
LLNL-CONF-701389

Managing Combinatorial
Software Installations with Spack

G. B. Becker, G. T. Gamblin, P. J. Scheibel, M. P.
LeGendre

August 26, 2016

HPC User Support Tools Workshop
Salt Lake City, UT, United States
November 13, 2016 through November 13, 2016



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 
 



1

Managing Combinatorial Software Installations with Spack
Gregory Becker, Peter Scheibel, Todd Gamblin, Matthew LeGendre

Lawrence Livermore National Laboratory, Livermore, California 94551
{becker33, scheibel1, tgamblin, legendre1}@llnl.gov

Abstract—HPC centers deploy a wide variety of software for
scientific applications, but the complexity of building scientific
applications makes package management increasingly difficult.
Users demand combinatorial versions of packages, but site ad-
ministrators may need to perform in-place upgrades for security
and for bug fixes.

This paper describes an extension of the Spack package
manager that allows HPC centers to navigate a compromise
between fully combinatorial versioning and a stable, upgradable
software stack. Spack provides a set of templated packages
that can be deployed in arbitrarily many combinatorial build
configurations. We introduce subspaces, an extension of Spack’s
versioning system that allows HPC sites to choose an arbitrary
combinatorial complexity for packages they deploy. Subspaces
allow us to use a single Spack package to generate binary
packages for systems such as RPM. Using subspaces, support staff
can configure the degree of combinatorial versioning exposed to
the user. This capability enables an intuitive and flexible user
environment that can be leveraged across multiple HPC sites.

I. INTRODUCTION

The LClong (LC) center manages high performance com-
puting resources at Lawrence Livermore National Laboratory
(LLNL), from small test systems to the 17 petaflop Sequoia
supercomputer. Across these systems, LC supports over 3,000
users, who require a wide variety of software packages to
be installed and maintained. In addition to these users, LC
works in conjunction with other National Nuclear Security
Agency (NNSA) laboratories—Los Alamos National Labo-
ratory (LANL) and Sandia National Laboratories (SNL)—to
support a common software environment across all NNSA
commodity clusters. Work is underway to unify the user
environments across these systems. The diversity of required
packages is likewise growing, as modern scientific applications
used by a larger user base rely on an increasing number of
numerical and system libraries.

The set of potential build configurations for a software
package in high performance computing (HPC) is combinatorial
in size. Package versions, compilers, compiler versions, mes-
sage passing interface (MPI) implementations, and configure
options are just several of the combinatorial build choices,
and we can view each build as a point in this “build space.”
Typical operating system (OS) distributions provide only a
part of the build space: a stable set of packages that comprise
the system software. These packages are upgraded in place
over time, transparently to users. Software in such an OS
is typically installed in a common prefix, so users benefit
from upgrades immediately. However, OS package managers
typically have no support for combinatorial versioning or
selecting from multiple configurations of the same package.
Application software that relies on custom compilers, MPI

implementations, and optimized numerical libraries is typically
installed by hand to support many different points in the
build space, though automated tools for handling this task
are growing in popularity [16, 18, 20, 21].

To meet user demands, HPC sites need to support much
of the full combinatorial build space, but they must also
provide a stable foundation of system software using the
deployment mechanism of the base OS. Further, administrators
of live systems often need to upgrade packages in place
(e.g., for security updates). Full combinatorial versioning is
useful because it allows sites to quickly meet users’ needs by
deploying exactly the software they wish to use. However, if
the site installs a new version of the software in a new location,
users typically need to recompile, and they may have to do
so frequently. Our goal is to provide a compromise between
a stable, upgradable software stack and full combinatorial
versioning that is flexible enough to support the differing needs
of our users.

Spack [16, 21], is a package management tool developed
at LLNL. It supports building and deploying combinatorially
versioned software in user space. Spack gives users control
over the entire directed acyclic graph (DAG) of dependencies.
Using this, users can deploy arbitrary build configurations, with
different package versions, MPI implementations, compilers,
and build options. We leverage Spack to build arbitrary
configurations, and we extend it with the concept of subspaces:
naming schemes that project Spack’s build space into a lower-
dimensional configuration space. Subspaces allow administra-
tors to generate arbitrary simplified views of packages for users,
to generate system RPM packages from Spack packages, and
to balance transparent, in-place upgrades (e.g. for hot fixes or
security updates) with recompilation of new versions. In this
work, our main contributions are:

• Package subspaces: customizable projections of Spack’s
combinatorial build space into lower-dimensional spaces;

• Techniques to manage in-place upgrades within subspaces;
• A methodology for automatically generating many upgrad-

able RPM packages from a single subspace; and
• An implementation of these techniques in Spack.

Together, these techniques comprise a deployment solution
that allows subspaces of fully combinatorial packages to be
managed with traditional package- and environment manage-
ment tools. Spack itself is policy-free, but Spack subspaces
allow HPC administrators to choose the granularity of packages
to deploy. For example, with only minor configuration changes,
Spack can generate RPMs for the same package built with
each version of the same MPI implementation, only for major
versions of the MPI implementation, or a single package for all



2

versions of the same MPI implementation. To our knowledge,
this is the only system to provide this fine-grained control over
combinatorial builds. The remainder of this paper describes our
techniques in detail. We also describe how this flexibility, in
concert with existing tools, facilitates the support of commodity
Linux users across the NNSA tri-laboratory facilities.

II. THE TRI-LAB COMPUTING ENVIRONMENT

A. The Tri-lab Operating System Software Stack

Since 2007, the three NNSA laboratories (LLNL, LANL,
and SNL) have used common hardware and operating system
stacks across their commodity clusters. The Tri-lab Operating
System Software Stack, or TOSS [8], is a fully functional
cluster operating system distribution based on Red Hat Enter-
prise Linux (RHEL). TOSS is maintained by the tri-labs; it
centralizes processes for bug tracking, packaging, maintenance
and configuration management, saving costs across the NNSA
laboratories. TOSS adds additional system packages to RHEL
that are needed for HPC clusters. It builds off of the prior
CHAOS effort at LLNL [2, 17], which began in 2001 to build
a commodity OS stack at LLNL.

B. System Software vs. User Environment

While TOSS covers system packages and some basic
mathematical libraries, it does not include all of the parallel
scientific software used by many applications. Historically, the
tri-labs have done manual installs of this software at each
site. In 2016, with the deployment of new RHEL7/TOSS3-
based clusters, the tri-labs are attempting to unify the user
environment in addition to the OS stack. This new environment
is called the Tri-lab Computing Environment (TCE), and it
adds package support to TOSS for multiple compilers, MPI
implementations, math libraries and other tools.

The main distinction between TOSS packages and TCE
packages is one of versioning. TOSS uses RPM for its package
management, and it is based on a stock RHEL7 operating
system. TOSS packages typically install into reserved system
locations such as /usr, and there is only one version of a
particular software package installed in a TOSS instance at
a time. TCE, on the other hand, is designed to allow many
versions and configurations of packages to exist simultaneously.
A TCE environment may have an installation of GCC 6.1 for
users interested in advanced C++14 features, and a version of
GCC 4.9 for users interested in backwards compatibility.

Managing multiple versions of software is challenging for
many reasons documented in the literature [13, 16, 18, 20].
Most operating systems are designed to support a single, stable
software stack with a fixed version for each package. On
multi-user HPC systems, conflicting user demands, desire to
experiment with many configurations, and lack of software
engineering resources on small teams all necessitate multi-
versioned installations. At the tri-labs, TCE is required to run
on TOSS, and packages must be deployed using RPMs. This
paper describes the techniques we have used to implement a
common mechanism for multi-version installations in TCE.

C. RPATH vs. LD_LIBRARY_PATH

One major problem with multi-version installations is that
each compiled binary must be able to find its dependencies
at runtime. If there are multiple versions of dependencies
installed on a system, either the user must take action to set
the LD_LIBRARY_PATH environment variable (or some other
linker configuration variable), or the binary must be generated
with this information embedded so that it can find its own
dependencies. This is typically done by embedding RPATH
entries in the binary. In the TCE environment, we rely on the
RPATH in installed packages in order to find dependencies. This
allows users to run binaries without setting LD_LIBRARY_PATH
or any other special action. We find this approach much less
error-prone in a multi-version, multi-user environment.

D. Environment Modules

Environment modules automate the process of setting environ-
ment variables (LD_LIBRARY_PATH, MANPATH, etc.) necessary
to run software packages. There are many existing systems, the
oldest of which is simply called modules and based on the Tool
Command Language (TCL). The Cray computing environment,
along with many clusters, use TCL modules. Loading and
unloading TCL modules can alter the user’s PATH and other,
package-specific environment variables. LC has historically
used an internally developed tool called dotkit [3] to provide
many of the same features offered by TCL modules. With TCE,
we have given up dotkit in favor of Lmod [22], a feature-rich
Lua-based module system developed at the Texas Advanced
Computing Center (TACC). It is backward-compatible with
TCL modules and adds the ability to create hierarchies of
modules. Lmod can show concise views of only modules
that are compatible with those currently loaded in the user
environment, simplifying navigation on systems with many
installed modules. For example, only packages built with the
GCC compiler are shown when the GCC module is loaded.

While the package installations are unified among TCE
sites, environment modules are not. Rather, we install modules
separately and allow each site to customize its modules. Sites
can thus publish the same set of packages in a different manner,
for backward-compatibly with existing job submission scripts.

III. THE SPACK PACKAGE MANAGER

Before going into the details of our TCE deployment strategy,
we first give an overview of Spack [16, 21]. Spack was
originally created to solve three aspects of building user-space
HPC software. First, it is designed to manage the increasing
combinatorial set of build configurations. Users demand that
arbitrary versions of software be installed, and application
developers must build many versions for testing their code with
many different versions, compilers, and configurations. Second,
it can be difficult to build HPC software, which often ships
with immature or missing build systems [13, 16, 18, 20, 23],
and automating the manual package configuration process can
save considerable time. Finally, is often difficult to reproduce
builds of HPC software across different environments. Spack
provides a way to re-run the same automated build logic and
to leverage builds designed by others.



3

1 class Hdf5(Package):
2 """A library and file format for storing and managing data."""
3 homepage = "http://www.hdfgroup.org/HDF5/"
4 url = "http://www.hdfgroup.org/releases/hdf5-1.8.13.tar.gz"
5

6 version('1.10.0', 'bdc935337ee8282579cd6bc4270ad199')
7 version('1.8.13', 'c03426e9e77d7766944654280b467289')
8

9 variant('mpi', default=False, description='Enable MPI support')
10

11 depends_on("mpi", when='+mpi')
12 depends_on("zlib")
13

14 def install(self, spec, prefix):
15 args = ["--prefix=%s" % prefix,
16 "--with-zlib=%s" % spec['zlib'].prefix]
17

18 if '+mpi' in spec:
19 args.append('--enable-parallel')
20

21 configure(*args)
22 make()
23 make("install")

Fig. 1: Simplified Spack package for the HDF5 library.

A. Package files as templates

Figure 1 shows a simplified Spack package file for the
HDF5 library. Each package is a simple Python file containing a
class with metadata and an install() method. The install()
method contains the code necessary to build the package
and to install it into a designated prefix directory. The
metadata includes properties such as a homepage, a url where
we can download the package, and version, variant, and
depends_on directives.

In a Spack package, metadata directives provide information
about combinatorial choices in the build. Version directives
allow Spack to download and checksum different source
archives for different versions of the same package. Variants are
boolean options that a user can set on a package. depends_on
directives describe dependencies, which are names of other
packages required to build this one. Here, The mpi dependency
is optional because it has a when clause. hdf5 will only depend
on mpi when the mpi variant is set (i.e., to +mpi). The compiler
and platform information are also parameters of a Spack build,
but the mechanisms for handling these are not shown here

Spack supports the concept of virtual dependencies, where
multiple packages may provide the same interface. In this
example, mpi is a virtual dependency. Packages that depend
on MPI can link with any MPI implementation (e.g. openmpi
or mpich). We say that OpenMPI and MPICH provide mpi.
Every virtual dependency must be replaced with a provider
before a spec is ready to be installed.

The install() method can build package configurations
with arbitrary values for each build parameter. Package authors
check the values of the parameters inside the method. For
example, on line 18 in the figure, there is a check for +mpi
variant. If mpi is enabled, extra arguments are passed to
configure. The package is effectively a template for building
many different instantiations of the same package, and this is
what makes building combinatorial software stacks manageable.
Rather than managing a package file per configuration, with
redundant build information spread over may files, users can
maintain the bulk of their code in one place, with platform-

and configuration-specific cases mixed in. This allows users to
write very general package files.

B. Spec DAGs
To generate different configurations of the same package,

Spack has robust infrastructure for managing the directed
acyclic graph (DAG) of dependencies for each installation.
Spack calls the graph a spec, short for build specification, as
it tells the package file how to build. The spec DAG is passed
as a parameter to the install() function, and the package
author is responsible for translating this specification into the
commands needed to perform the installation.

Figure 2 shows some of the build configurations that Spack
can generate from the HDF5 package in Figure 1. When a
user first invokes a command to install hdf5, the spec DAG
is an abstract, or underspecified, graph, as in Figure 2a. Only
the name and immediate dependencies of packages are known,
and specific build parameters have not yet been assigned to
nodes. We only see the two immediate dependencies of hdf5:
zlib and mpi.

Figures 2b, 2c, and 2d show possible concrete specs for
the HDF5 package. We call a spec concrete when each node
in the DAG has a version, build parameters, a compiler, and
dependencies assigned; and no dependency in the DAG is
virtual. We can see from these examples that the space of build
configurations is large. Figure 2b represents HDF5 version
1.8.15 built without the optional MPI dependency and with GCC
version 4.5. Figure 2c builds HDF5 version 1.10.0 with the
MPICH MPI implementation and GCC version 4.4.7. Finally,
Figure 2d uses HDF5 version 1.18.15, with OpenMPI. Most
of the DAG is built with the Intel compiler version 13.1, but
the zlib dependency is built with GCC 4.4.7.

1) Specs and Concretization: Usually, when users install
packages, they have only an abstract idea of what is to be
installed. For example, a user may know that they want a
parallel HDF5 implementation, but users likely do not know
exactly what libraries HDF5 depends on, or which build options
will work best on their system. Spack offers a simple, recursive
syntax for specs so that users can request builds with only the
constraints they are concerned with.

The simplest spec is simply a package name. For example,
a request for hdf5 is completely unconstrained. Users can add
additional constraints using sigils. For example, to request a
particular version or version range, users can request, e.g.:
hdf5@1.18
hdf5@1.10:1.18

To request a particular compiler, a user might request:
hdf5 %gcc@4.5

And to request variants, the user can use + or to indicate
whether they should be enabled or disabled:

hdf5+mpi
hdf5~mpi

The syntax can be recursively applied to dependencies using a
caret:
hdf5@1.10 ^zlib@1.2

Each of the specs above will produce a partially constrained
DAG. Spack fills in missing constraints using a process called



4

���

����

����

(a) Abstract hdf5 with
virtual mpi dependency.

���������������
��������

����������
��������

(b) hdf5 with gcc
4.5, without mpi.

���������������
����������

�����������
����������

����������
����������

(c) hdf5 built with gcc 4.4.7,
with mpich.

���������������
�����������

�������������
�����������

����������
����������

������������
�����������

(d) hdf5 built with icc 13.1
and openmpi.

Fig. 2: Possible build specs (DAGs) for the HDF5 package.

concretization, which manages conflicting constraints and fills
in default values for build parameters using site- and user-
provided policies. Spack effectively relieves the burden of
searching for site preferences; package authors are guaranteed
that the spec passed to install() is concrete, and they need
not clutter their build logic with code to manage combinatorial
parameters. Spack handles this burden and package authors
can simply translate a concrete spec to a build.

C. Installation Layout and Hashing

Spack allows a combinatorial set of build configurations
to coexist together in the same installation by installing each
package into its own prefix. To do this, Spack guarantees each
unique build configuration a unique directory name within
the install tree. Since the build configuration is a complex
graph, it is not possible to directly encode the configuration
as a directory name without creating overlong file names, so
Spack uses a hashes to produce a suitable identifier. Spack first
writes the spec DAG into a YAML-formatted file, and then
applies a cryptographic hashing algorithm to this file. We call
the resulting hash the DAG hash, and Spack appends it to the
names of Spack installation prefixes to ensure uniqueness.

Spack ensures that each package knows where to find its
dependencies by adding RPATH entries to the binaries and
libraries that it builds. RPATHs ensure that a binary will run
and find the dependencies it was built with, regardless of the
user’s environment.

D. External Packages

Dependencies in Spack can be satisfied either by Spack built
packages or by external installations. Configuration files at
the Spack installation level and at a per-user level allow the
user or maintainer to register system packages and other pre-
installed packages with their configurations expressed in Spack
spec syntax. From these files Spack can determine whether
an externally installed software package satisfies a particular
dependency and will link against external installations when
possible.

E. Upgrading Spack packages

Spack allows many build configurations of packages to exist
together within the same directory layout, and it provides a

hashing scheme that enables the build space to be arbitrarily
large. However, the DAG hash is not always the friendliest
way to present an installation layout to users. Users who build
against a Spack package with one DAG hash continue to rely on
the specific hash long after the package is built, and it is not easy
for a system administrator to upgrade a large number of hashed
packages for to fix security issues or bugs. Further, installing
new versions of Spack packages with minor configuration
differences results in new directories being installed. This
is good for reproducibility, but upgrading user software that
relies on Spack packages is less transparent because it can
require a recompile. Effectively, there is a trade-off between
reproducibility and upgradability. In the following sections, we
describe an extension to Spack that allows users to navigate
this trade-off.

IV. SUBSPACES

As discussed in section III, Spack allows us to specify and
build any point in the build space. We extend Spack with the
concept of subspaces. A subspace is a projection from the
build space into a lower-dimensional space. Subspaces allow
us to support upgrade-in-place, and they allow administrators
to deploy binary versions of Spack packages using the package
manager of the host OS.

As discussed in section II, RPM is the package manager
for TCE. In RPM, packages are distinguished by name, and
only a single package of a given name can be installed at
a time. Subspaces provide a naming scheme that enables
combinatorially versioned packages to be installed with RPM
and coexist on the system.

A. Defining Subspaces

Spack subspaces are subsets of the full build space described
in I. They are defined by a subset of package configuration
variables. Recall that these variables comprise the dimensions
of the full build space—similarly, the subset of these variables
comprises the dimensions of the subspace. Each unique
tuple of parameter values is a unique point in the subspace,
and configurations with the same subspace parameters target
the same installation prefix. Typically, we add a dimension
to the subspace when a deployer anticipates maintaining
multiple installations of the package that differ in terms of the



5

foo:
subspaces:
subspace1:
name: {NAME}-{VERSION}
prefix: /usr/tce/tools

subspace2:
name: {NAME}-{VERSION}-{COMPILER}
prefix: /usr/tce/tools

bar:
subspaces:
FooCompilerSpace:
name: {NAME}-{COMPILER}
prefix: /usr/tce/tools

MySubspace:
name: {NAME}-zlib-{DEP:zlib:COMPILER}
prefix: /usr/tce/tools/my_dir

Fig. 3: An example subspace configuration file

variable. For example, if the deployer anticipates maintaining
installations for different versions of the package, they include
the version in the subspace. If they anticipate maintaining
different versions built with different MPI implementations,
they include the name of the MPI implementation. If a change
in some build parameter should not require a new prefix, the
deployer can simply leave the parameter out of the subspace
dimensions, and changes to that parameter will simply result
in an in-place upgrade.

Subspaces are defined by subspace descriptors, which
are template strings that map a package configuration to a
string. The string can contain a static ID (arbitrary text) and
placeholders for arbitrary build parameters from a Spack spec.
We can use this string to project a spec DAG in the Spack build
space down into the lower-dimensional subspace by simply
substituting the values of the variables into corresponding
placeholders in the descriptor template. If projecting two specs
results in the same subspace point, the two specs will share
an installation directory.

As mentioned, a subspace descriptor is simply a template
for turning package configurations into names. Each package
may have multiple subspaces associated with it. An example
configuration file for subspaces is in figure 3. Note that package
foo has two subspaces, one of which maintains the compiler
as part of the package name, while the other does not. Multiple
subspaces can be used to support different groups of users with
different package needs, to support particularly pathological
use cases, or to continue support for an outdated subspace.

The subspace descriptor can contain arbitrary static text
(so long as it is valid in an RPM name) along with a set
of substitution variables which are understood by Spack. In
addition to the name and version of a package mentioned
above, these include the compiler, compiler version, and Spack
variants enabled when building the package. Each of these
details can also be queried recursively for a dependency of
the package. For virtual dependencies like MPI, the variable
resolves to the chosen implementation.

B. Instantiating Subspaces

An RPM name is derived from a pairing of a concretized
Spack package spec and a subspace. The configuration details
for the package are substituted into the subspace descriptor.
Any package configuration detail omitted from the subspace
descriptor does not affect the name, so two different configura-
tions that match in terms of the subspace descriptor’s variables
will project to the same RPM name.

Under the subspaces in figure 3 as an example, a build of
package foo at version 5 would project to the name foo-5
under subspace1, regardless of the other variables on package
foo. However, under subspace2, foo at version 5 compiled
with the GCC compiler projects to a different name than foo
at version 5 compiled with the Intel compiler.

Figure 4 provides an example of possible name projections
for the HDF5 [14] package compiled with MPI support. We
assume for the example that it is desirable to maintain separate
HDF5 installations for different MPI implementations to ensure
compatibility with libraries using each implementation. The
upper subspace is labeled as bad because it projects the
configurations of HDF5 dependent on OpenMPI [15] and
MPICH [19] to the same RPM name. For a different package,
such as zlib, which has no MPI dependency, this may be an
appropriate subspace choice.

V. RPM GENERATION

Leveraging subspaces to generate sufficiently-unique names
for combinatorially-versioned software, we can use RPM to
install HPC software to the user environment. We extend Spack
to generate RPM SPEC files and manage the installation of
those builds to the user environment under TCE.

Spack’s RPM functionality supports the generation of RPMs
which install to package-specific prefixes. The actual build for
a package is run under a Koji build system using Spack, and
Koji packages the build results into an RPM. Spack-generated
RPMs do not currently include module files, although support
was added recently for automatic generation of lmod modules
and this may be used in the future for RPMs.

A. Build mechanism

Koji is a tool that uses Mock to build packages in a
sandboxed environment (a chroot). Sandboxing the build
ensures that the environment is "clean": that nothing is installed
and no environment variables are set that could change the
behavior of the build. Koji builds packages and associates
them with a "tag", which corresponds to an RPM repository.
An RPM SPEC can require any previously built RPM SPEC
with the same tag, and Koji will automatically pull in that
dependency.

Spack is invoked twice in the process of building an RPM.
First, Spack generates an RPM SPEC from the concretized
Spack spec and writes the associated RPM file. Spack names
the package according to the subspace descriptors in Spack
configuration files. As part of this process Spack generates RPM
dependencies based on the package DAG. Spack also packages
itself along with the RPM file and associated property files
into a centrally managed repository. For TCE, this repository



6

"{NAME}-{VERSION}"
(bad name projection)

"{NAME}-{VERSION}-{DEP:mpi:NAME}-{DEP:mpi:VERSION}"
(good name projection: generates separate installs)

Package hdf5, version 1.10.0
built with openmpi 1.10.3

Package hdf5, version 1.10.0
built with mpich 3.2

hdf5-1.10.0

hdf5-1.10.0-openmpi-1.10.3 hdf5-1.10.0-mpich-3.2

Fig. 4: An example of good and bad subspace usage. Yellow boxes are Spack package specs, red boxes are subspace descriptors,
and green boxes are RPM names.

is managed by tosspkg, a variant of fedpkg. Second, the Koji
build system executes the build as described in the RPM SPEC
file. This includes calling Spack to execute the actual build
process.

To support running in a sandboxed Mock environment
without access to the install location of the packages it builds,
SPACK supports optional redirection of installs. For many
packages this is handled automatically through support for
DESTDIR option in build systems such as CMake.

Spack has no dependencies other than python 2 at version
2.6 or higher, so it is easily supported in the Mock environment
for building system software.

Although Spack typically automatically downloads source
files during installation and validates them against a checksum
for the requested version of a package, source files can be
saved in a cache within Spack for build environments that do
not support internet access.

B. Building and referencing dependencies

With a mapping of package name to subspace, a Spack
DAG can be mapped to a set of RPM SPECs. The Spack RPM
logic then applies the dependency information in its Spack
DAG to set up the RPM dependencies (e.g. the "requires" tag).
Figure 5 provides an example which shows the mapping of a
Spack DAG to a tree of RPM dependencies given a particular
subspace configuration.

Spack RPM generation uses Spack’s external packages
functionality to locate dependencies. The Spack RPM SPEC
generation step produces a build-specific packages.yaml con-
figuration that enables Spack to find the packages built from
RPM SPECs and use them to satisfy dependencies of future

packages. Figure 6 shows the configuration file generated by
the installation shown in figure 5.

Once Spack can locate the dependency packages, it will
automatically set up RPATHs to these packages as part of
its build, as Spack does for user-space builds as discussed in
section III.

C. How to manage updates

As is discussed in section IV, from an RPM system
perspective two package configurations that project to the same
name are considered different releases of the same RPM. Since
the installation prefix is determined by the RPM SPEC name,
all RPM SPECs which depend on a given package (have the
original package in their “requires” field) will transparently
use any updates to that package. This is important for updates
that require automatic migration to the newer version, such as
security patches.

When a deployer anticipates updating an RPM package
with respect to a given package configuration variable (e.g.
minor version), they can omit the variable from the subspace
descriptor for that package. For elements of configuration
which commonly contribute to package names this creates
an explicit trade-off between stability and upgradability: for
example if the deployer omits the package version from the
name projection, they can replace a package installation with
any other version; they will only make this choice if they
anticipate that new versions can be used transparently in place
of old ones. However, to generate packages with simple names,
users will typically omit all but a few variables from the
projection, for example the major versions of dependencies.
Forcing all updates that change variables omitted from the



7

Package "hdf5" version "1.10.0"

Package "openmpi", version "1.10.3"

Package configurations
(Spack DAG)

Chosen rings
RPM names and
dependencies

"{NAME}-{VERSION}"

"{NAME}-{VERSION}-{DEP:mpi:NAME}-{DEP:mpi:VERSION}" hdf5-1.10.0-openmpi-1.10.3

openmpi-1.10.3

packages:
hdf5:
subspace1:
name: '${NAME}-${VERSION}-${DEP:mpi:NAME}-${DEP:mpi:VERSION}'
prefix: /usr/tce/packages

openmpi:
openmpiSubspace:
name: '${NAME}-${VERSION}'
prefix: /usr/tce/packages

Fig. 5: An example subspace configuration file and the RPM DAG generated for HDF5 under said configuration.

name to be treated as upgrade-in-place therefore creates a
tension between name-simplicity and stability. It is anticipated
that an additional stricter projection can be used to fix variables
which the deployer prefers to omit from the name but does
not anticipate updating the package with respect to. Modules,
as discussed in section VI-A, provide an interface for using
simpler names without the trade-off in stability.

When Spack initially creates an RPM it tracks a number of
properties to determine whether a future configuration that maps
to the same RPM differs from the installed version; in many
cases it can automatically determine when to update an RPM.
Tracked properties include the Spack spec excluding details
related to dependencies, the dependencies managed as RPMs
by Spack, and those dependencies exposed to Spack for which
a system dependency is preferred; changes in these properties
are simple to detect—for example Spack specs implement an
equality operation.

Future work will involve including the associated package.py
contents, a hash of the source, and the contents of all applied
patches in the tracked properties. For a given Spack package
file Spack will construct a hash which includes the particular
build logic executed for the chosen configuration. This will

packages:
openmpi:
buildable: false
paths:
openmpi@1.10.3%gcc@4.8.5:
/usr/tce/packages/openmpi/openmpi-1.10.3

Fig. 6: An example configuration file generated by to track
installed packages and their properties

ensure that Spack tracks not only the user-specified properties
of the build, but also those which are an artifact of choices
made by the Spack package maintainer. Until this work is
complete, the RPM update logic creates a new RPM release
for the top-level package every time a new build is requested,
as we cannot guarantee that two builds are identical.

When Spack detects that an RPM should be updated,
it is capable of automatically generating an updated RPM
SPEC for the package. This includes incrementing the release
number, adding a changelog entry, and updating "requires"
appropriately.

VI. USABILITY FEATURES

Previous sections discussed building and installing packages
into a complex and multi-dimensional build space. While this
is an important component of the overall problem, we also
need mechanisms for end-users to navigate and select packages
from this complex space. We could not expect end-users to
navigate and use our build space without guidance.

There are several competing goals we maintained while
building the end-user accessibility layer:

• New users should get reasonable defaults when they first
log into a system. Compilers and MPI implementations
should work out of the box without needing special
configurations or flags. They should be able to easily
navigate and select additional packages when needed. We
generally expect these users would work with default
versions of packages and upgrade to new versions as the
center upgrades its package installs.

• Advanced users, such as dedicated build engineers for
large applications, should be able to select a limited set
of packages they have validated against their applications.



8

Their build systems typically only use specific versions
of selected packages, and their upgrade cycle is desynced
from the center’s.

• System administrators want to control the visibility of
packages they install. Some packages may be deployed as
early-access or deprecated, where the system administrator
does not want to advertise the packages existence, but
still want it to be accessible to select end-users.

A. Modules

The three NNSA laboratories host thousands of users across
their systems, and there is naturally a wide range of software
packaging expertise across the user base. The majority of our
users are not experts in the idiosyncrasies of packaging, and we
need to provide them with a system that hides the complexities
of package management. We’ve chosen a mixture of compiler
wrappers and the Lmod module system from TACC to do so.

Lmod is a natural fit for the combinatorial multi-dimensional
packaging space we deployed. Similar to other module systems
such as Cray Modules [6] and Dotkit, Lmod provides simple
commands for loading and managing packages in a user’s
environment. For example, a user could issue an Lmod
command to load the Intel compiler version 16.0.3, and
the appropriate paths would be added to their PATH and
MANPATH environment variables.

Unlike some other module systems, Lmod understands the
package hierarchy. It can limit the slice of the package space
visible to users and prevent them from loading incompatible
packages. For example, the Dotkit module system does not
understand the relationship between MPIs, compilers, and
packages. A user could ask Dotkit to load OpenMPI, the GCC
compiler, and the HDF5 package into their environment and
get an HDF5 compatible with MPICH and an OpenMPI built
with the Intel compiler. Dotkit is not aware of the relationships
between packages, and does not know that none of these would
work together. On the other hand, Lmod can be configured
to understand the relationships between packages. If a user
asks for OpenMPI, GCC, and HDF5 Lmod understands that it
should load the OpenMPI built with GCC and the HDF5 built
with GCC and OpenMPI. If a user loads GCC and OpenMPI
modules, then queries what modules are available, Lmod will
only show modules compatible with GCC and OpenMPI.

The Lmod hierarchy is configurable, and for TCE systems
we mimicked the TACC recommended configuration. Users
first select a compiler at the top-level of the Lmod hierarchy,
which reveals the available MPI implementations built with that
compiler. Selecting an MPI then reveals the available packages
built with that MPI and compiler. When users first log in they
are given a site-chosen MPI and compiler by default, though
they can easily change these with Lmod commands. Some
packages are installed in the compiler and MPI independent
parts of the hierarchy, such as GIT version control software
and debuggers like TotalView. Some packages are installed the
compiler-specific but MPI-independent part of the hierarchy,
such as the Boost C++ libraries. Some packages are installed
in the compiler and MPI specific part of the hierarchy, such as
HDF5. Spack is able to generate Lmod files in a configurable

hierarchy, which helps manage the installation of the module
files.

B. Compiler Wrappers

One of our goals is to make the TCE software environment
predictable and reproducible. Based on our experiences working
with end-users we believe that a frequent class of bugs comes
from users mixing up libraries, runtimes, and compilers between
iterative builds and between build– and runtime. For example,
a user may have two terminal windows open on a screen, one
loaded with the environment for GCC 4.8.5 and one loaded with
the GCC 4.9.3 environment. If they switch between windows
in the middle of a build (perhaps after the build was interrupted
by a compilation error), they may get hard-to-interpret linking
errors from mixing compilers or strange faults at runtime.
Perhaps more commonly, users may build against one runtime
environment, such as with the MPICH MPI implementation,
then try to run with a different runtime loaded, such as the
OpenMPI MPI implementation.

We cannot completely save users from these scenarios—
a determined user will be able to mix compilers together
regardless of any safeguards we put in place. But we can put
in place mechanisms that try to prevent these scenarios from
occurring in common usage patterns. A general guideline we
have tried to follow is that the behavior of a package should
be independent of the user’s environment at runtime. The most
common place this comes up is with library search path and
guaranteeing that an application that is built against a library
only runs with that library. An application that builds against
MPICH and GCC 4.9.3, for example, should always run with
the MPICH and GCC 4.9.3 runtimes, even if the OpenMPI
package is loaded in the environment.

We enforce this through compiler wrappers and the
RPATH [12] mechanism. RPATH is a mechanism by which
a compiler can embed a library search path into a library
or executable. When the library is loaded or executable is
run the system’s dynamic linker will inspect that embedded
search path and load libraries from it before loading libraries
that may be found via the user’s environment (such as
LD_LIBRARY_PATH). We install compiler wrapper scripts
for each MPI/compiler combination, and we use these scripts
to automatically add RPATHs to user’s binaries for every TCE
library they link against. We also build TCE’s own libraries and
packages with RPATHs so that users do not need to concern
themselves with finding the transitive dependencies for our
TCE libraries. In addition to allowing new users to ignore
many details of library loading, the RPATHs and compiler
wrappers also allow advanced users to ignore the Lmod system,
if they so choose. Some advanced users want to limit their
packages to only build with certain compilers or MPIs and
not be susceptible to the multi-terminal problem mentioned
above. By specifying their compilers using exact paths to
wrapper scripts, the advanced users can guarantee that only
that MPI/compiler combo is being used to build their code.

It is worth noting that the use of RPATH in packaging is
controversial. Policies in the Debian community [7] about
RPATH can be summarized with the statement “RPATH



9

Considered Harmful,” and we have heard similar sentiments
from other Linux distributions. We acknowledge some of
these objections, such that RPATH can make it difficult for a
user to replace system packages with their own installations,
particularly when a system library location (such as /usr/lib64)
is added to an RPATH. However, in a multi-compiler and
multi-library-version environment such as TCE we believe that
RPATH’s benefits outweigh these problems. Typical users do
not build their own MPIs or compilers, and the few who may
do not expect them to be drop-in replacements.

We also use our compiler wrappers to hide other idiosyn-
crasies and common bugs in compilers. One common example
comes from how the Intel compiler handles GCC compatibility.
When run the Intel compiler will search for a version of GCC
in the user’s PATH and generate object files that are compatible
with that GCC. This works well for systems with a single GCC
installed, as the Intel compiler always finds the same GCC.
However, this can cause issues when multiple GCC versions
are installed in parallel. A user building an application with
the same version of the Intel compiler may get very different
builds because they loaded a different GCC compiler into their
environment—a non-intuitive side effect. We avoid this by
having our compiler wrappers lock the Intel compiler to a
specific version of GCC, and only allow it to be changed by
users who explicitly request a different version.

C. Package Visibility

Package deployers also need fine-grained control over what
packages users can see. For example, a package deployer may
want to install a new version of the TotalView debugger, but
they want to test it before advertising it to users. Some software
testing can be done in a controlled environment away from
users, but some testing requires “friendly” users testing at full
scale. While test packages must be available to these users,
other users should not accidentally use untested software.

Another element of package visibility concerns is default
package naming. In section VI-A, we discussed the default
packages that users should find in their environment. For
some packages, these defaults differ substantially from the
package names supplied by Spack subspaces. For example,
there should be a package “python” in the users path, even
though multiple versions of python should be supported. We
support this model through symbolic linking of a default choice
for certain packages to the install location chosen by Spack
with our subspaces extension. For example, by default “python”
may be a symlink to “python-2.7.12” if the subspace descriptor
for python is {NAME}-{VERSION}.

We support both fine-grained control over package visibility
and default packages by splitting the RPM for each package into
three separate installations. The “base” RPM SPEC installs the
package, but does not add the package’s modules to the default
MODULE_PATH environment variable, nor does it effect
default packages. The “public” RPM SPEC adds the package’s
modules to the MODULE_PATH environment variable. The
“default” RPM SPEC updates the symbolic links for the package
name so that the base name is linked to the package whose
default RPM was installed. For example, if a package deployer

installs the RPM SPEC named “python-3.3.2-default,” then
the symbolic link from “python” to “/usr/tce/tools/python-
2.7.12” is removed and replaced with a link from “python”
to “/usr/tce/tools/python-3.3.2,” assuming the same subspace
as above. Because we RPATH all dependencies automatically,
changing the default for a package does not change the behavior
of user code transparently (because RPATHs follow symbolic
links and include the true path, rather than the provided path,
in the compiled code).

The deployment interface supported by splitting the RPM
SPEC into three parts also supports seamless deprecation of
outdated package installations. To deprecate a package, we
remove the public interface of that package by uninstalling
the “public” RPM SPEC for that package. This removes the
package from the module layout of the user environment, but
leaves the software in place so as not to break previously
compiled user code with RPATHs to the deprecated package.
Advanced users who still require the package can still link
against it, but new users will not find it accidentally.

Future work will include implementing testing and depre-
cated environments within Lmod. This will enable users to
easily add the entire set of deprecated packages, or of packages
installed for testing, to their module path if they so desire.

VII. RELATED WORK

Recently, many tools have emerged to manage HPC software
installations in user space, including Smithy [9], Maali [1],
EasyBuild [18, 20], and Spack [16, 21]. All of these arose from
efforts of HPC center support staff to reduce the complexity
of installing software. Smithy and Maali do not include robust
dependency management capabilities; they check to ensure
that prerequisite modules are installed but users must still
know what packages their software depends on and ensure
that prerequisites are built consistently with their dependents.
While these tools do address the problem of scripting the
build process, they do not provide any management of the
relationships between packages and do not fully address the
combinatorial build problem.

EasyBuild and Spack have both developed broad commu-
nities outside the institutions of their creators, and they are
used at many HPC sites. EasyBuild was designed from the
start to manage a software stack for HPC users. It can support
combinatorial versioning of some packages through a toolchain
mechanism, but its dependency mechanisms are not as general
or flexible. Each software stack in EasyBuild must be fully
specified through easyconfig files, and changes to the version
of one package in a hierarchy of easyconfigs often require
updating that package’s version across all easyconfigs in the
stack. The EasyBuild distribution currently has over 6,500
easyconfigs for just over 1,000 software packages.

In contrast, Spack currently supports 670 packages, but
it uses a single package.py file per package, and choice
points in the build space are expressed as parameters to avoid
redundant configuration. With the subspaces introduced in this
paper, creating a new software stack from package templates
is a matter of creating a subspace descriptor. This flexibility
allows stacks with different combinatorial properties to be



10

generated with little effort. Like Spack, EasyBuild has support
for generating RPMs, but only for configurations already
packaged with easyconfigs. It does not support the customizable
versioning and upgrade strategies that subspaces provide.

In addition to the HPC-specific package management tools
mentioned above, a number of sites have attempted to use so-
called functional package management tools such as Nix [4, 10,
11] and its GNU analog, Guix [5]. These tools build packages in
an isolated chroot environment, so offer greater reproducibility
than Easybuild or traditional Spack usage. However, unlike
these tools, Spack and Easybuild provide direct support for
interfacing with the module system of HPC machines when
performing a build; in particular this is the only reliable way
to build on Cray machines.

Spack’s DAG hashes and versioning system were inspired
by Nix’s hashing scheme. Nix and Guix both allow arbitrary
combinations of package to coexist on a system using a
similar mechanism. However, Spack builds on this system
by offering more fine-grained control over DAG components
through optional and virtual dependencies. Spack’s templated
build parameters, spec syntax, and concretization allows users
more flexibility to build combinatorial versions of the same
package, a task frequently needed on HPC systems.

VIII. CONCLUSION

HPC software management is a complex task, and it requires
support staff to manage a combinatorial set of packages to
satisfy users. While tools exist for managing and deploying
combinatorial builds, they often require frequent package
rebuilds, and it can be difficult to provide in-place upgrades of
site-provided packages for fully combinatorial deployments. At
the tri-labs, to integrate with our production TOSS environment,
we need a deployment solution that allows for in-place upgrades
and that interfaces with package managers such as RPM.

In this paper, we extended Spack, a combinatorial package
management tool, to provide these capabilities, and we adapted
our environment to support this new deployment workflow.
We introduced the concept of subspaces, which allow support
staff to project the combinatorial Spack build space down
to a lower-dimensional, upgradable set of install locations,
and we introduced a simple configuration methodology using
subspace descriptors. Our solution allows support staff to
choose an arbitrary degree of combinatorial complexity for
their deployment, and to trade off fine-grained DAG hashing
and reproducibility for in-place upgradability and reuse. To our
knowledge, no other system provides this level of flexibility
for generating binary packages. We integrated this technique
with our local RPM deployment environment.

In addition to the packaging techniques mentioned above, we
described the ways in which we have integrated our deployment
workflow into the tri-lab compute environment. This included
techniques for generating and managing Lmod modules, as
well as compiler wrappers that simplify for users the task
of working in a mixed-compiler environment on our newest
commodity clusters.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory, Contract DE-AC52-07NA27344. LLNL-CONF-
701389.

REFERENCES

[1] R. C. Bording, C. Harris, and . D. Schibeci). Using maali
to efficiently recompile software post-CLE updates on
a Cray XC system. In Proc. Cray User Group Meeting
(CUG2015), 2015.

[2] R. L. Braby, J. E. Garlick, and R. J. Goldstone. Achieving
Order Through CHAOS: The LLNL HPC Cluster Expe-
rience. In The 4th International Conference on Linux
Clusters: The HPC Revolution, San Jose, CA, June 24-26
2003. Linux Cluster Institute.

[3] L. Busby and A. Moody. The Dotkit System.
http://computing.llnl.gov/?set=jobs&page=dotkit.

[4] B. Bzeznik. I’m using Nix! In Bull User Group Meeting
(BUX 2016), March 22 2016.

[5] L. Courtés and R. Wurmus. Reproducible and user-
controlled package management in hpc with gnu guix.
In Workshop on Reproducibility in Parallel Computing
(RepPar), Vienna, Austria, August 25 2015.

[6] Cray Inc. Optimizing Applications on the Cray X1
System. http://docs.cray.com/books/S-2315-52/html-S-
2315-52/b8umksmg.html.

[7] Debian. Rpath issue. https://wiki.debian.org/RpathIssue.
[8] T. D’Hooge. TOSS: Speeding Up Commodity Clus-

ter Computing. http://computation.llnl.gov/projects/toss-
speeding-commodity-cluster-computing.

[9] A. DiGirolamo. The Smithy Software Installation Tool.
http://github.com/AnthonyDiGirolamo/smithy, 2012.

[10] E. Dolstra, M. de Jonge, and E. Visser. Nix: A Safe
and Policy-Free System for Software Deployment. In
Proceedings of the 18th Large Installation System Ad-
ministration Conference (LISA XVIII), LISA ’04, pages
79–92, Berkeley, CA, USA, 2004. USENIX Association.

[11] E. Dolstra and A. Löh. NixOS: A Purely Functional Linux
Distribution. In Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming,
ICFP ’08, pages 367–378, New York, NY, USA, 2008.
ACM.

[12] U. Drepper. How to write shared libraries. December 10
2010. https://www.akkadia.org/drepper/dsohowto.pdf.

[13] P. F. Dubois, T. Epperly, and G. Kumfert. Why Johnny
Can’t Build. Computing in Science and Engineering,
5(5):83–88, Sept. 2003.

[14] M. Folk, A. Cheng, and K. Yates. Hdf5: A file format and
i/o library for high performance computing applications.
In Proceedings of Supercomputing, volume 99, pages
5–33, 1999.

[15] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J.
Dongarra, J. M. Squyres, V. Sahay, P. Kambadur, B. Bar-
rett, A. Lumsdaine, et al. Open mpi: Goals, concept,
and design of a next generation mpi implementation.
In European Parallel Virtual Machine/Message Passing



11

Interface Users’ Group Meeting, pages 97–104. Springer,
2004.

[16] T. Gamblin, M. P. LeGendre, M. R. Collette, G. L. Lee,
A. Moody, B. R. de Supinski, and W. S. Futral. The
Spack Package Manager: Bringing order to HPC software
chaos. In Supercomputing 2015 (SC’15), Austin, Texas,
November 15-20 2015. LLNL-CONF-669890.

[17] J. E. Garlick and C. M. Dunlap. Building chaos: an
operating system for livermore linux clusters, 2002.

[18] M. Geimer, K. Hoste, and R. McLay. Modern Scientific
Software Management Using EasyBuild and Lmod. In
Proceedings of the First International Workshop on HPC
User Support Tools, HUST ’14, pages 41–51, Piscataway,
NJ, USA, 2014. IEEE Press.

[19] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the mpi message
passing interface standard. Parallel computing, 22(6):789–
828, 1996.

[20] K. Hoste, J. Timmerman, A. Georges, and S. De Weirdt.
EasyBuild: Building Software with Ease. In High Per-
formance Computing, Networking, Storage and Analysis,
Proceedings, pages 572–582. IEEE, 2012.

[21] Lawrence Livermore National Laboratory. Spack.
http://github.com/LLNL/spack.

[22] R. McLay. Lmod: Environmental Modules System.
https://www.tacc.utexas.edu/research-development/tacc-
projects/lmod.

[23] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. C. Hong,
M. Davis, R. T. Guy, S. H. D. Haddock, K. Huff,
I. Mitchell, M. D. Plumbley, B. Waugh, E. P. White,
and P. Wilson. Best Practices for Scientific Computing.
CoRR, abs/1210.0530, 2012.


