

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-TR-710201

Radiochronometry in the CMX-4 Exercise-Draft

M. J. Kristo, R. Williams, A. M. Gaffney, T.
Kayzar-Boggs, K. C. Schorzman

November 18, 2016

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

The Application of Radiochronometry in the Nuclear Forensics International Technical Working Group's CMX-4 Exercise

4 Names of the authors:

5 Michael J. Kristo^{*,1}, Ross Williams¹, Amy M. Gaffney¹, Theresa M. Kayzar-Boggs¹,
6 Kerri C. Schorzman¹, Petra Lagerkvist², Anna Vesterlund^{2,3}, Henrik Ramebäck^{2,3},
7 Aubrey N Nelwamondo⁴, Deon Kotze⁴, Kyuseok Song⁵, Sang Ho Lim⁵, Sun-Ho Han⁵,
8 Chi-Gyu Lee⁵, Ayako Okubo⁶, Didier Maloubier⁷, Danièle Cardona⁷, Pavel Samuleev⁸,
9 Ike Dimayuga⁹, Zsolt Varga¹⁰, Maria Wallenius¹⁰, Klaus Mayer¹⁰, Elaine Loi¹¹, Elizabeth
10 Keegan¹¹, Jennifer Harrison¹¹, Sangeeth Thiruvoth¹¹, Floyd E. Stanley¹², Khal J.
11 Spencer¹², Lav Tandon¹²

13 Title: The Application of Radiochronometry in the Nuclear Forensics International
14 Technical Working Group's CMX-4 Exercise

16 Affiliation(s) and address(es) of the author(s):

17 ¹ Lawrence Livermore National Laboratory, P.O. Box 808, L-186,
18 Livermore, CA 94551, USA

21 ³ Chalmers University of Technology, Department of Chemistry and
22 Chemical Engineering, SE-41296 Göteborg, Sweden

23 ⁴South Africa Nuclear Energy Corporation (Necsa), Nuclear Forensics
24 Laboratory, P.O. Box 582, Pretoria 0001, Gauteng South Africa

5 Nuclear Chemistry Research Division, Korea Atomic Energy Research
Institute, 111, Daedeok-daero 989 Beon-gil, Daejeon, 34057, Korea

27 ⁶Japan Atomic Energy Agency, Integrated support center for Nuclear
28 Nonproliferation and Nuclear Security,

29 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki, 3191195, Japan
30 ⁷Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre

31 de Valduc, 21120, Is-sur-Tille, France

⁸Royal Military College of Canada, Kingston, Ontario, Canada

33 ⁹Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
34 ¹⁰European Commission, Joint Research Centre, Directorate for Nuclear

35 Safety and Security, P.O.Box 2340, 76125 Karlsruhe, Germany
36 ¹¹ Australian Nuclear Science and Technology Organisation, Locked Bag

37 2001, Kirrawee DC, NSW 2232, Australia

38 ¹² Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM
39 87545, USA
40

41 E-mail address of the corresponding author: kristo2@llnl.gov

42

43

Radiochronometry in CMX-4

44 Michael J. Kristo*,¹ Ross Williams¹, Amy M. Gaffney¹, Theresa M. Kayzar-Boggs¹,
45 Kerri C. Schorzman¹, Petra Lagerkvist², Anna Vesterlund^{2, 3}, Henrik Ramebäck^{2, 3},
46 Aubrey N Nelwamondo⁴, Deon Kotze⁴, Kyuseok Song⁵, Sang Ho Lim⁵, Sun-Ho Han⁵,
47 Chi-Gyu Lee⁵, Ayako Okubo⁶, Didier Maloubier⁷, Danièle Cardona⁷, Pavel Samuleev⁸,
48 Ike Dimayuga⁹, Zsolt Varga¹⁰, Maria Wallenius¹⁰, Klaus Mayer¹⁰, Elaine Loi¹¹, Elizabeth
49 Keegan¹¹, Jennifer Harrison¹¹, Sangeeth Thiruvoth¹¹, Floyd E. Stanley¹², Khal J.
50 Spencer¹², Lav Tandon¹²

51 ¹ Lawrence Livermore National Laboratory, P.O. Box 808, L-186,
52 Livermore, CA 94551, USA

53 ²Swedish Defence Research Agency, FOI, CBRN Defence and Security,
54 SE-90182 Umeå, Sweden

55 ³ Chalmers University of Technology, Department of Chemistry and
56 Chemical Engineering, SE-41296 Göteborg, Sweden

57 ⁴South Africa Nuclear Energy Corporation (Necsa), Nuclear Forensics
58 Laboratory, P.O. Box 582, Pretoria 0001, Gauteng South Africa

59 ⁵Nuclear Chemistry Research Division, Korea Atomic Energy Research
60 Institute, 111, Daedeok-daero 989 Beon-gil, Daejeon, 34057, Korea

61 ⁶Japan Atomic Energy Agency, Integrated support center for Nuclear
62 Nonproliferation and Nuclear Security, 2-4 Shirakata-Shirane, Tokai,
63 Naka, Ibaraki, 3191195, Japan

64 ⁷Commissariat à l'Energie Atomique et aux Energies Alternatives, Centre
65 de Valduc, 21120, Is-sur-Tille, France

66 ⁸Royal Military College of Canada, Kingston, Ontario, Canada

67 ⁹Canadian Nuclear Laboratories, Chalk River, Ontario, Canada

68 ¹⁰European Commission, Joint Research Centre, Directorate for Nuclear
69 Safety and Security, P.O.Box 2340, 76125 Karlsruhe, Germany

70 ¹¹Australian Nuclear Science and Technology Organisation, Locked Bag
71 2001, Kirrawee DC, NSW 2232, Australia

72 ¹²Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM
73 87545, USA

74

75 **Abstract**

76 In a recent international exercise, 10 international nuclear forensics laboratories
77 successfully performed radiochronometry on 3 low enriched uranium oxide samples,
78 providing 12 analytical results using 3 different parent-daughter pairs serving as
79 independent chronometers. The vast majority of the results were consistent with one
80 another and consistent with the known processing history of the materials. In general, for
81 these particular samples, mass spectrometry gave more accurate and more precise
82 analytical results than decay counting measurements. In addition, the concordance of the
83 ^{235}U - ^{231}Pa and ^{234}U - ^{230}Th chronometers confirmed the validity of the age dating
84 assumption, increasing our confidence in the resulting conclusions.

85 **Keywords**

86 nuclear forensics, radiochronometry, uranium oxide, inductively coupled plasma mass
87 spectrometry, thermal ionization mass spectrometry, gamma spectrometry, alpha
88 spectrometry

89 **Introduction**

90 Nuclear Forensics

91 Over the past decade, nuclear forensics has developed into an integral part of a robust
92 nuclear security program. It has been specifically identified in the Communiqués, Plans,
93 and Joint Statements of the Nuclear Security Summits in 2010, 2012, 2014, and 2016 as
94 an important focus area for research. The fundamental tenet underlying nuclear forensics
95 is that identifying the origin of nuclear materials found outside of regulatory control can
96 help identify gaps and weaknesses in the physical security and/or safeguards of a
97 particular country or facility, which can then be strengthened in response. In addition, any
98 country or organization that considers thwarting international law or practice by
99 trafficking in such nuclear materials might be deterred by the knowledge that their

100 complicity in such trafficking is likely to be identified [1]. The currently accepted
101 definition of nuclear forensics is “the examination of nuclear or other radioactive
102 materials or of evidence contaminated with radionuclides in the context of international
103 or national law or nuclear security. The analysis of nuclear or other radioactive material
104 seeks to identify what the materials are, how, when, and where the materials were made,
105 and what were their intended uses [2]. ”

106 Radiochronometry

107 At the same time that the policy implications of nuclear forensics have become
108 increasingly mature, laboratories around the world have continued to develop the
109 underlying science, as well as the applications of that science to actual cases. The
110 development of radiochronometry, or “age dating”, and its application to nuclear
111 materials is one area of intense research [3-9]. Radiometric model ages are determined
112 from measurements of parent and progeny isotopes (typically daughter, but also
113 granddaughter) that accumulate in a material due to decay of the radioactive parent
114 isotope. U- and Pu-series disequilibrium dating are most often used for nuclear forensic
115 investigations. Calculated model ages are based on two fundamental assumptions: 1) the
116 material was completely purified from decay products at the time it was produced, and 2)
117 since the time that it was produced, the material has remained a closed system with
118 neither gain nor loss of parent or progeny. The age of nuclear material is an important
119 forensic signature because it can be used to constrain the time of purification or
120 production (a predictive signature) and establish or eliminate potential genetic links
121 among different samples of nuclear materials (a comparative signature). Ideally, the age
122 inferred from the laboratory analysis of a sample (referred to as a “model age”) represents
123 the actual production, processing, or purification age of the nuclear material of interest
124 (referred to as a “sample age”). In practice, model ages may differ from sample ages
125 because the sample production history is not necessarily consistent with the model
126 assumptions on which the chronometry determinations are based. Understanding the
127 physical and chemical causes of these inconsistencies and developing experimental and
128 theoretical approaches to address them is an active focus area of nuclear forensics

129 research. Increasing emphasis is being placed on using multiple chronometers to better
130 understand the chemical or physical processes that might “reset” certain chronometers.

131 The Nuclear Forensics International Technical Working Group

132 The Nuclear Forensics International Technical Working Group (ITWG) is an
133 organization of technical experts, law enforcement officials, policy makers, and
134 diplomats from interested governments who cooperate to advance the field of nuclear
135 forensics [10-11]. Since the first organizational meeting of the ITWG held at Lawrence
136 Livermore National Laboratory (LLNL) in 1995, the ITWG has held twenty additional
137 meetings, with participation from representatives of over 30 different countries and
138 international agencies. Conducting inter-laboratory practical exercises has been one of
139 the organization’s key activities from the beginning. In 1999, ITWG conducted its first
140 exercise involving the analysis of plutonium oxide powder from the European civil
141 nuclear cycle. Its second exercise was held in 2003 and involved the analysis of highly
142 enriched uranium (HEU) oxide powder [12-13]. The third ITWG round-robin exercise
143 (RR-3) was completed in 2010 and was the first paired-comparison exercise conducted
144 by the ITWG [14-15].

145 Collaborative Material Exercise 4 (CMX-4), the ITWG exercise featured in this paper,
146 was designed to test the resolving power of isotope measurement techniques using low-
147 enriched uranium (LEU) samples of very similar isotopic abundances. This was the first
148 exercise where participating laboratories were asked to analyze LEU materials. This
149 selection of material allowed the exercise participants to understand the viability of rapid,
150 non-destructive assay (NDA) techniques to estimate enrichment levels of LEU materials.
151 The use of bulk isotopic analyses, often considered the most powerful potential signature
152 for the purpose of group inclusion/exclusion comparisons for the nuclear forensics
153 community, was also highlighted during CMX-4. However, based upon the outcomes of
154 the last ITWG materials exercise (Round Robin 3), information provided by material
155 characteristics other than isotopic abundances were identified to be of growing interest to
156 the nuclear forensics community. These characteristics include, but are not limited to,
157 trace elemental content, solid phase composition, and morphological and microstructural

158 character of materials. CMX-4 was designed to exercise analytical techniques that probe
159 these characteristics. In keeping with ITWG practice, the identity of individual
160 laboratories is obscured through the use of designators or code names. For this exercise,
161 the laboratories were given the name of a famous artist.

162 **Exercise Scenario**

163 The fictional scenario provided as context for the nuclear forensic analyses was as
164 follows:

165 On a tip from a confidential informant, a passenger scheduled to fly out of
166 Dallas International Airport to Frankfurt, Germany, has been stopped by
167 the authorities at the airport for alleged “simple possession” of a
168 radioactive substance without proper documentation. “Simple possession”
169 means that possession alone is sufficient to demonstrate that a violation
170 occurred. These laws also provide for exemptions for legitimate uses, to
171 include research and industrial use, but require that a permit be issued for
172 such uses. The authorities seized a small, flexible plastic container
173 (commonly referred to as a “baggie”) containing a black, powdery
174 radioactive substance alleged by the confidential informant to contain
175 uranium. In a separate search of the subject passenger’s residence, Texas
176 authorities located and took into evidence a second sample consisting of a
177 dense radioactive object, suspected to be a nuclear fuel pellet that would
178 be used for nuclear power generation. Similar uranium pellets have
179 previously been seized by authorities two years prior at an abandoned
180 warehouse outside of Frankfurt, Germany.

181 **Experimental**

182 **Sample Materials**

183 Two source materials (A and B) were used to create three CMX-4 exercise samples (ES-
184 1, ES-2, and ES-3). These source materials were provided by the Australian Nuclear

185 Science and Technology Organisation (ANSTO) and consisted of high fired, LEU
186 uranium oxide (UO_2) pellets of slightly different ^{235}U enrichments. These pellets were
187 intended to be used as targets in the High Flux Australian Reactor (HIFAR) in the
188 production of medical radioisotopes. They were originally produced by AREVA (FBFC,
189 Framatome ANP) for ANSTO but were not used prior to retiring the HIFAR in 2007.

190 The pellets from source A were produced as part of a single batch in September 25, 2002,
191 using UF_6 enriched on February 12, 2002. The pellets from source B were produced as
192 part of a single batch in 2004 (the exact date is unknown), with the enrichment obviously
193 having taken place before. Source A and B consist of 90 pellets each. The two source
194 materials differed in enrichment of the isotope ^{235}U , ~ 2.19% and ~2.9%, respectively.

195 Three exercise samples were generated from Sources A and B and distributed to each
196 laboratory participating in CMX-4 through a hub laboratory, the U.S. DOE Y-12
197 National Security Complex, which was capable of entering and removing source material
198 into and out of International Atomic Energy Agency (IAEA) safeguards. ANSTO, with
199 the help of a staff person from DOE's Pacific Northwest National Laboratory (PNNL),
200 prepared, characterized, and packaged samples prior to shipping them to Y-12. The
201 preparation of each of these samples is described below.

202 Preparation of ES-1: ES-1 was made up of Source B pellets that had been
203 crushed to a powder and partially converted with heat to a higher oxide
204 form. Specifically, a pellet from Source B material (taken from the same
205 batch used to generate ES-3) was milled in a large Wig-L-BugTM for 2
206 minutes. The powder from this process was then heated to 325 °C at a
207 ramp rate of 10 °C/minute. This temperature was held constant at 325 °C
208 for 90 minutes.

209 Preparation of ES-2: ES-2 consisted of a single, unadulterated, pellet
210 taken from a single batch within source material A. The surface of each
211 pellet was wiped clean prior to packaging for shipment.

212 Preparation of ES-3: ES-3 consisted of a single, unadulterated, uranium
213 pellet taken from a single batch within source material B. The surface of
214 each pellet was wiped clean prior to packaging for shipment.

215

216 Radiochronometers

217 **^{234}U - ^{230}Th Chronometer**

218 Because the half-life of ^{234}U is relatively short (2.45×10^5 years) compared to the other
219 naturally occurring uranium isotopes, ^{235}U and ^{238}U , the ^{234}U - ^{230}Th chronometer is one of
220 the most straightforward chronometers to measure and certainly the most widely applied
221 [3,5,6,8,16]. The chronometer becomes increasingly easy to measure as the ^{234}U
222 abundance, and hence the amount of its progeny, ^{230}Th , increases. Because the ^{234}U
223 abundance tends to increase with ^{235}U enrichment for most enrichment technologies, its
224 ease of application increases with increasing enrichment of the sample. Since the
225 samples for CMX-4 were LEU, measuring the ^{234}U - ^{230}Th chronometer should have been
226 relatively straightforward, certainly easier than in natural uranium samples, although not
227 as easy as with HEU samples.

228 The two most commonly applied techniques for quantifying the level of ^{234}U and ^{230}Th in
229 uranium samples are mass spectrometry and alpha spectrometry. Due to the relatively
230 long half-lives of ^{234}U and ^{230}Th , mass spectrometry, as an atom counting technique,
231 normally provides lower detection limits and greater precision than alpha spectrometry,
232 which is a decay counting technique. However, an alpha spectrometer is a relatively
233 inexpensive instrument that can be found in many laboratories that do not have the
234 necessary mass spectrometer. Note that both thermal ionization mass spectrometers
235 (TIMS) and inductively coupled plasma mass spectrometers (ICP-MS), which may be
236 equipped with either a single or multiple collector(s), can be used for age dating. The
237 utilization of these techniques and instruments for age dating in CMX-4 are given in
238 Table 1.

239

240 **Table 1.** List of Instruments Used for Age Dating in CMX-4

Technique/Instrument	Th Analysis	U Analysis
Alpha spectrometry	3	2
Multicollector ICP-MS	2	2
Sector field ICP-MS	3	2
Quadrupole ICP-MS	1	1
Multicollector TIMS	2	4

241 Regardless of technique, isotope dilution is typically used for quantification. With this
242 method, quantification is achieved by measuring the isotope of interest (e.g. ^{234}U) relative
243 to a spike or tracer isotope (e.g. ^{233}U). However, in CMX-4, 2 laboratories used unspiked
244 isotopic analysis in combination with other assay techniques, delayed neutron counting
245 (Cezanne) and external calibration using NIST SRM 4321C (Manet), to calculate the ^{234}U
246 concentration necessary for age dating. For those labs that used isotope dilution for U
247 quantification, 7 laboratories used ^{233}U spikes, one laboratory used a ^{232}U spike, and
248 another used the NBL U930 standard as ^{235}U spike. For Th quantification, 8 laboratories
249 used ^{229}Th , while the remaining 3 labs used ^{232}Th , as isotopic spikes for Th
250 quantification.

251 All 3 laboratories that performed alpha spectrometry used chemical separation of the Th
252 from the U, followed by fluoride microprecipitation to create plates for alpha counting.
253 Both TIMS and ICP-MS also typically require chemical separation of Th from the U
254 matrix prior to analysis. This is necessary to improve ionization efficiency (TIMS) and
255 reduce matrix effects, low-mass tailing effects, and memory effects that may result from
256 loading the instrument with high concentrations of U (ICP-MS). However, one of the
257 laboratories used a procedure published by Varga et al [22] which offers an offline
258 correction for the peak tailing effect and provides accurate Th results using ICP-MS.
259 Purification of a bulk U sample prior to U analysis by TIMS or ICP-MS may not be
260 necessary, depending on the purity of the sample. If the bulk sample is sufficiently pure,
261 then molecular isobaric interferences in the U mass range, for example, $^{232}\text{ThH}^+$, will be
262 insignificant. In addition, tailing to nearby masses and hydride formation usually occur
263 in the range of $10^{-5} - 10^{-6}$ [24], there will not be a need for correction due tailing or
264 hydride formation from ^{232}Th on $m/z=233$.

265 For this exercise, all laboratories separated and purified the Th fraction prior to analysis
266 by alpha spectrometry or mass spectrometry. However, only 3 laboratories purified the U
267 fraction (2 from the bulk solution; 1 from the U fraction after separation from Th prior to
268 analysis by alpha spectrometry). 7 laboratories used a TEVA column to separate the U
269 and Th; 3 laboratories performed a subsequent purification using another TEVA column.
270 3 laboratories used a multi-step purification starting with an anion exchange column.
271 Cezanne used an anion exchange column followed by a TRU-Spec column, and finished
272 with a cation exchange column. Gauguin used an anion exchange column, followed by a
273 TEVA column, and finished with another anion exchange column. Bondone used back-
274 to-back anion exchange columns, the first of 120 μm particle size and the second of 25
275 μm particle size. Monet used a separation procedure based upon a macroporous Lewatit
276 MP5080 ion exchange resin. All procedures used by the different participants for the
277 ^{234}U - ^{230}Th chronometer can be found in Table 2.

278

Participant	Analyte	Instrument	Purification prior to measurement	Separation	Spikes added	Reference if applicable
Rembrandt	^{230}Th	α spectrometry	Yes	TEVA® resin cartridge	^{229}Th	
	^{234}U	α spectrometry	Yes	Fe(OH)_2 precipitation; stacked TEVA®/TRU resin cartridges	^{232}U	
Cezanne	^{230}Th	α spectrometry	Yes	anion exchange resin column; TRU resin column	^{229}Th	
	^{234}U	α spectrometry	Yes	TRU resin column; cation exchange resin column	N/A	
Pollock	^{230}Th	α spectrometry	Yes	TEVA® resin cartridge	^{229}Th	
	^{234}U	MC-TIMS	No		NBS930 (^{235}U)	
Picasso	^{230}Th	SF-ICP-MS	Yes	TEVA® resin column	^{229}Th	16
	^{234}U	SF-ICP-MS	No		^{233}U	16
Vermeer	^{230}Th	SF-ICP-MS	Yes	TEVA® resin column (two times)	^{229}Th	16
	^{234}U	SF-ICP-MS	No		^{233}U	16
Bounarotti	^{230}Th	SF-ICP-MS	Yes	TEVA® resin column	^{232}Th	16
	^{234}U	MC-TIMS	No		^{233}U	16
Monet	^{230}Th	MC-TIMS	Yes	anion exchange resin column	^{229}Th	
	^{234}U	MC-TIMS	Yes	anion exchange resin column	^{233}U	
Gauguin	^{230}Th	MC-ICP-MS	Yes	anion exchange resin column; TEVA® resin column; anion exchange resin column	^{229}Th	6
	^{234}U	MC-ICP-MS	No		^{233}U	6
Caravaggio	^{230}Th	MC-ICPMS	Yes	TEVA® resin column	^{232}Th	
	^{234}U	MC-ICPMS	No		^{233}U	
Bondone	^{230}Th	MC-TIMS	Yes	anion exchange resin column (two times)	^{229}Th	
	^{234}U	MC-TIMS	No		^{233}U	
Manet	^{230}Th	Q-ICP-MS	Yes	TEVA® resin column	^{232}Th	
	^{234}U	Q-ICP-MS	No		N/A	

280

TEVA® and TRU resins are products of Eichrom® Technologies

282 **^{235}U - ^{231}Pa Chronometer**

283 Even though ^{235}U is much more abundant than ^{234}U in almost all uranium materials, the
284 much longer half-life of ^{235}U (7.04×10^8 years) and the absence of a long-lived spike
285 isotope for Pa has limited routine application of this chronometer until relatively recently.
286 Although radiometric techniques (gamma spectrometry, alpha spectrometry) have been
287 used to quantify ^{231}Pa for age dating in the past [17], the only participant in CMX-4 to
288 apply the ^{235}U - ^{231}Pa chronometer (Gauguin) used mass spectrometry, according to the
289 procedure developed by Eppich et al. [4]. The key feature of the method is the use of a
290 ^{233}Pa spike for quantifying ^{231}Pa . Due to the short half-life of ^{233}Pa (26.97 days), no
291 certified ^{233}Pa reference material exists; neither does a certified ^{231}Pa reference material
292 that may be used for a newly-prepared ^{233}Pa spike. Rather, the spike must be prepared
293 immediately prior to use and calibrated for ^{233}Pa concentration (atoms of ^{233}Pa g⁻¹),
294 typically using a geologic material as a secular equilibrium standard, for its working-
295 lifetime of approximately 3 – 4 months.

296 **^{234}U - ^{214}Bi Chronometer**

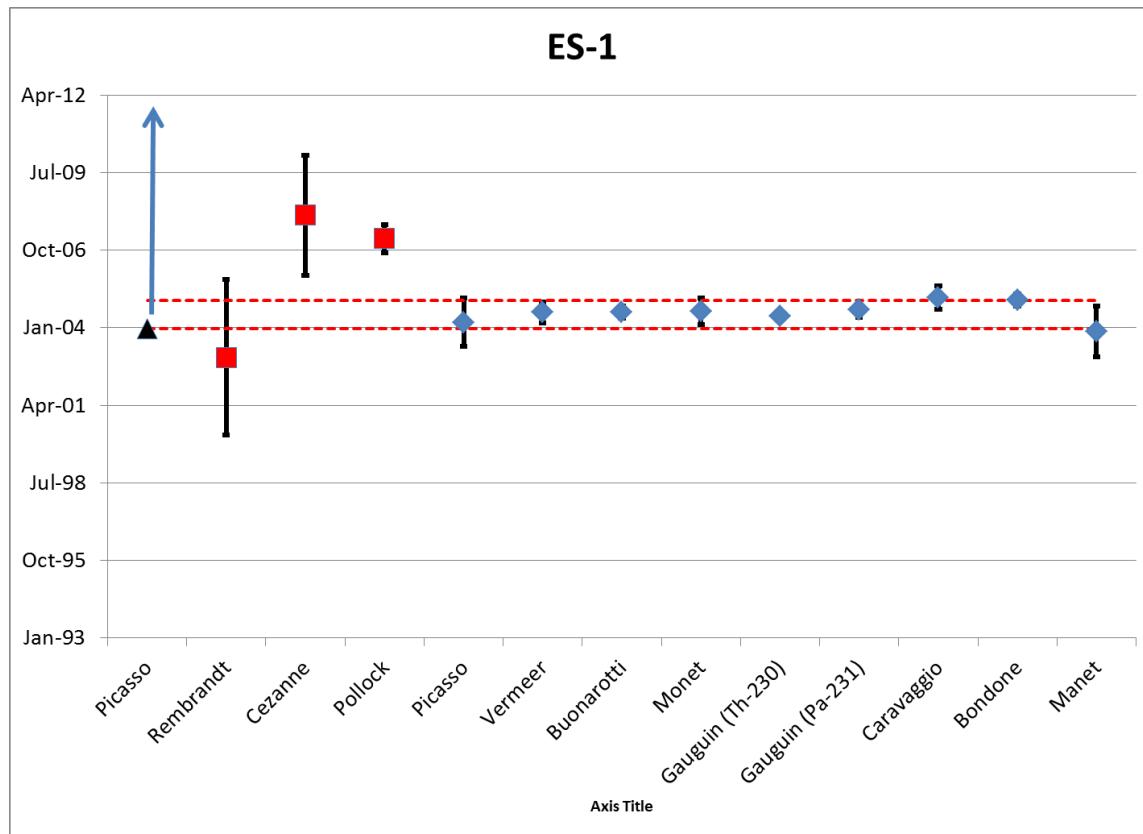
297 Age dating U samples using high resolution gamma spectrometry (HRGS) [18-22] has
298 the advantage of being non-destructive, hence no sample preparation is required.
299 Analogous to the ^{234}U - ^{230}Th chronometer the progenies of ^{234}U are used, however
300 nuclides detectable by gamma-spectrometry must be chosen. For practical reasons ^{214}Bi -
301 ^{234}U ratio is used based on the secular equilibrium between $^{214}\text{Bi} \leftrightarrow ^{226}\text{Ra}$. The method
302 does not require the use of reference materials of known ages. It is most suitable for
303 measuring U samples of higher enrichments and older ages (higher ^{214}Bi levels).

304 **Results and discussion**

305 The age dating results for CMX-4 are presented in Table 3 and Figure 1 (Sample ES-1),
306 Table 4 and Figure 2 (Sample ES-2), and Table 5 and Figure 3 (Sample ES-3). All
307 uncertainties are expanded combined standard uncertainties with k=2. For ES-1 and ES-
308 3, the material processing date is encompassed by a 1-year range (2004), delineated by

309 dashed red lines on the figures, during which the samples were reported to have been
310 manufactured. For ES-2, the material processing date is encompassed by a range
311 extending from the known enrichment date (February 12, 2002) to the known
312 manufacturing date (September 24, 2002), which is the pelletization process. We expect
313 the actual sample material processing date to be the date of conversion from enriched UF_6
314 to UO_2 , since neither Th nor Pa form volatile fluorides and would, therefore, be expected
315 to deposit out and remain in the cylinder during UF_6 release. The conversion date for
316 these samples is unknown, but must have occurred sometime between enrichment and
317 manufacturing of the fuel pellets. For the ^{234}U - ^{214}Bi chronometer, an upper limit of ≈ 11
318 years was estimated uniformly for the 3 samples from the ^{214}Bi activity corresponding to
319 the detection limit, because of the low enrichment and age of the samples.

320


321 **Table 3.** Age dating results for ES-1

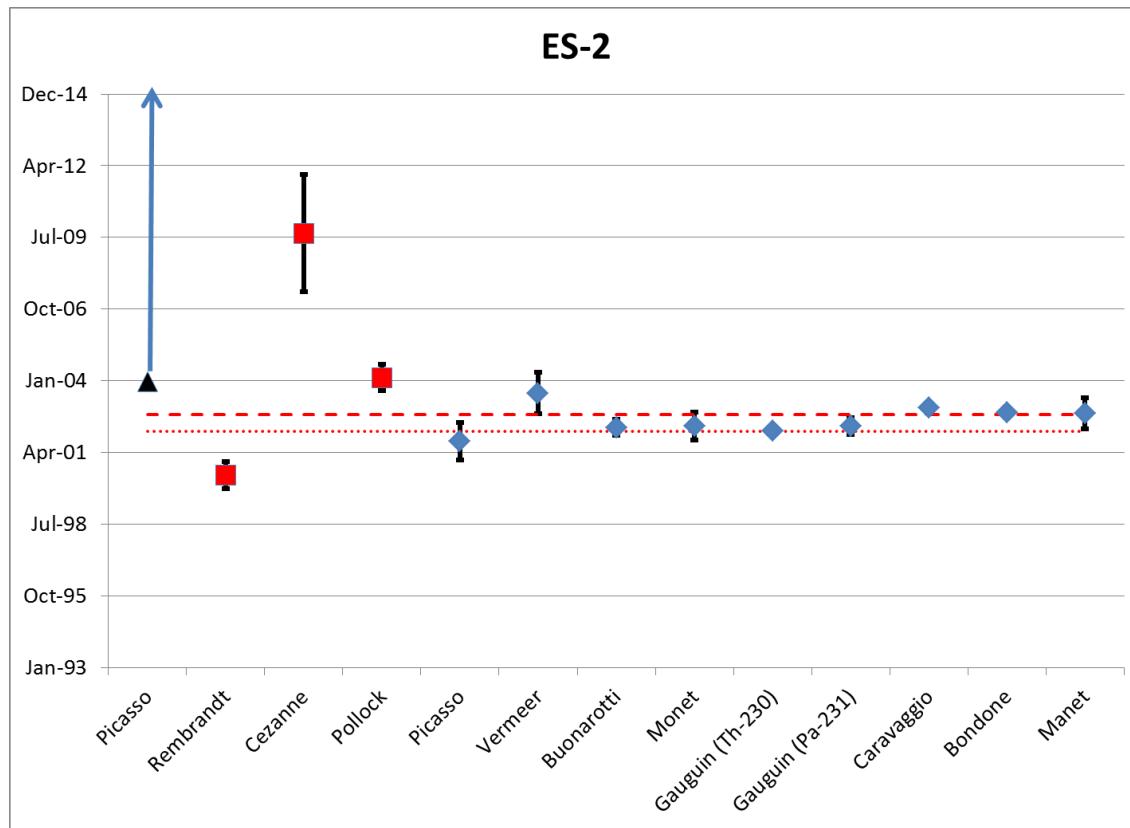
Designator	Technique	Ref Date	Model Age (years)	EU (years)	Model Date	EU (days)
Picasso	Gamma Spec		<11	N/A	Jan-04	N/A
Rembrandt	Alpha Spec	16-Dec-14	12.0	2.7	28-Dec-02	1000
Cezanne	Alpha Spec	Mar-15	7.3	2.1	Jan-08	780
Pollock	Alpha Spec (Th) MC-TIMS (U)	15-Oct-14	7.62	0.50	6-Mar-07	180
Picasso	SF-ICP-MS	25-Mar-15	10.90	0.86	24-Mar-04	310
Vermeer	SF-ICP-MS	6-Oct-14	10.19	0.37	30-Jul-04	140
Buonarotti	SF-ICP-MS (Th) MC-TIMS (U)	3-Nov-14	10.20	0.20	Aug-04	73
Monet	MC-TIMS	1-Nov-14	10.23	0.46	10-Aug-04	170
Gauguin (Th-230)	MC-ICP-MS	23-Oct-14	10.356	0.075	14-Jun-04	27
Gauguin (Pa-231)	MC-ICP-MS	23-Oct-14	10.14	0.25	30-Aug-04	92
Caravaggio	MC-ICP-MS	13-Nov-14	9.80	0.40	4-Feb-05	150
Bondone	MC-TIMS	2-Dec-14	9.90	0.21	9-Jan-05	78
Manet	MC-ICP-MS	25-Nov-14	11.00	0.90	25-Nov-03	330

322

323 EU = expanded uncertainty (k=2)

324

327 **Figure 1.** Age dating results for ES-1 compared against known sample processing
328 history. The dashed red lines (----) indicate the range of probable processing dates
329 according to the known history of the samples (see text). Results using gamma
330 spectrometry are indicated by black triangles (▲). Alpha spectrometry results are
331 indicated by red squares (■). Mass spectrometry results are indicated by blue diamonds
332 (◆).


333 **Table 4.** Age Dating Results for ES-2

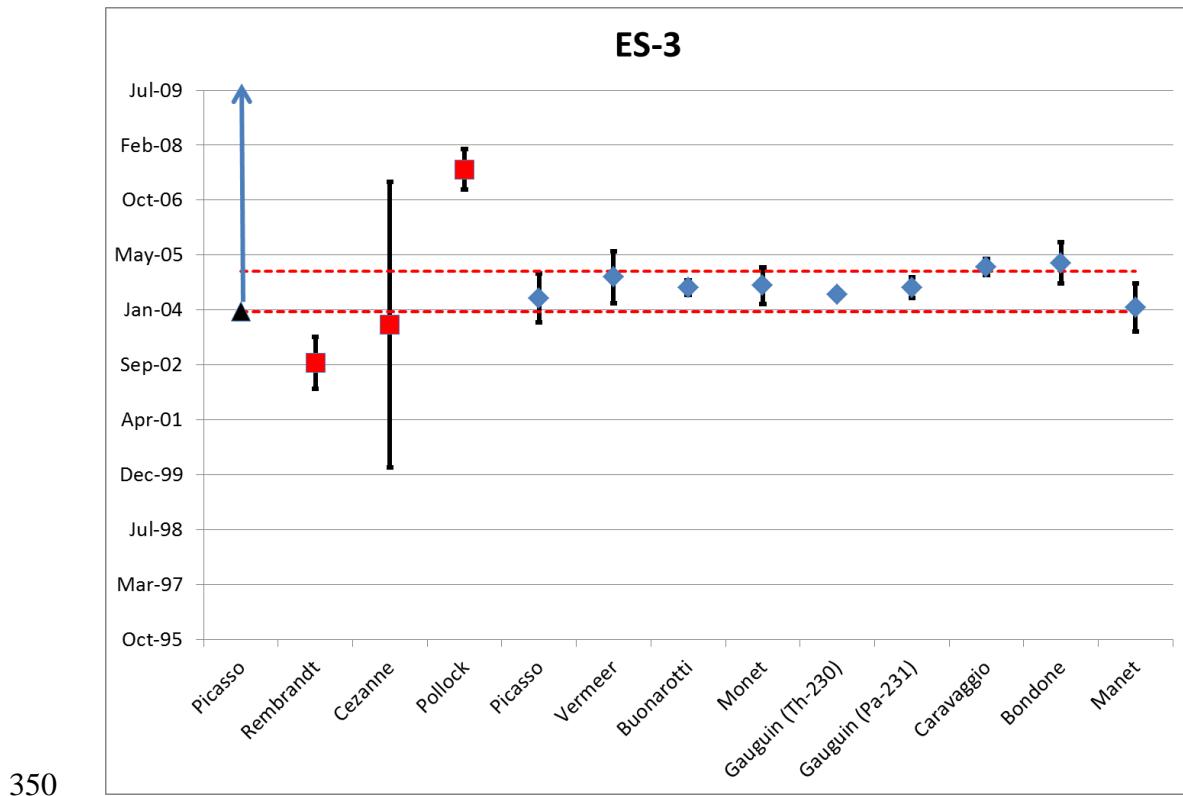
Designator	Technique	Ref Date	Model Age (years)	EU (years)	Model Date	EU (days)
Picasso	Gamma Spec		<11	N/A	Jan-04	N/A
Rembrandt	Alpha Spec	16-Dec-14	14.5	0.52	10-Jun-00	190
Cezanne	Alpha Spec	Mar-15	5.5	2.2	Sep-09	820
Pollock	Alpha Spec (Th) MC-TIMS (U)	15-Oct-14	10.65	0.50	24-Feb-04	180
Picasso	SF-ICP-MS	25-Mar-15	11.00	0.71	23-Sep-01	260
Vermeer	SF-ICP-MS	7-Oct-14	11.22	0.79	21-Jul-03	290
Buonarotti	SF-ICP-MS (Th) MC-TIMS (U)	3-Nov-14	12.51	0.30	Apr-02	110
Monet	MC-TIMS	1-Nov-14	12.53	0.53	23-Apr-02	190
Gauguin (Th-230)	MC-ICP-MS	23-Oct-14	12.677	0.092	17-Feb-02	34
Gauguin (Pa-231)	MC-ICP-MS	23-Oct-14	12.50	0.31	22-Apr-02	110
Caravaggio	MC-ICP-MS	13-Nov-14	11.90	0.20	5-Jan-03	73
Bondone	MC-TIMS	2-Dec-14	12.10	0.19	29-Oct-02	69
Manet	MC-ICP-MS	24-Nov-14	12.10	0.60	18-Oct-02	220

334

335 EU = expanded uncertainty (k=2)

336

339 **Figure 2.** Age dating results for ES-2 compared against known sample processing
340 history. The dashed red lines (---) indicate the range of probable processing dates
341 according to the known history of the samples (see text). Results using gamma
342 spectrometry are indicated by black triangles (▲). Alpha spectrometry results are
343 indicated by red squares (■). Mass spectrometry results are indicated by blue diamonds
344 (◆).


345 **Table 5.** Age dating results for ES-3

Designator	Technique	Ref Date	Model Age (years)	EU (years)	Model Date	EU (days)
Picasso	Gamma Spec		<11	N/A	Jan-04	N/A
Rembrandt	Alpha Spec	16-Dec-14	12.20	0.64	19-Sep-02	230
Cezanne	Alpha Spec	Mar-15	11.5	3.6	Sep-03	1300
Pollock	Alpha Spec (Th) MC-TIMS (U)	15-Oct-14	7.25	0.50	16-Jul-07	180
Picasso	SF-ICP-MS	25-Mar-15	13.5	0.61	29-Apr-04	220
Vermeer	SF-ICP-MS	15-Oct-14	9.94	0.65	7-Nov-04	240
Buonarotti	SF-ICP-MS (Th) MC-TIMS (U)	3-Nov-14	10.22	0.18	Aug-04	66
Monet	MC-TIMS	1-Nov-14	10.19	0.46	23-Aug-04	170
Gauguin (Th-230)	MC-ICP-MS	23-Oct-14	10.380	0.076	5-Jun-04	28
Gauguin (Pa-231)	MC-ICP-MS	23-Oct-14	10.22	0.25	5-Aug-04	93
Caravaggio	MC-ICP-MS	13-Nov-14	9.80	0.20	8-Feb-05	73
Bondone	MC-TIMS	2-Dec-14	9.72	0.51	16-Mar-05	190
Manet	MC-ICP-MS	25-Nov-14	10.80	0.60	6-Feb-04	220

346

347 EU = expanded uncertainty (k=2)

348

351 **Figure 3.** Age dating results for ES-3 compared against known sample processing
352 history. The dashed red lines (----) indicate the range of probable processing dates
353 according to the known history of the samples (see text). Results using gamma
354 spectrometry are indicated by black triangles (▲). Alpha spectrometry results are
355 indicated by red squares (■). Mass spectrometry results are indicated by blue diamonds
356 (◆).

358 **Interpretation of Results**

359 The first conclusion upon looking at the results is that most of the laboratories measured
360 ages consistent with one another and consistent with the known history of the material.
361 For ES-1 and ES-3, only 2 results out of 12 did not overlap the known history of the
362 material within their stated analytical uncertainty. For ES-2, only 3 results out of 12 did
363 not overlap the known history of the material within their stated analytical uncertainty.

364 The second conclusion is that these age-dating results were useful in comparing the 3
365 samples (ES-1, ES-2, and ES-3) with one another, one of the key points of the exercise.
366 When combined with other signatures, including the similarity of the U isotopic
367 composition between ES-1 and ES-3, these age-dating results supported the conclusion
368 that ES-1 and ES-3 might have had a similar processing history. Again, when combined
369 with other signatures, these age-dating results also supported the conclusion that ES-2
370 was a different material from ES-1 and ES-3, sharing neither isotopic similarity nor
371 processing history.

372 The third conclusion is that mass spectrometric methods of measuring these
373 chronometers provided more accurate and precise results than counting methods offered
374 for these samples. Picasso reported that the level of enrichment in these samples was too
375 low to measure more than an upper limit on the age using gamma spectrometry and the
376 ^{214}Bi - ^{234}U chronometer. In addition, those laboratories that used alpha spectrometry to
377 perform chronometry provided results that tended to be either less accurate or less precise
378 than results provided by laboratories that used mass spectrometry. In particular, for ES-2,
379 none of the alpha spectrometry results agree with the stated sample history or with one
380 another. Following the conclusion of the exercise, Rembrandt (who conducted only a
381 single U/Th column separation to generate their Th alpha sources) further purified their
382 Th alpha sources. The repurified sources yielded comparable ages to mass spectrometry.
383 This finding clearly demonstrates the need for multiple U/Th separation steps to
384 adequately remove ^{234}U from the ^{230}Th spectral region.

385 The final conclusion, drawn from Gauguin's results, is that the consistency of the ^{234}U -
386 ^{230}Th and ^{235}U - ^{231}Pa results validated the age-dating assumption, namely that there was a
387 real purification event that removed Th and Pa from the U quantitatively. It is highly
388 unlikely that there would be a process that would partially purify both Th and Pa, but in a
389 proportion that retained the concordancy of the two chronometers. This is a different
390 conclusion than that of ITWG round robin #3, in which, due to the complex production
391 history of the HEU metal samples, these two chronometers differed remarkably from one
392 another (7, 15, 23). Knowing the true material processing date (assumed to be the
393 conversion date) would be helpful in a real investigation in identifying potential material
394 sources and excluding others.

395 **Conclusions**

396 In the CMX-4 exercise, 10 international nuclear forensics laboratories successfully
397 performed radiochronometry on the 3 CMX-4 samples (ES-1, ES-2, and ES-3), providing
398 12 analytical results using 3 different parent-daughter pairs serving as independent
399 chronometers (^{234}U - ^{230}Th , ^{235}U - ^{231}Pa , ^{234}U - ^{214}Bi). The vast majority of the results were
400 consistent with one another and consistent with the known processing history of the
401 materials. In general, for these particular samples, mass spectrometry gave more accurate
402 and more precise analytical results than decay counting measurements. In addition, the
403 concordancy of the ^{235}U - ^{231}Pa chronometer with the ^{234}U - ^{230}Th confirmed the validity of
404 the age dating assumption, increasing our confidence in the nuclear forensic conclusions
405 and in the model age in particular. When combined with other analytical results, age
406 dating helped confirm a relationship between ES-1 and ES-3 and a lack of relationship
407 between ES-2 and ES-1 and ES-3

408 **Acknowledgements**

409 All participants acknowledge the Nuclear Forensics International Technical Working
410 Group, in particular, the co-chairs of the Exercise Task Group, Jon Schwantes and Olivia
411 Marsden, for organizing a successful international exercise. Some of this work was

412 performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
413 National Laboratory under Contract DE-AC52-07NA27344 with funding from the U.S.
414 Federal Bureau of Investigation. This work was supported by the Nuclear Safety Research
415 program through the Korea Foundation of Nuclear Safety (KOFONS), granted financial resource
416 from the Nuclear Safety and Security Commission(NSSC), Republic of Korea (No. 1405020).

417 **References**

- 418 1. Allison, G. 2008. Nuclear Deterrence in the Age of Nuclear Terrorism. *Tech. Rev.* 14(1) (Nov/Dec 2008): 68-73.
- 419 2. IAEA, Nuclear Forensics in Support of Investigations, 2015, IAEA Nuclear Security Series No. 2-G (Rev. 1), International Atomic Energy Agency, Vienna.
- 420 3. LaMont, S. P. and Hall, G. 2005. Uranium age determination by measuring the 230Th/234U ratio. *J. Radioanal. Nucl. Chem.* 264 (2): 423-427
- 421 4. Eppich GR, Williams RW, Gaffney AM, Schorzman KC. 2013. 235U-231Pa age dating of uranium materials for nuclear forensic investigations. *J. Anal. Atom. Spectrom.* 28: 666-74
- 422 5. Gaffney AM, Hubert A, Kinman WS, Magara M, Okubo A. 2015. Round-robin 230Th-234U age dating of bulk uranium for nuclear forensics. *J. Radioanal. Nucl. Ch.* DOI:10.1007/s10967-015-4334-8
- 423 6. Williams RW, Gaffney AM. 2011. 230Th-234U model ages of some uranium standard reference materials. *Proc. Radiochim. Acta.* 1: 31-35.
- 424 7. Kayzar TM, Williams RW. 2015. Developing radium-226 and actinium-227 age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers. *J. Radioanal. Nucl. Ch.*, in press.
- 425 8. Wallenius M, Morgenstern A, Apostolidis A, Mayer K, Determination of the age of highly enriched uranium, *Anal. Bioanal. Chem.* 374 (2002) 379–384.
- 426 9. Varga, Z, Mayer, K, Bonamici, CE, Hubert, A, Hutcheon, I, Kinman, W, Kristo, M, Pointurier, F, Spencer, K, Stanley, F, Steiner, R, Tandon, L, Williams, R. 2015. Validation of reference materials for uranium radiochronometry in the frame of nuclear forensic investigations, *Appl. Rad. Isotopes* 102: 81–86.

441 10. Niemeyer, S. and Koch, L. (2003). The nuclear smuggling International
442 Technical Working Group: Making a difference in combating illicit trafficking.
443 In "Proceedings from the Conference on Advances in Destructive and Non-
444 Destructive Analysis for Environmental Monitoring and Nuclear Forensics,
445 Karlsruhe, Germany, October 21-23, 2002," 17-19. International Atomic Energy
446 Agency, Vienna.

447 11. Smith, D. K., Biro, T. , Chartier, B. , Mayer, K. , Niemeyer, S. , and Thompson,
448 P. (2007). Recent Activities of the Nuclear Smuggling International Technical
449 Working Group to Thwart Illicit Trafficking. In "Proceedings of the IAEA
450 Conference on Illicit Nuclear Trafficking, Edinburgh, Scotland, November 19-22,
451 2007", 289-296. International Atomic Energy Agency, Vienna.

452 12. Dudder, GB, Hanlen, RC, Herbillon, GM. 2003a. Final Report: International
453 Interlaboratory Forensics Exercise with a Highly Enriched Uranium Sample
454 (HEU Round-Robin Exercise). PNNL-14698, Pacific Northwest National
455 Laboratory.

456 13. Dudder, GB, Hanlen, RC, Herbillon, GM. 2003b. International Technical
457 Working Group Round Robin Tests. In International conference on advances in
458 destructive and non-destructive analysis for environmental monitoring and
459 nuclear forensics, Karlsruhe (Germany), 21-23 Oct 2002. International Atomic
460 Energy Agency, Vienna, Austria. 41-51.

461 14. Hanlen R. 2011. Round robin 3 exercise after action and lessons learned report.
462 PNNL-20079, Pacific Northwest National Laboratory. http://www.nf-itwg.org/sites/default/files/pdfs/Round_Robin_3_Final_Report.pdf

464 15. Kristo, MJ & Tumey, SJ. 2013. The state of nuclear forensics. Nucl. Instrum.
465 Meth. B. 294: 656-661.

466 16. Varga Z., Wallenius M., Mayer K., Hrnecek E., Alternative method for the
467 production date determination of impure uranium ore concentrate samples, J.
468 Radioanal. Nucl. Chem., 290 (2011) 485-492.

469 17. Morgenstern, A, Apostolidis, C, and Mayer, K. 2002. Age Determination of
470 Highly Enriched Uranium: Separation and Analysis of ^{231}Pa , Anal. Chem.
471 74:5513-5516.

472 18. K. Mayer, M. Wallenius, Zs. Varga, Nuclear Forensic Science: Correlating
473 Measurable Material Parameters to the History of Nuclear Material. *Chem. Rev.*
474 113 (2013) 884-900.

475 19. C. T. Nguyen, Age-dating of highly enriched uranium by gamma-spectrometry,
476 *Nucl. Instr. Meth. B* 229 (2005) 103-110.

477 20. C. T. Nguyen, J. Zsigrai, Gamma-spectrometric uranium age-dating using
478 intrinsic efficiency calibration. *Nucl. Instr. Meth. B* 243 (2006) 187-192.

479 21. C. T. Nguyen, J. Zsigrai, Basic characterization of highly enriched uranium by
480 gamma spectrometry, *Nucl. Instrum. Meth. B* 246 (2006) 417-424

481 22. C. T. Nguyen, J. Zsigrai, L. Lakosi, Uranium age dating by gamma spectrometry,
482 in: *Advances in Nuclear Forensics: Countering the Evolving Threat of Nuclear*
483 *and Other Radioactive Material. Summary of an International Conference*, IAEA,
484 Vienna, Austria, 7-10 July 2014, Proc. Series 2015, CD-ROM, IAEA-CN-
485 218/013.

486 23. R. Hanlen. Round robin 3 exercise after action and lessons learned report. 2011.
487 PNNL-20079, Pacific Northwest National Laboratory. http://www.nf-itwg.org/sites/default/files/pdfs/Round_Robin_3_Final_Report.pdf

489 24. Deschamps P., Doucelance R., Ghaleb B., Michelot J-L., Further investigation on
490 optimized tail correction and high-precision measurement of uranium isotopic
491 ratios using multi-collector ICP-MS, *Chem. Geol.*, 201 (2003) 141-160.