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OUTLINE

Surrogates needed for complex models

Polynomial Chaos (PC) surrogates do well with uncertain inputs

Bayesian regression provide results with uncertainty certificate

Compressive sensing ideas deal with high-dimensionality
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Application of Interest: ACME Land Model

http://www.cesm.ucar.edu/models/clm/

@ Nested computational grid hierarchy

@ A single-site, 1000-yr simulation takes ~ 10 hrs on 1 CPU
@ Involves ~ 70 input parameters; some dependent

@ Non-smooth input-output relationship
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Surrogate construction: scope and challenges
Construct surrogate for a complex model f(A) to enable

Global sensitivity analysis
Optimization

Forward uncertainty propagation
Input parameter calibration

K. Sargsyan (ksargsy@sandia.gov) AGU Fall Meeting 2015 Dec 18, 2015 4/16



Surrogate construction: scope and challenges
Construct surrogate for a complex model f(A) to enable

Global sensitivity analysis
Optimization

Forward uncertainty propagation
Input parameter calibration
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Surrogate construction: scope and challenges
Construct surrogate for a complex model f(\) to enable

Global sensitivity analysis
Optimization

Forward uncertainty propagation
Input parameter calibration

e Computationally expensive model simulations, data sparsity
Need to build accurate surrogates with as few

training runs as possible

e High-dimensional input space
Too many samples needed to cover the space
Too many terms in the polynomial expansion
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Polynomial Chaos surrogate for f(\)

e Scale the input parameters \; € [a;, b;]

ai+bi  bi—a
= +

Ai 7 5 i
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Polynomial Chaos surrogate for f(\)

e Scale the input parameters \; € [a;, b;]

ai+bi  bi—a
= +

Ai 7 5 i

e Forward function f(-), output u

u = f(A(x))
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e Global sensitivity information for free
- Sobol indices, variance-based decomposition.
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Polynomial Chaos surrogate for f(\)

Scale the input parameters \; € [a;, b;]

ai+bi  bi—a
= +

Ai 7 5 i

Forward function f(-), output u

%

K—1
u=f(Ax)) D aWi(x) = glx)
k=0

Global sensitivity information for free
- Sobol indices, variance-based decomposition.
Bayesian inference useful for finding ¢;:

P(cx|u(x;)) oc P(u(x;)|ck)P(ck)
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Bayesian inference of PC surrogate: nigh-d, low-data regime

y=u(x) ~ Y ali(x)

W1, %2, o0y Xa) = i (1) V1o (¥2) -+ - Py (xa) oo o o
e Issues:
, Nhow to properly choose OS0!
the basis set? L

=}
a

e need to work in underdetermined regime
N < K: fewer data than bases (d.o.f.)

e Discover the underlying low-d structure in the model

e get help from the machine learning community

K. Sargsyan (ksargsy@sandia.gov) AGU Fall Meeting 2015 Dec 18, 2015 6/16



Bayesian inference of PC surrogate: nigh-d, low-data regime
y=ux)~ Yy cli(x)

Wi (X1, X2, o0 Xa) = Py (X1) Pk (X2) - - - i, (%)

Dim 2

e Issues:

o B N o w & 0 o N @ ©
or®e © © © © © © o0 o o o

. how to properly choose
the basis set?

r® © © © © © © o o o o
Nt @ © 0 0 O © 0 0 © ©
w-re © © © 0 0 © 0 0 o o
o © © © 0 0 © 0 0 © ©
or® © © © 0 0 0 0 0 o o
e © @ © © 0 0 0 0 © ©
®l® © © © 6 © © 0 0 0 ©
©l® © © © 0 0 0 0 0 0 0

© © © ©6 6 6 ©6 6 06 o o

Seite © © © © © © © 0 © ©
5

a

o

e need to work in underdetermined regime
N < K: fewer data than bases (d.o.f.)

e Discover the underlying low-d structure in the model

e get help from the machine learning community

K. Sargsyan (ksargsy@sandia.gov) AGU Fall Meeting 2015 Dec 18, 2015 6/16



Bayesian inference of PC surrogate: nigh-d, low-data regime

y=u(x) ~ Y ali(x)

Wi (X1, X2, o0 Xa) = Py (X1) Pk (X2) - - - i, (%)

Dim 2

o B N o w & 0 o N @ ©
or®e © © © © © © o0 o o o

e Issues:

. how to properly choose
the basis set?

~r®e © © o o
[N R ]
wre @
N

o ©6 6 06 0 o
5 6 7 8 9 10
Dim

e need to work in underdetermined regime
N < K: fewer data than bases (d.o.f.)

1

e Discover the underlying low-d structure in the model

e get help from the machine learning community

K. Sargsyan (ksargsy@sandia.gov) AGU Fall Meeting 2015 Dec 18, 2015

6/16



Bayesian inference of PC surrogate: nigh-d, low-data regime
y=ux)~ Yy cli(x)

Wi (X1, X2, o0 Xa) = Py (X1) Pk (X2) - - - i, (%)

Dim 2

o B N o w & 0 o N @ ©
or®e © © © © © © o0 o o o

e Issues:

. how to properly choose
the basis set?

o 06 0 0 o
6 7 8 9 10

~te © © © © o ©
vfe o o o o o
«fe o © o ©
~sfe o o @
Sote o ©

a

e need to work in underdetermined regime
N < K: fewer data than bases (d.o.f.)

e Discover the underlying low-d structure in the model

e get help from the machine learning community

K. Sargsyan (ksargsy@sandia.gov) AGU Fall Meeting 2015 Dec 18, 2015 6/16



Bayesian inference of PC surrogate: nigh-d, low-data regime
y=ux)~ Yy cli(x)

Wi (X1, X2, o0 Xa) = Py (X1) Pk (X2) - - - i, (%)

Dim 2

o B N o w & 0 o N @ ©
or®e © © © © © © o0 o o o

e Issues:

. how to properly choose
the basis set?

~r®e © © o o
[N R R )
w-re 0 O

N

o ©6 6 06 0 o
5 6 7 8 9 10
Dim

e need to work in underdetermined regime
N < K: fewer data than bases (d.o.f.)

1

e Discover the underlying low-d structure in the model

e get help from the machine learning community

K. Sargsyan (ksargsy@sandia.gov) AGU Fall Meeting 2015 Dec 18, 2015 6/16



In a different language....

e N training data points (x,,u,) and K basis terms ¥, (-)

o Projection matrix PV*K with P, = W (x,,)

e Find regression weights ¢ = (¢, ..., ckx—1) so that

up =Y e Wi(x,)

u ~ Pc or

e The number of polynomial basis terms grows fast; a p-th order,
d-dimensional basis has a total of K = (p + d)!/(p!d!) terms.

e For limited data and large basis set (N < K) this is a sparse signal
recovery problem = need some regularization/constraints.

e Least-squares argmin, {|lu — Pc||»}
e The ‘sparsest’ argmin, {|lu — Pc||> + cle||o}
e Compressive sensing argming {||lu — Pc||, + ollc||1 }
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e N training data points (x,,u,) and K basis terms W, (-)

o Projection matrix PV*K with P, = W (x,)

e Find regression weights ¢ = (¢, ..., ck—1) so that

up =y e Wi(xn)

u = Pc or

e The number of polynomial basis terms grows fast; a p-th order,
d-dimensional basis has a total of K = (p + d)!/(p!d!) terms.

e For limited data and large basis set (N < K) this is a sparse signal
recovery problem = need some regularization/constraints.

e Least-squares argmin, {||u — Pc||>}

e The ‘sparsest’ argming {||lu — Pcl| + ollc||o}

e Compressive sensing argming {||lu — Pc||, + ollc||1 }
Bayesian Likelihood Prior
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BCS removes unnecessary basis terms

f(x,y) = cos(x + 4y) F(x,y) = cos(x® + 4y)

Order (dim 2) Order (dim 2)
o 1 .2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6

-2
-4
-6
-8
-10
-12
-14
-16
-18

The square (i, ) represents the (log) spectral coefficient
for the basis term +;(x)¢;(y).
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lterative Bayesian Compressive Sensing (iBCS)

@ [terative BCS: We implement an iterative procedure that allows
increasing the order for the relevant basis terms while maintaining the
dimensionality reduction [Sargsyan et al. 2014], [Jakeman et al. 2015].

@ Combine basis growth and reweighting!

Model data

Weighted
BCS

Initial Basis —

.

W

[ Sparse Basis

—>[ Final Basis ]

!

Iterations

Basis
Growth
Reweighting
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Basis set growth: simple anisotropic function

Dim 2
Wb
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Basis set growth: ... added outlier term

Dim 2
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Application of Interest: ACME Land Model

http://www.cesm.ucar.edu/models/clm/

@ Nested computational grid hierarchy

@ A single-site, 1000-yr simulation takes ~ 10 hrs on 1 CPU
@ Involves ~ 70 input parameters; some dependent

@ Non-smooth input-output relationship
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FLUXNET experiment

T \ .
I h =digp ety
o, 1) . ! N
K’/f g- N L

v
-1 d};
60°S
180° 120°W 60°W 0° 60°E 120°E 180°

FLUXNET sites
@ 96 FLUXNET sites covering major biomes and plant functional types
@ Varying 68 input parameters over given ranges; 5 steady state outputs

@ Ensemble of 3000 runs on Titan, DoE Leadership Computing Facility at
Oak Ridge National Lab
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Sparse PC surrogate and uncertainty decomposition
for the ACME Land Model

@ Main effect sensitivities : rank input parameters
@ Joint sensitivities : most influential input couplings
@ About 200 polynomial basis terms in the 68-dimensional space
@ Sparse PC will further be used for
sampling in a reduced space
parameter calibration against experimental data
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Sparse PC surrogate and uncertainty decomposition
for the ACME Land Model

@ Main effect sensitivities : rank input parameters
@ Joint sensitivities : most influential input couplings
@ About 200 polynomial basis terms in the 68-dimensional space
@ Sparse PC will further be used for
sampling in a reduced space
parameter calibration against experimental data
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Summary

@ Surrogate models are necessary for complex models
Replace the full model for both forward and inverse UQ

@ Uncertain inputs
Polynomial Chaos surrogates well-suited

@ Limited training dataset
Bayesian methods handle limited information well

@ Curse of dimensionality
The hope is that not too many dimensions matter
Compressive sensing (CS) ideas ported from machine learning
We implemented iteratively reweighting Bayesian CS algorithm that
reduces dimensionality and increases order on-the-fly.

@ Open issues
Computational design. What is the best sampling strategy?
Overfitting still present. Cross-validation techniques help.
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Random variables represented by Polynomial Chaos

=

-1
X~ aVi(n)

»
I
)

n=(m,--- 1) standard i.i.d. r.v.
U, standard polynomials, orthogonal w.r.t. 7(n).

U1, m2, -5 Ma) = Vi () Yk, (m2) -+ - Py (M)

Typical truncation rule: total-order p, k; + k> + ... kg < p.
Number of terms is K = (L2,

Essentially, a parameterization of a r.v. by deterministic spectral
modes ¢ .

Most common standard Polynomial-Variable pairs:
(continuous) Gauss-Hermite, Legendre-Uniform,
(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maitre & Knio, 2010]



Bayesian inference of PC surrogate

Posterior Likelihood Prior

K—1 —
U~y o caVi(x) = ge(x) P(¢|D) x P(D|c) P(c)
Data consists of training runs
D= {(xl? )}1 1

Likelihood with a gaussian noise model with o2 fixed or inferred,

) Hon(-52)

Prior on ¢ is chosen to be conjugate, uniform or gaussian.

Lie) = P(Dle) =

Posterior is a multivariate normal
¢c € MVN(X)

The (uncertain) surrogate is a gaussian process

X_:ck\I/k(x):\Il(x)Tc € GP(O(x) u, ¥x)Zw(x))



Sensitivity information comes free with PC surrogate,

K—1
glxr, ..., xq) = ch‘lfk(x)
k=0
e Main effect sensitivity indices

g _ Var[E(g(x|x;)] _ > kel ALk
L Var(g(x)] > k>0 Rl Wl 2

I; is the set of bases with only x; involved
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K—1
glxr, ..., xq) = ch‘lfk(x)
k=0
e Main effect sensitivity indices

g _ Var[E(g(x|x;)] _ > kel ALk
L Var(g(x)] > k>0 Rl Wl 2

¢ Joint sensitivity indices

s, = YarE(s(x]x )] _ Zoren, il Tl
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Sensitivity information comes free with PC surrogate,
but not with piecewise PC

K—1

glxr,...,x E cxUr(x

k=0
e Main effect sensitivity indices

Var[E(g(x|x;)] _ > kel el [kl ?
Var(g(x)] > k0 Gl W2

¢ Joint sensitivity indices

Si=

o Var[E(g(x|xi,x;)] S _ 8, — kel ALlE
’ Var(g(x)] T Yol Tl

e For piecewise PC, need to resort to Monte-Carlo estimation
[Saltelli, 2002].



Basis normalization helps the success rate
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Input correlations: Rosenblatt transformation

o Rosenblatt transformation maps any (not necessarily independent) set of
random variables A = (A4, ..., \s) to uniformi.i.d.’s {x}<_
[Rosenblatt, 1952].

xi = Fi(\)

v = Fp(ali)

x o= Fipi(Aslh, M)

xo = Fgaoi,. 1(MalXat, ... A1)

Cellulose - Labile

e Inverse Rosenblatt transformation A = R~'(x) ensures a well-defined input
PC construction

K—1
Al‘ = Z A[k‘llk(x)
k=0

e Caveat: the conditional distributions are often hard to evaluate accurately.



Strong discontinuities/nonlinearities challenge global
polynomial expansions

Basis enrichment [Ghosh & Ghanem, 2005]

Stochastic domain decomposition
Wiener-Haar expansions,
Multiblock expansions,
Multiwavelets, [Le Maitre et al, 2004,2007]

also known as Multielement PC [Wan & Karniadakis, 2009]

Smart splitting, discontinuity detection
[Archibald et al, 2009; Chantrasmi, 2011; Sargsyan et al, 2011; Jakeman et al, 2012]

Data domain decomposition,

Mixture PC expansions [Sargsyan et al, 2010]
Data clustering, classification,

Piecewise PC expansions



Piecewise PC expansion with classification

e Cluster the training dataset into non-overlapping subsets D,
and D,, where the behavior of function is smoother

e Construct global PC expansions g;(x) = >, ciVx(x) using
each dataset individually (i = 1, 2)

e Declare a surrogate

gi(x) ifxe" Dy
gs(x) = . *
g(x) ifxe* D,

* Requires a classification step to find out which cluster x
belongs to. We applied Random Decision Forests (RDF).

e Caveat: the sensitivity information is harder to obtain.
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