of as 

helpful but in general sodium is found to be an unreliable element to monitor due 

to its ubiquity in synthesis.

2) Lithium may be useful but for the current data sets, all samples seemed to have 

some nonnegligible amount with no apparent trends or correlations to specific 

routes.

3) Direct evidence of diisopropylamine (from LDA’s use) will be difficult as 

acylation in the final step converts this to N,N-diisopropylpropionamide, which is 

already a signature associated with using DIPEA as the base during acylation for 



the Valdez step.  Both VLVV and VHVV use this base, negating this amide 

compound a unique signature for the LDA route, VLVV. 

Ultimately, however, the data analyses on average predict correctly that VLVV was the 

method used to synthesize Test Sample Three.

ICP-MS 

Both semi-quantitative and quantitative ICP-MS results were used to assess any 

added value to the classification models. Semi-quantitative data was subjected to feature 

selection algorithms in an attempt to first find elements that were of statistical importance 

to describing overall variance. From the training data those elements were determined to 

be Co, Cu, Zn, Sn, and Sb. Samples were then rerun for quantitation purposes. Those data 

were then considered by statistical analysis as part of a “quantitative” LC+GC+ICP data 

set.

Quantitative data from the five elements selected from statistical analysis of 

semiquant data was incorporated into the unabridged LC+GC data set. Classification 

results using these data are given in Figure 5 in bluef. In general, even the quantitative 

data only adds to the ultimate misclassification of the unknown samples. Overall, the use 

of elemental data seems to only confound the statistical classification of new data relative 

to the training set. This is most likely due to a combination of factors, the testing of 

which was outside the scope of this work. Complete sample digestion would seem to 

homogenize the samples, making them more representative of the entire synthesis process 

                                               
f Though not very instructive, analysis of the full GC+LC data set including semiquant
ICP-MS data is also given for completion in green. The conclusion that ICP data only 
degrades model accuracy still applies.



(reagent trace metals, for example). However, these elemental profiles are most likely 

extremely dependent on synthetic chemist, particular reagent lots, glassware used, etc. 

and may only appear reproducible under highly controlled conditions like those used to 

generate the training sample set. Further research into these ideas is recommended.

Figure 5. Comparison of NN classification analyses for LC+GC data (red), LC+GC with 
full semiquant ICP data (green), and LC+GC with quantitative ICP data from Co, Cu, Zn, 
Sn, and Sb (blue). Grey dashed lines represent p = 0.25, 0.50, and 0.75 for classification.

Conclusions

A variety of machine learning techniques were used to identify methods of 

synthesis of unknown crude 3-methylfentanyl samples based on LC-, GC, and ICP-MS 

analytical data. PLS scores showed that replicates of synthesis training data were similar 

and that samples of different routes were easily separable. More importantly, PLS was 

used to generate two reduced data sets in an attempt to address overfitting associated with 

the “curse of dimensionality.” Neural networks, support vector machines, and logistic 

regression all predicted similar routes for the three unknown samples with varying levels 

$VVV $VVS $VSS VLVV VHVV LVVV

R
o

u
te

O
n

e
R

o
u

te
T

w
o

R
o

u
te

T
h

re
e



of apparent confidence. Model results were taken in concert due to the black box nature 

of the classification algorithms. Model predictions were correct for the most part, with a 

clear chemical rationale present for samples that were not classified with high certainty.

ICP was shown to only confuse classification, and it was posited that this issue was due 

to high variability in elemental composition with respect to chemist, equipment, and 

synthetic conditions. Further investigation into the ultimately utility of ICP as a CAS tool 

is recommended. 
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Appendix A. Comprehensive signature list of LC-QTOF data. “Source” refers the to 
route for which a particular compound was originally detected.

ID RT (min) Exact Mass Formula Source ID RT (min) Exact Mass Formula Source
1 1.7 80.0478 C5H6N $VSS 72 13 290.2688 C16H36NO3 $VVV

2 2 152.0702 C8H10NO2 $VSS 73 13.1 451.2955 VLVV
3 2.1 116.1432 C7H18N VHVV 74 13.1 453.2887 C31H37N2O $VVV

4 2.2 108.0804 C7H10N $VSS 75 13.2 230.2482 C14H32NO VHVV
5 2.3 130.1584 C8H20N $VVV 76 13.2 274.2742 C16H36NO2 $VSS

6 2.3 315.2432 C20H31N2O $VVV 77 13.2 348.1863 ? VHVV
7 2.3 333.2539 C20H33N2O2 $VVV 78 13.2 455.3031 C29H40N2NaO $VVV
8 2.3 373.3042 C20H41N2O4 VLVV 79 13.3 330.222 C24H28N VLVV

9 5.4 113.0598 C6H9O2 $VVV 80 13.4 226.179 C13H24NO2 $VSS
10 5.5 222.1497 C13H20NO2 VLVV 81 13.4 228.1594 C12H22NO3 $VVV

11 6.1 206.1539 C13H20NO LVVV 82 13.4 247.1805 C15H23N2O LVVV
12 6.4 252.1586 C14H22NO3 $VVV 83 13.4 415.2961 C25H39N2O3 VLVV
13 8.7 218.1533 C14H20NO $VVV 84 13.5 216.1385 C14H18NO $VVV

14 8.7 236.1651 C14H22NO2 $VVV 85 13.5 266.1725 C15H24NO3 VHVV
15 9.4 220.1702 C14H22NO LVVV 86 13.6 318.3007 C18H40NO3 LVVV

16 10.1 220.1702 C14H22NO LVVV 87 13.6 440.273 C29H34N3O VLVV
17 10.1 264.1965 C16H26NO2 VLVV 88 13.6 493.323 C34H41N2O LVVV
18 10.4 198.1295 C14H16N $VVV 89 13.7 303.2074 C18H27N2O2 $VVV

19 10.5 250.1803 C15H24NO2 LVVV 90 13.7 304.1586 ? $VSS
20 10.5 264.1965 C16H26NO2 VLVV 91 13.8 158.1538 C9H20NO $VVV

21 10.5 290.1786 C17H24NO3 $VVV 92 13.9 213.1463 ? VHVV
22 10.6 287.1383 C16H19N2O3 $VSS 93 13.9 288.2528 C16H34NO3 $VSS
23 10.6 407.27 C27H37N2O2 LVVV 94 13.9 507.3396 C35H43N2O LVVV

24 10.6 434.3192 C28H40N3O $VVV 95 14 136.0747 C8H10NO VLVV
25 10.7 232.1703 C15H22NO LVVV 96 14 178.1237 C11H16NO LVVV

26 10.7 244.1696 C16H22NO LVVV 97 14.1 113.0591 C6H9O2 VHVV
27 10.7 389.2595 C26H33N2O LVVV 98 14.1 191.0685 C9H12NaO3 VHVV

28 10.8 448.3349 C29H42N3O $VVV 99 14.1 232.1695 C15H22NO VLVV
29 10.9 232.1703 C15H22NO LVVV 100 14.1 272.1622 C15H23NNaO2 VLVV
30 10.9 403.2747 C27H35N2O LVVV 101 14.2 303.1712 C17H23N2O3 $VVV

31 11.1 275.2123 C17H27N2O $VVV 102 14.2 309.1959 C20H25N2O VLVV
32 11.2 308.1853 C17H26NO4 $VVV 103 14.3 274.1351 C18H16N3 $VSS

33 11.2 341.222 C21H29N2O2 LVVV 104 14.3 293.1102 ? $VSS
34 11.3 276.1608 C16H22NO3 VLVV 105 14.3 398.3666 C24H48NO3 $VSS
35 11.3 403.2747 C27H35N2O LVVV 106 14.5 236.1628 C12H23NNaO2 VHVV

36 11.4 244.1696 C16H22NO LVVV 107 14.8 150.0912 C9H12NO $VVV
37 11.4 246.1847 C16H24NO LVVV 108 14.8 169.0858 C9H13O3 VHVV

38 11.4 417.2903 C28H37N2O LVVV 109 14.8 206.1176 C12H16NO2 $VVV
39 11.5 214.1201 C14H16NO $VVV 110 14.8 228.0993 C12H15NNaO2 $VVV
40 11.5 262.1795 C16H24NO2 $VVV 111 15 274.1794 C17H24NO2 $VVV

41 11.6 355.2382 C22H31N2O2 LVVV 112 15 296.162 C17H23NNaO2 $VVV
42 11.7 136.0751 C8H10NO LVVV 113 15 332.1883 C20H22N5 VLVV

43 11.7 276.1961 C17H26NO2 $VVV 114 15.4 169.0858 C9H13O3 VHVV
44 11.8 290.1786 C17H24NO3 VLVV 115 15.4 247.0956 ? VHVV
45 11.8 323.2124 C21H27N2O VLVV 116 15.4 312.197 C20H26NO2 $VVV

46 11.9 218.212 C12H28NO2 VHVV 117 15.5 306.2433 C19H32NO2 $VVV
47 12 234.2069 C12H28NO3 VHVV 118 15.5 413.2229 C27H29N2O2 VLVV

48 12 281.2015 C19H25N2 LVVV 119 15.6 325.1916 C20H25N2O2 LVVV
49 12 337.2272 C22H29N2O $VVV 120 15.7 379.2039 C26H28NaO VLVV

50 12.1 292.1907 C17H26NO3 $VSS 121 15.7 443.2721 ? $VVV
51 12.2 351.2436 C23H31N2O $VVV 122 15.8 393.2529 C25H33N2O2 $VVV
52 12.3 332.2222 C20H30NO3 $VSS 123 15.9 254.155 C17H20NO $VVV

53 12.3 345.1974 C23H25N2O $VVV 124 15.9 381.2176 C23H29N2O3 $VVV
54 12.4 185.1134 C8H18NaO3 VHVV 125 16.1 282.1859 C19H24NO $VVV

55 12.5 295.2171 C20H27N2 LVVV 126 16.1 304.1685 C21H22NO $VSS
56 12.5 349.2279 C23H29N2O VHVV 127 16.1 348.1577 ? $VSS
57 12.5 367.236 C23H31N2O2 $VSS 128 16.2 354.2883 C18H36N5O2 VLVV

58 12.5 407.2695 C26H35N2O2 $VSS 129 16.3 200.202 C12H26NO $VSS
59 12.5 453.2753 VLVV 130 16.3 393.2165 C24H29N2O3 $VVV

60 12.6 246.2429 C14H32NO2 VHVV 131 16.4 289.1443 C17H21O4 VLVV
61 12.6 262.237 C14H32NO3 $VSS 132 16.5 241.1479 ? $VSS
62 12.6 365.2232 C23H29N2O2 $VVV 133 16.5 246.1476 C13H32NNaO3 $VSS

63 12.6 492.3235 C30H42N3O3 $VVV 134 16.5 395.2341 C24H31N2O3 $VVV
64 12.7 94.0638 C6H8N LVVV 135 16.6 235.1449 C13H19N2O2 LVVV

65 12.7 136.0751 C8H10NO $VSS 136 16.7 405.2554 C26H33N2O2 $VVV
66 12.7 150.0912 C9H12NO $VVV 137 17 339.2074 C21H227N2O2 LVVV
67 12.7 202.2177 C12H28NO VHVV 138 17.3 339.2074 C21H227N2O2 LVVV

68 12.7 232.0937 C13H14NO3 $VSS 139 18 281.1739 ? $VSS
69 12.8 144.1371 C8H18NO $VVV 140 18.1 353.2224 C22H29N2O2 LVVV-3

70 12.9 172.0731 C9H11NNaO VHVV 141 20.4 287.2227 C17H27N4 LVVV
71 13 209.0793 ??? VHVV



Appendix B. Comprehensive GC signature list with chemical names given for library 
match factors (reverse, forward, or both) greater than 850. If the name is in italics, the 
match favor was between 800 and 850.

ID RT (min) Exact Mass Chemical Name

A 3.8 79.0414 pyridine
B 5.17 72.0805 diisopropylethylamine

C 6.92 104.0614 styrene
D 7.62 57.0332 propanoic acid, anhydride

E 8.91 93.0559 aniline
F 10.32 91.0536 Benzeneacetaldehyde

G 10.7 78.0468 benzene
H 11.68 91.0537 2-chloroethyl benzene

I 11.91 72.0802 Acetamide, N,N-dipropyl-
J 12.28 86.096 N,N-bis(1-methylethyl)-propanamide

K 13.31 91.0539 2-bromoethyl benzene
L 16.08 104.0615 Propanoic acid, 2-phenylethyl ester

M 16.5 93.0568 Acetamide, N-phenyl
N 17.2 106.0648 Benzenamine, N-ethyl-

O 17.77 93.0569 Propanamide, N-phenyl
P 19.39 93.0568 Dipropionylaniline

Q 22.43 126.0907 4-Piperidone, 3-methyl-1-phenethyl
R 22.49 140.1065 Piperidin-4-one, 2,3-dimethyl-1-phenethyl-

S 23 140.1063 Piperidin-4-one, 2,3-dimethyl-1-phenethyl-
T 25.08 170.1166 1-phenethyl-4-propionyloxypiperidine

U 25.43 184.1326
1-Aminocyclopentanecarboxylic acid, N-

isobutoxycarbonyl-, isohexyl ester

V 26.36 104.0613 Butylphosphonic acid, di(2-phenylethyl) ester
W 26.59 104.0616 pimelic acid, di(phenethyl) ester

X 33.27 245.1641 Fentanyl
Y 33.28 259.1783 3-Methylfentanyl

Z 33.65 259.1799 3-Methylfentanyl



Appendix C. PLSDA-derived CAS broken down by synthesis route. GC CAS have names only. Blanks indicate a reasonable formula 
could not be derived from the LC-QTOF exact mass data.

$VVV VLVV

ID R.T. (min) Exact Mass Formula/Name ID R.T. (min) Exact Mass Formula/Name

7 2.3 333.2539 C20H33N2O2 20 10.5 264.1965 C16H26NO2
116 15.4 312.197 C20H26NO2 34 11.3 276.1608 C16H22NO3

130 16.3 393.2165 C24H29N2O3 87 13.6 440.273 C29H34N3O
136 16.7 405.2554 C26H33N2O2 99 14.1 232.1695 C15H22NO

G 10.7 78.0468 benzene 113 15 332.1883 C20H22N5
118 15.5 413.2229 C27H29N2O2

$VVS 120 15.7 379.2039 C26H28NaO

ID R.T. (min) Exact Mass Formula/Name

16 10.1 220.1702 C14H22NO LVVV
I 11.91 72.0802 Acetamide, N,N-dipropyl- ID R.T. (min) Exact Mass Formula/Name

J 12.28 86.096 N,N-bis(1-methylethyl)-propanamide 19 10.5 250.1803 C15H24NO2
23 10.6 407.27 C27H37N2O2

$VSS 25 10.7 232.1703 C15H22NO
ID R.T. (min) Exact Mass Formula/Name 26 10.7 244.1696 C16H22NO

2 2 152.0702 C8H10NO2 27 10.7 389.2595 C26H33N2O

4 2.2 108.0804 C7H10N 30 10.9 403.2747 C27H35N2O
22 10.6 287.1383 C16H19N2O3 35 11.3 403.2747 C27H35N2O
42 11.7 136.0751 C8H10NO 36 11.4 244.1696 C16H22NO

65 12.7 136.0751 C8H10NO 37 11.4 246.1847 C16H24NO
68 12.7 232.0937 C13H14NO3 38 11.4 417.2903 C28H37N2O

124 15.9 381.2176 C23H29N2O3 77 13.2 348.1863
L 16.08 104.0615 Propanoic acid, 2-phenylethyl ester 137 17 339.2074 C21H227N2O2

R 22.49 140.1065 2,3-dimethyl-1-phenethylpiperidin-4-one

VHVV
ID R.T. (min) Exact Mass Formula/Name

9 5.4 113.0598 C6H9O2
71 13 209.0793

98 14.1 191.0685 C9H12NaO3
108 14.8 169.0858 C9H13O3
114 15.4 169.0858 C9H13O3

115 15.4 247.0956
123 15.9 254.155 C17H20NO

125 16.1 282.1859 C19H24NO
126 16.1 304.1685 C21H22NO

F 10.32 91.0536 Benzeneacetaldehyde

U 25.43 184.1326
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