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What Do We Mean by Multiscale for Solid 
Mechanics? 
§  In the computational sciences multiscale has many meanings 
§  Our definition 

§  Applications of mathematical models, numerical methods, tools, and 
expertise explicitly connecting length scales to enrich engineering scale 
models with substructural response 

§  Geometric, materials, and multiphysics aspects  
§  Enabling progress in multiscale structural requires advances in both 

Methods and Physics 
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Methods and Physics Across and Linking Length Scales 



Drivers and Needs 
§  Sandia fields system with a tremendous span of geometrical scales 
§  In order to asses these systems we need efficient methods and 

algorithms for: 
§  Coupling across length scales 
§  Asses the impact of lower length scale physics 
§  Incorporating and propagating lower length scale uncertainties and variabilities 
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Multiscale Strategy: R&D Thrusts 
1.  Computational Methods 

§  Scale Coupling – Methods to pass information between 
geometric scales 

§  Physics Coupling – Methods to coupling physical laws 
§  Variability/Uncertainty Propagation – Methods to pass statistical 

information across scales  
§  Experimental Diagnostics – Methods for discovery 

2.  Scale Dependent Physical Models 
§  Balance Laws – Lower length scales involve richer physics 
§  Local Physical Mechanisms – Determining dominant physical 

mechanisms requires experimental discovery 
§  Micro/Sub-structural heterogeneity – Complexity of engineering 

materials requires representation of local spatial variability 
§  Aging – Demonstrated fundamental understanding of physical 

behavior over long time scales 
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Multiscale Strategy: Objectives 
1.  Develop scale bridging technologies 

§  Attack the use cases where we simply need more geometric 
resolution (not necessarily more physics), i.e. bolted joint in a 
structure. 

§  Focus on theoretical foundation, robustness, efficiency 
§  Investigate Homogenization and Concurrent methods for 

appropriate spaces 
2.  Leverage ongoing investments in lower length scale 

physics 
§  Construct models using scale bridging technologies for specific 

drivers 
§  Discover and verify the assertion that lower length scale physics 

has significant impact on the engineering scale. 
3.  Incorporate statistical information pertaining to material 

variability and uncertainty 
§  Propagate material response between meso and continuum 

scale 
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Implementation: Select Projects 
§  Multiscale methods for failure 

§  Concurrent Coupling 
§  Alternating Schwarz  

§  Strong, concurrent, multiphysics and multiscale coupling 
§  Failure mechanisms of hydrogen embrittlement in stainless steel 
§  High rate deformation and twinning of tantalum 

§  Meso/Continuum Coupling 
§  Investigating microstructural effects on bulk inelastic properties 
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A case for concurrent coupling 
Q: Is a one-way transfer accurate? Conservative? 
A: For failure processes involving localization, no. 

violates equilibrium postpones failure 
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  Multiscale methods for failure 



Coupling finite element meshes 
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  Multiscale methods for failure 



Hydrogen activates microstructure  
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deformation twins
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§  Aids deformation bands/twinning (nm) 
§  Activates phase transformations (nm – µm) 
§  Accentuates grain boundary interactions (nm) 

Hydrogen activates microstructure 

Material specifications focus on microstructure 
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Demonstrate Concurrent Multiscale Coupling 

plotting axial 
stress  

Schwarz 

concurrent 
coupling 

Two distinct bodies, the 
component scale and the 
microstructural scale, are 
coupled iteratively with 
alternating Schwarz  

component  
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models 

microstructural  
scale 
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Single crystal constitutive equations 
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Microstructural equivalency 

12	
  

Microstructural realizations from a single 
set of underlying morphological statistics 

Are the realizations 
equivalent in terms of 
mechanical response? 

Meso/Continuum coupling 



Summary 

§  Sandia modeling needs drive development of technologies 
for: 
§  Scale bridging 
§  Incorporating lower length scale response 
§  Evaluating the effects of microstructure 

§  Current efforts include development in the areas of: 
§  Concurrent coupling strategies 
§  Microstructural tools, crystal plasticity models 
§  Strong multiphysics coupling 
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