

Sparse Polynomial Chaos Surrogate for ACME Land Model

SAND2015-10667C

via Iterative Bayesian Compressive Sensing

K. Sargsyan¹, D. Ricciuto², P. Thornton²
C. Safta¹, B. Debusschere¹, H. Najm¹

¹Sandia National Laboratories
Livermore, CA

²Oak Ridge National Laboratory
Oak Ridge, TN

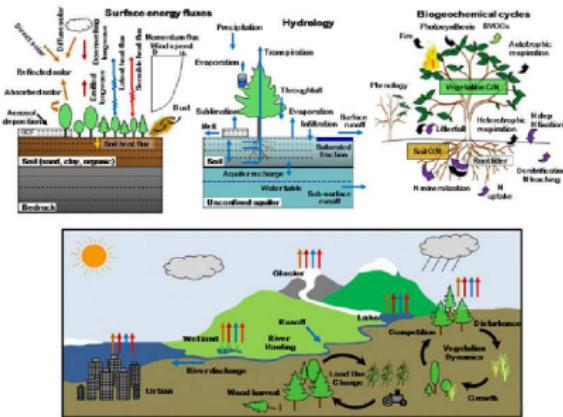
*Sponsored by DOE, Biological and Environmental Research,
under Accelerated Climate Modeling for Energy (ACME).*

*Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy's National Nuclear Security Administration
under contract DE-AC04-94AL85000.*

OUTLINE

- Surrogates needed for complex models
- Polynomial Chaos (PC) surrogates do well with uncertain inputs
- Bayesian regression provide results with uncertainty certificate
- Compressive sensing ideas deal with high-dimensionality

Application of Interest: ACME Land Model



<http://www.cesm.ucar.edu/models/clm/>

- Nested computational grid hierarchy
- A single-site, 1000-yr simulation takes ~ 10 hrs on 1 CPU
- Involves ~ 70 input parameters; some dependent
- Non-smooth input-output relationship

Surrogate construction: scope and challenges

Construct surrogate for a complex model $f(\lambda)$ to enable

- Global sensitivity analysis
- Optimization
- Forward uncertainty propagation
- Input parameter calibration
- ...

- Computationally expensive model simulations, data sparsity
 - Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
 - Too many samples needed to cover the space
 - Too many terms in the polynomial expansion

Surrogate construction: scope and challenges

Construct surrogate for a complex model $f(\lambda)$ to enable

- Global sensitivity analysis
- Optimization
- Forward uncertainty propagation
- Input parameter calibration
- ...
- Computationally expensive model simulations, data sparsity
 - Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
 - Too many samples needed to cover the space
 - Too many terms in the polynomial expansion

Surrogate construction: scope and challenges

Construct surrogate for a complex model $f(\lambda)$ to enable

- Global sensitivity analysis
- Optimization
- Forward uncertainty propagation
- Input parameter calibration
- ...
- Computationally expensive model simulations, data sparsity
 - Need to build accurate surrogates with as few training runs as possible
- High-dimensional input space
 - Too many samples needed to cover the space
 - Too many terms in the polynomial expansion

Polynomial Chaos surrogate for $f(\lambda)$

- Scale the input parameters $\lambda_i \in [a_i, b_i]$

$$\lambda_i = \frac{a_i + b_i}{2} + \frac{b_i - a_i}{2} x_i$$

- Forward function $f(\cdot)$, output u

$$u = f(\lambda(x)) \approx \sum_{k=0}^{K-1} c_k \Psi_k(x) \equiv g(x)$$

- Global sensitivity information for free
 - Sobol indices, variance-based decomposition.
- Bayesian inference useful for finding c_k :

$$P(c_k | u(x_j)) \propto P(u(x_j) | c_k) P(c_k)$$

Polynomial Chaos surrogate for $f(\lambda)$

- Scale the input parameters $\lambda_i \in [a_i, b_i]$

$$\lambda_i = \frac{a_i + b_i}{2} + \frac{b_i - a_i}{2} x_i$$

- Forward function $f(\cdot)$, output u

$$u = f(\lambda(\mathbf{x})) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x}) \equiv g(\mathbf{x})$$

- Global sensitivity information for free
 - Sobol indices, variance-based decomposition.
- Bayesian inference useful for finding c_k :

$$P(c_k | u(\mathbf{x}_j)) \propto P(u(\mathbf{x}_j) | c_k) P(c_k)$$

Polynomial Chaos surrogate for $f(\lambda)$

- Scale the input parameters $\lambda_i \in [a_i, b_i]$

$$\lambda_i = \frac{a_i + b_i}{2} + \frac{b_i - a_i}{2} x_i$$

- Forward function $f(\cdot)$, output u

$$u = f(\lambda(\mathbf{x})) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x}) \equiv g(\mathbf{x})$$

- Global sensitivity information for free
 - Sobol indices, variance-based decomposition.
- Bayesian inference useful for finding c_k :

$$P(c_k | u(\mathbf{x}_j)) \propto P(u(\mathbf{x}_j) | c_k) P(c_k)$$

Polynomial Chaos surrogate for $f(\lambda)$

- Scale the input parameters $\lambda_i \in [a_i, b_i]$

$$\lambda_i = \frac{a_i + b_i}{2} + \frac{b_i - a_i}{2} x_i$$

- Forward function $f(\cdot)$, output u

$$u = f(\lambda(\mathbf{x})) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x}) \equiv g(\mathbf{x})$$

- Global sensitivity information for free
 - Sobol indices, variance-based decomposition.
- Bayesian inference useful for finding c_k :

$$P(c_k | u(\mathbf{x}_j)) \propto P(u(\mathbf{x}_j) | c_k) P(c_k)$$

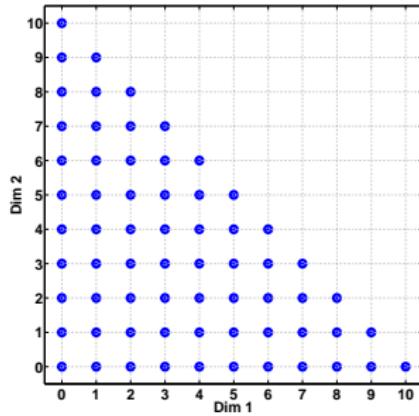
Bayesian inference of PC surrogate: high-d, low-data regime

$$y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

$$\Psi_k(x_1, x_2, \dots, x_d) = \psi_{k_1}(x_1) \psi_{k_2}(x_2) \cdots \psi_{k_d}(x_d)$$

- Issues:

- how to properly choose the basis set?
- need to work in underdetermined regime $N < K$: fewer data than bases (d.o.f.)

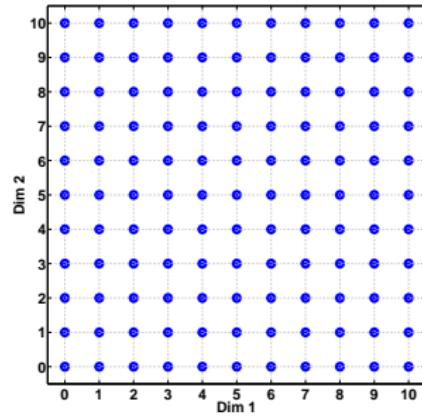


- Discover the underlying low-d structure in the model
 - get help from the machine learning community

Bayesian inference of PC surrogate: high-d, low-data regime

$$y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

$$\Psi_k(x_1, x_2, \dots, x_d) = \psi_{k_1}(x_1) \psi_{k_2}(x_2) \cdots \psi_{k_d}(x_d)$$



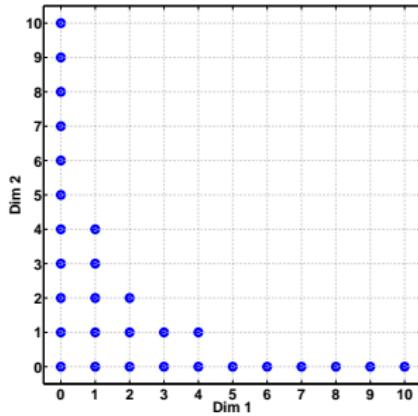
- Issues:
 - how to properly choose the basis set?
 - need to work in underdetermined regime $N < K$: fewer data than bases (d.o.f.)
- Discover the underlying low-d structure in the model
 - get help from the machine learning community

Bayesian inference of PC surrogate: high-d, low-data regime

$$y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

$$\Psi_k(x_1, x_2, \dots, x_d) = \psi_{k_1}(x_1) \psi_{k_2}(x_2) \cdots \psi_{k_d}(x_d)$$

- Issues:
 - how to properly choose the basis set?
 - need to work in underdetermined regime $N < K$: fewer data than bases (d.o.f.)
- Discover the underlying low-d structure in the model
 - get help from the machine learning community

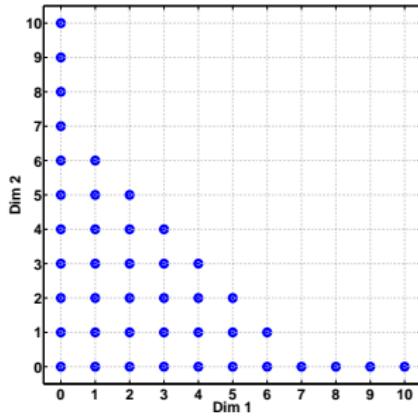


Bayesian inference of PC surrogate: high-d, low-data regime

$$y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

$$\Psi_k(x_1, x_2, \dots, x_d) = \psi_{k_1}(x_1) \psi_{k_2}(x_2) \cdots \psi_{k_d}(x_d)$$

- Issues:
 - how to properly choose the basis set?
 - need to work in underdetermined regime $N < K$: fewer data than bases (d.o.f.)
- Discover the underlying low-d structure in the model
 - get help from the machine learning community

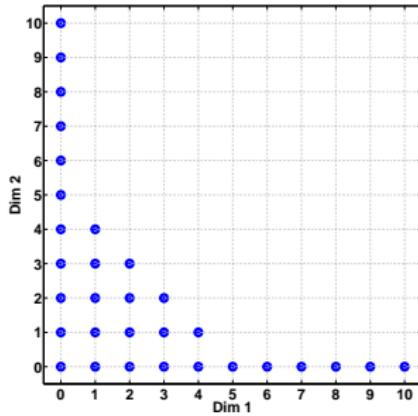


Bayesian inference of PC surrogate: high-d, low-data regime

$$y = u(\mathbf{x}) \approx \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

$$\Psi_k(x_1, x_2, \dots, x_d) = \psi_{k_1}(x_1) \psi_{k_2}(x_2) \cdots \psi_{k_d}(x_d)$$

- Issues:
 - how to properly choose the basis set?
 - need to work in underdetermined regime $N < K$: fewer data than bases (d.o.f.)
- Discover the underlying low-d structure in the model
 - get help from the machine learning community



In a different language....

- N training data points (\mathbf{x}_n, u_n) and K basis terms $\Psi_k(\cdot)$
- Projection matrix $\mathbf{P}^{N \times K}$ with $\mathbf{P}_{nk} = \Psi_k(\mathbf{x}_n)$
- Find regression weights $\mathbf{c} = (c_0, \dots, c_{K-1})$ so that

$$\mathbf{u} \approx \mathbf{P}\mathbf{c}$$

or

$$u_n \approx \sum_k c_k \Psi_k(\mathbf{x}_n)$$

- The number of polynomial basis terms grows fast; a p -th order, d -dimensional basis has a total of $K = (p+d)!/(p!d!)$ terms.
- For limited data and large basis set ($N < K$) this is a sparse signal recovery problem \Rightarrow need some regularization/constraints.

- Least-squares $\text{argmin}_{\mathbf{c}} \{ \|\mathbf{u} - \mathbf{P}\mathbf{c}\|_2 \}$

- The ‘sparsest’ $\text{argmin}_{\mathbf{c}} \{ \|\mathbf{u} - \mathbf{P}\mathbf{c}\|_2 + \alpha \|\mathbf{c}\|_0 \}$

- Compressive sensing $\text{argmin}_{\mathbf{c}} \{ \|\mathbf{u} - \mathbf{P}\mathbf{c}\|_2 + \alpha \|\mathbf{c}\|_1 \}$

In a different language....

- N training data points (\mathbf{x}_n, u_n) and K basis terms $\Psi_k(\cdot)$
- Projection matrix $\mathbf{P}^{N \times K}$ with $\mathbf{P}_{nk} = \Psi_k(\mathbf{x}_n)$
- Find regression weights $\mathbf{c} = (c_0, \dots, c_{K-1})$ so that

$$\mathbf{u} \approx \mathbf{P}\mathbf{c}$$

or

$$u_n \approx \sum_k c_k \Psi_k(\mathbf{x}_n)$$

- The number of polynomial basis terms grows fast; a p -th order, d -dimensional basis has a total of $K = (p+d)!/(p!d!)$ terms.
- For limited data and large basis set ($N < K$) this is a sparse signal recovery problem \Rightarrow need some regularization/constraints.

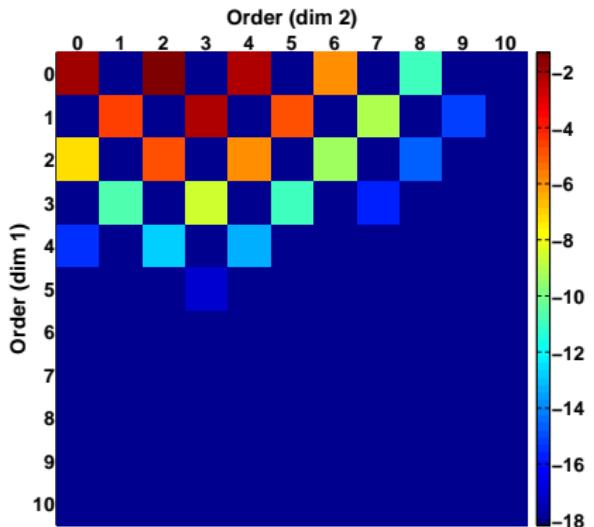
- Least-squares $\text{argmin}_{\mathbf{c}} \{ \|\mathbf{u} - \mathbf{P}\mathbf{c}\|_2 \}$

- The 'sparsest' $\text{argmin}_{\mathbf{c}} \{ \|\mathbf{u} - \mathbf{P}\mathbf{c}\|_2 + \alpha \|\mathbf{c}\|_0 \}$

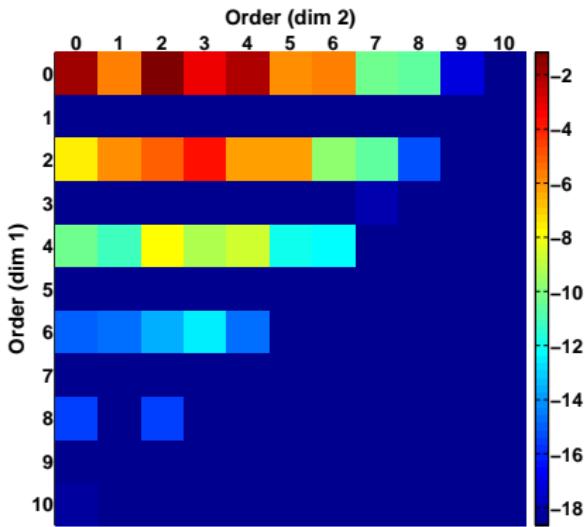
- Compressive sensing
Bayesian $\text{argmin}_{\mathbf{c}} \{ \|\mathbf{u} - \mathbf{P}\mathbf{c}\|_2 + \alpha \|\mathbf{c}\|_1 \}$
Likelihood Prior

BCS removes unnecessary basis terms

$$f(x, y) = \cos(x + 4y)$$



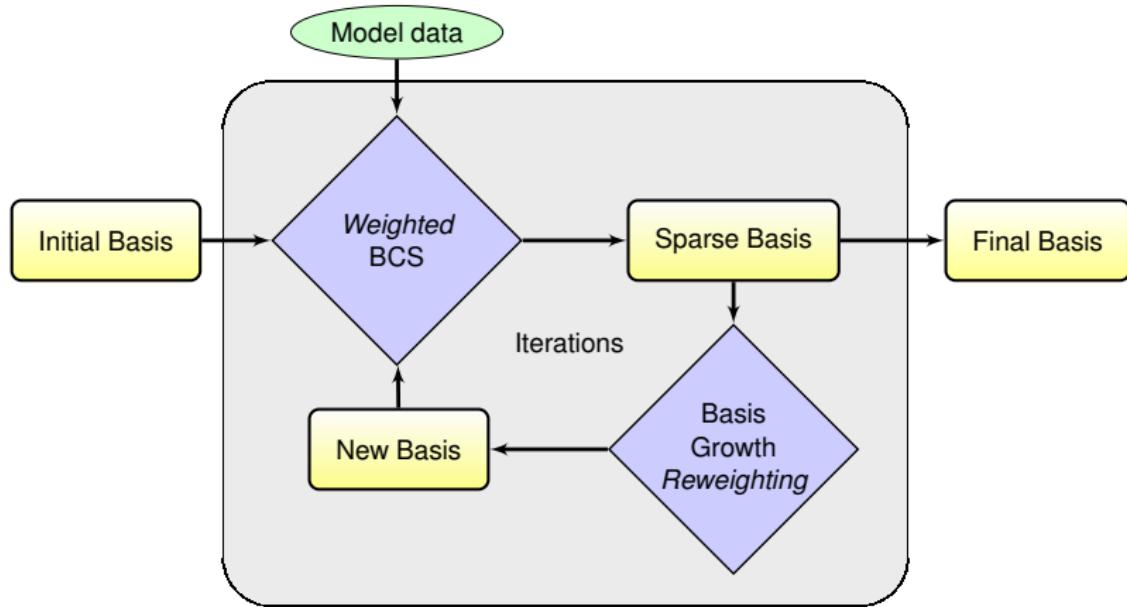
$$f(x, y) = \cos(x^2 + 4y)$$



The square (i, j) represents the (log) spectral coefficient for the basis term $\psi_i(x)\psi_j(y)$.

Iterative Bayesian Compressive Sensing (iBCS)

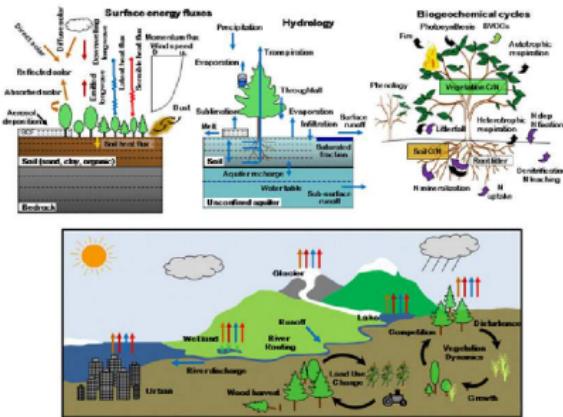
- *Iterative BCS*: We implement an iterative procedure that allows increasing the order for the relevant basis terms while maintaining the dimensionality reduction [Sargsyan *et al.* 2014], [Jakeman *et al.* 2015].
- Combine basis growth and reweighting!



Basis set growth: simple anisotropic function

Basis set growth: ... added outlier term

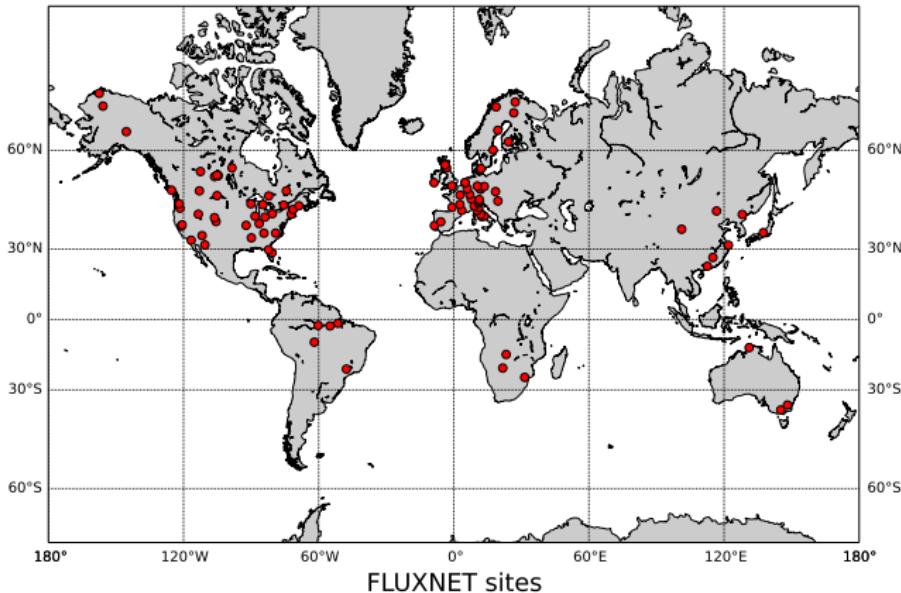
Application of Interest: ACME Land Model



<http://www.cesm.ucar.edu/models/clm/>

- Nested computational grid hierarchy
- A single-site, 1000-yr simulation takes ~ 10 hrs on 1 CPU
- Involves ~ 70 input parameters; some dependent
- Non-smooth input-output relationship

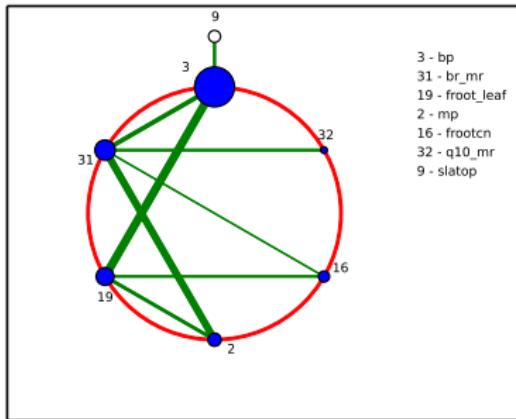
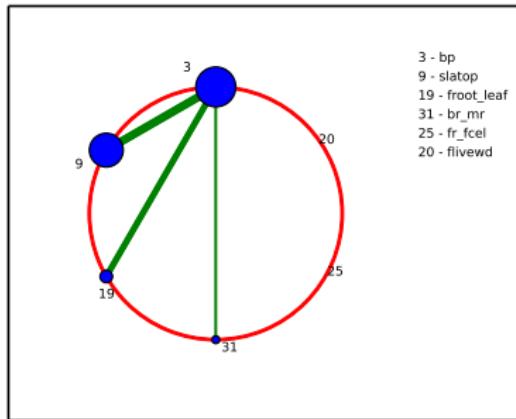
FLUXNET experiment



- 96 FLUXNET sites covering major biomes and plant functional types
- Varying 68 input parameters over given ranges; 5 steady state outputs
- Ensemble of 3000 runs on Titan, DoE Leadership Computing Facility at Oak Ridge National Lab

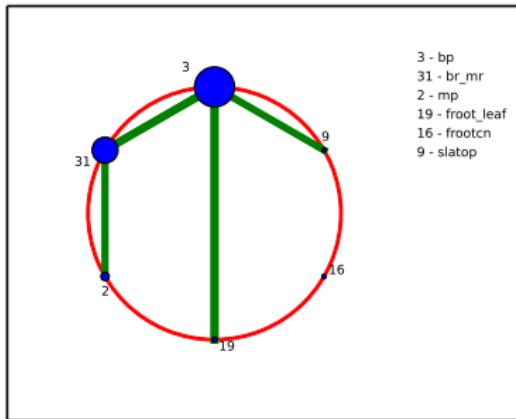
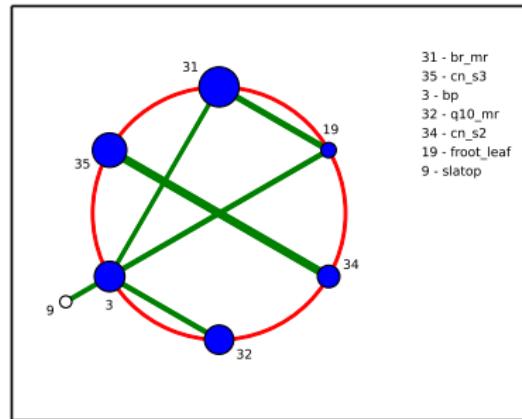
Sparse PC surrogate and uncertainty decomposition for the ACME Land Model

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 200 polynomial basis terms in the 68-dimensional space
- Sparse PC will further be used for
 - sampling in a reduced space
 - parameter calibration against experimental data



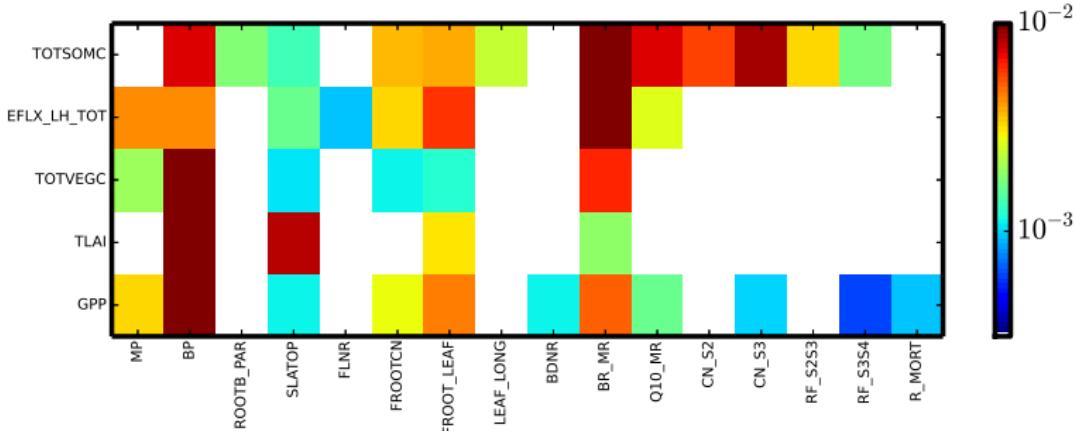
Sparse PC surrogate and uncertainty decomposition for the ACME Land Model

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 200 polynomial basis terms in the 68-dimensional space
- Sparse PC will further be used for
 - sampling in a reduced space
 - parameter calibration against experimental data



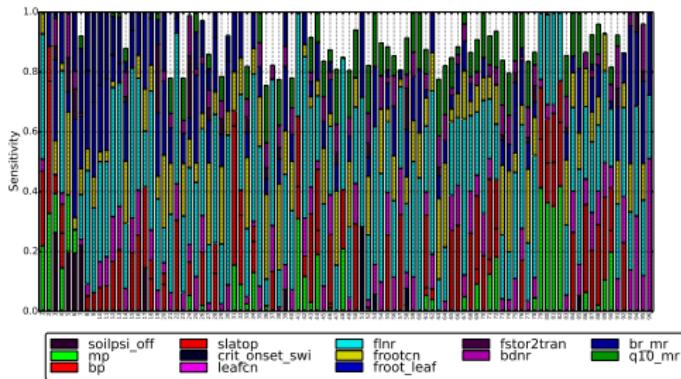
Sparse PC surrogate and uncertainty decomposition for the ACME Land Model

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 200 polynomial basis terms in the 68-dimensional space
- Sparse PC will further be used for
 - sampling in a reduced space
 - parameter calibration against experimental data



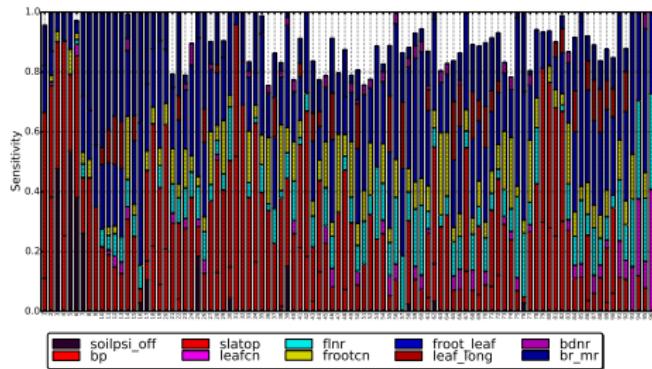
Sparse PC surrogate and uncertainty decomposition for the ACME Land Model

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 200 polynomial basis terms in the 68-dimensional space
- Sparse PC will further be used for
 - sampling in a reduced space
 - parameter calibration against experimental data



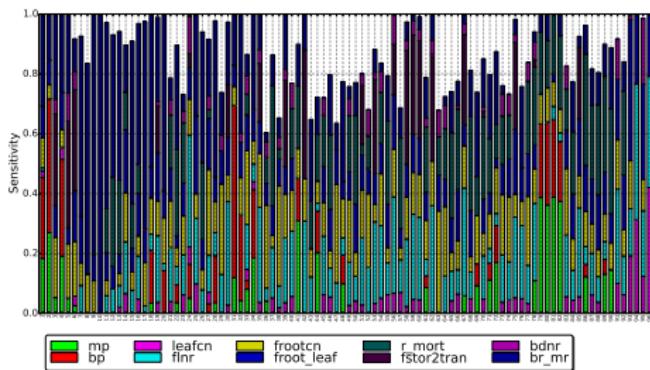
Sparse PC surrogate and uncertainty decomposition for the ACME Land Model

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 200 polynomial basis terms in the 68-dimensional space
- Sparse PC will further be used for
 - sampling in a reduced space
 - parameter calibration against experimental data



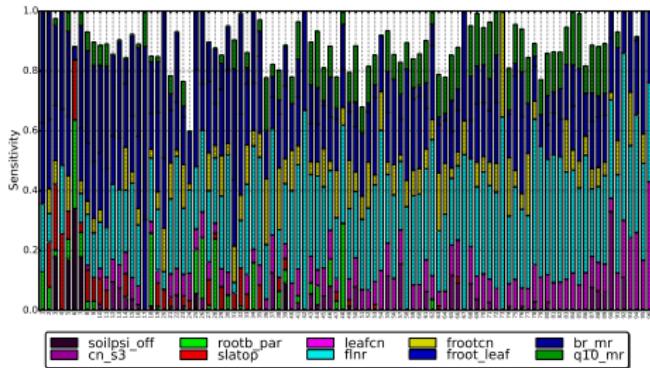
Sparse PC surrogate and uncertainty decomposition for the ACME Land Model

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 200 polynomial basis terms in the 68-dimensional space
- Sparse PC will further be used for
 - sampling in a reduced space
 - parameter calibration against experimental data



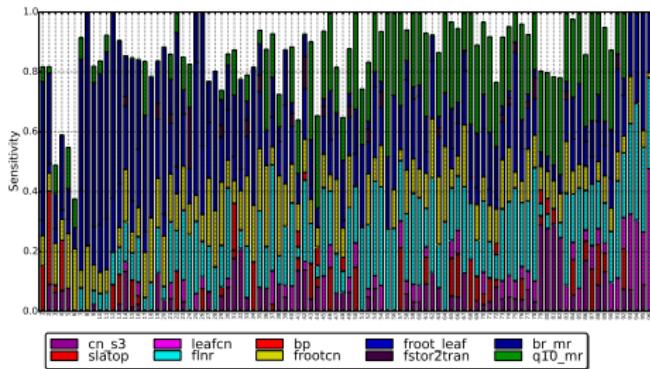
Sparse PC surrogate and uncertainty decomposition for the ACME Land Model

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 200 polynomial basis terms in the 68-dimensional space
- Sparse PC will further be used for
 - sampling in a reduced space
 - parameter calibration against experimental data



Sparse PC surrogate and uncertainty decomposition for the ACME Land Model

- Main effect sensitivities : rank input parameters
- Joint sensitivities : most influential input couplings
- About 200 polynomial basis terms in the 68-dimensional space
- Sparse PC will further be used for
 - sampling in a reduced space
 - parameter calibration against experimental data



Summary

- **Surrogate** models are necessary for complex models
 - Replace the full model for both forward and inverse UQ
- Uncertain inputs
 - **Polynomial Chaos** surrogates well-suited
- Limited training dataset
 - **Bayesian** methods handle limited information well
- Curse of dimensionality
 - The hope is that not too many dimensions matter
 - Compressive sensing (CS) ideas ported from machine learning
 - We implemented *iteratively* **reweighting Bayesian CS** algorithm that reduces dimensionality and increases order on-the-fly.

- Open issues
 - Computational design. What is the best sampling strategy?
 - Overfitting still present. Cross-validation techniques help.

Literature

- M. Tipping, "Sparse Bayesian learning and the relevance vector machine", *J Machine Learning Research*, 1, pp. 211-244, 2001.
- S. Ji, Y. Xue and L. Carin, "Bayesian compressive sensing", *IEEE Trans. Signal Proc.*, 56:6, 2008.
- S. Babacan, R. Molina and A. Katsaggelos, "Bayesian compressive sensing using Laplace priors", *IEEE Trans. Image Proc.*, 19:1, 2010.
- E. J. Candes, M. Wakin and S. Boyd. "Enhancing sparsity by reweighted ℓ_1 minimization", *J. Fourier Anal. Appl.*, 14 877-905, 2007.
- A. Saltelli, "Making best use of model evaluations to compute sensitivity indices", *Comp Phys Comm*, 145, 2002.
- K. Sargsyan, C. Safta, H. Najm, B. Debusschere, D. Ricciuto and P. Thornton, "Dimensionality reduction for complex models via Bayesian compressive sensing", *Int J for Uncertainty Quantification*, 4(1), pp. 63-93, 2014.
- J. Jakeman, M. Eldred and K. Sargsyan, "Enhancing ℓ_1 -minimization estimates of polynomial chaos expansions using basis selection", *J Comp Phys*, 289, pp. 18-34, 2015.

Random variables represented by Polynomial Chaos

$$X \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\boldsymbol{\eta})$$

- $\boldsymbol{\eta} = (\eta_1, \dots, \eta_d)$ standard i.i.d. r.v.
 Ψ_k standard polynomials, orthogonal w.r.t. $\pi(\boldsymbol{\eta})$.

$$\Psi_k(\eta_1, \eta_2, \dots, \eta_d) = \psi_{k_1}(\eta_1) \psi_{k_2}(\eta_2) \cdots \psi_{k_d}(\eta_d)$$

- Typical truncation rule: total-order p , $k_1 + k_2 + \dots + k_d \leq p$.
Number of terms is $K = \frac{(d+p)!}{d!p!}$.
- Essentially, a parameterization of a r.v. by deterministic spectral modes c_k .
- Most common standard Polynomial-Variable pairs:
(continuous) Gauss-Hermite, Legendre-Uniform,
(discrete) Poisson-Charlier.

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maître & Knio, 2010]

Bayesian inference of PC surrogate

$$u \simeq \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x}) \equiv g\mathbf{c}(\mathbf{x})$$

$$\overbrace{P(\mathbf{c}|\mathcal{D})}^{\text{Posterior}} \propto \overbrace{P(\mathcal{D}|\mathbf{c})}^{\text{Likelihood}} \overbrace{P(\mathbf{c})}^{\text{Prior}}$$

- Data consists of *training runs*

$$\mathcal{D} \equiv \{(\mathbf{x}_i, u_i)\}_{i=1}^N$$

- Likelihood with a gaussian noise model with σ^2 fixed or inferred,

$$L(\mathbf{c}) = P(\mathcal{D}|\mathbf{c}) = \left(\frac{1}{\sigma \sqrt{2\pi}} \right)^N \prod_{i=1}^N \exp \left(-\frac{(u_i - g\mathbf{c}(\mathbf{x}))^2}{2\sigma^2} \right)$$

- Prior on \mathbf{c} is chosen to be conjugate, uniform or gaussian.
- Posterior is a *multivariate normal*

$$\mathbf{c} \in \mathcal{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

- The (uncertain) surrogate is a *gaussian process*

$$\sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x}) = \boldsymbol{\Psi}(\mathbf{x})^T \mathbf{c} \in \mathcal{GP}(\boldsymbol{\Psi}(\mathbf{x})^T \boldsymbol{\mu}, \boldsymbol{\Psi}(\mathbf{x}) \boldsymbol{\Sigma} \boldsymbol{\Psi}(\mathbf{x}')^T)$$

Sensitivity information comes free with PC surrogate,

$$g(x_1, \dots, x_d) = \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

- Main effect sensitivity indices

$$S_i = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i)]}{Var[g(\mathbf{x})]} = \frac{\sum_{k \in \mathbb{I}_i} c_k^2 \|\Psi_k\|^2}{\sum_{k>0} c_k^2 \|\Psi_k\|^2}$$

\mathbb{I}_i is the set of bases with only x_i involved

Sensitivity information comes free with PC surrogate,

$$g(x_1, \dots, x_d) = \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

- Main effect sensitivity indices

$$S_i = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i)]}{Var[g(\mathbf{x})]} = \frac{\sum_{k \in \mathbb{I}_i} c_k^2 \|\Psi_k\|^2}{\sum_{k>0} c_k^2 \|\Psi_k\|^2}$$

- Joint sensitivity indices

$$S_{ij} = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i, x_j)]}{Var[g(\mathbf{x})]} - S_i - S_j = \frac{\sum_{k \in \mathbb{I}_{ij}} c_k^2 \|\Psi_k\|^2}{\sum_{k>0} c_k^2 \|\Psi_k\|^2}$$

\mathbb{I}_{ij} is the set of bases with only x_i and x_j involved

Sensitivity information comes free with PC surrogate,
but not with piecewise PC

$$g(x_1, \dots, x_d) = \sum_{k=0}^{K-1} c_k \Psi_k(\mathbf{x})$$

- Main effect sensitivity indices

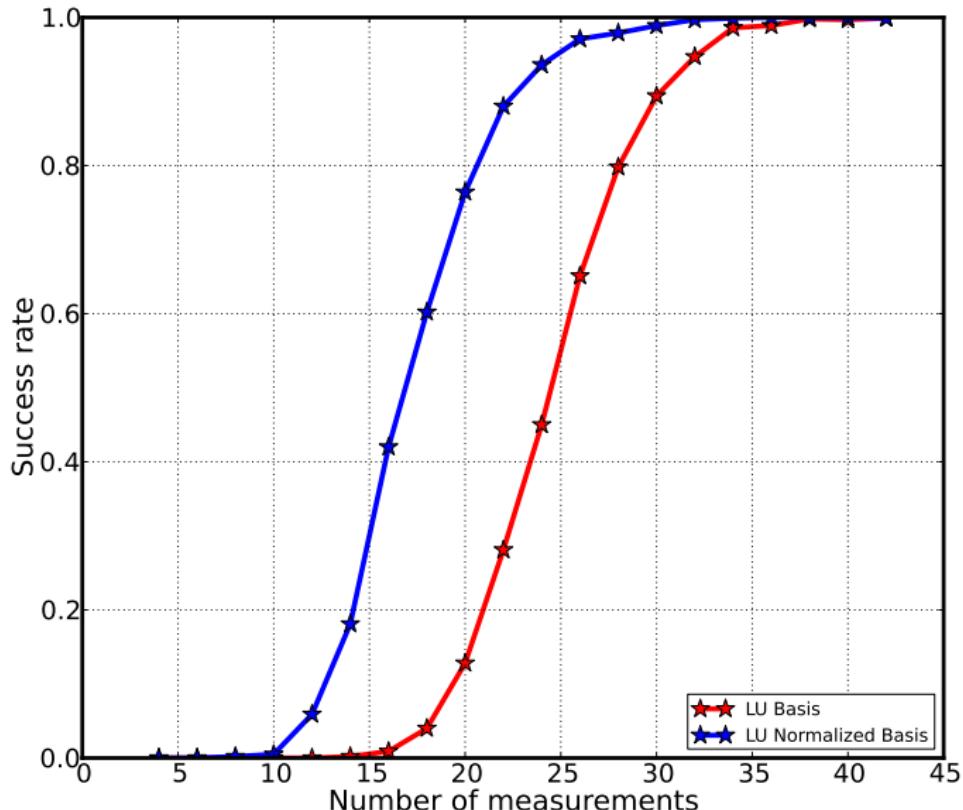
$$S_i = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i)]]}{Var[g(\mathbf{x})]} = \frac{\sum_{k \in \mathbb{I}_i} c_k^2 \|\Psi_k\|^2}{\sum_{k>0} c_k^2 \|\Psi_k\|^2}$$

- Joint sensitivity indices

$$S_{ij} = \frac{Var[\mathbb{E}(g(\mathbf{x}|x_i, x_j)]]}{Var[g(\mathbf{x})]} - S_i - S_j = \frac{\sum_{k \in \mathbb{I}_{ij}} c_k^2 \|\Psi_k\|^2}{\sum_{k>0} c_k^2 \|\Psi_k\|^2}$$

- For piecewise PC, need to resort to Monte-Carlo estimation
[Saltelli, 2002].

Basis normalization helps the success rate



Input correlations: Rosenblatt transformation

- Rosenblatt transformation maps any (not necessarily independent) set of random variables $\lambda = (\lambda_1, \dots, \lambda_d)$ to uniform i.i.d.'s $\{x_i\}_{i=1}^d$ [Rosenblatt, 1952].

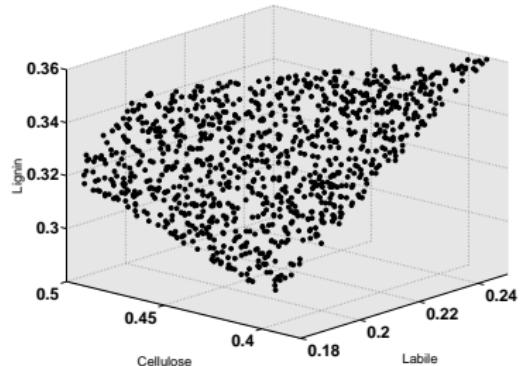
$$x_1 = F_1(\lambda_1)$$

$$x_2 = F_{2|1}(\lambda_2|\lambda_1)$$

$$x_3 = F_{3|2,1}(\lambda_3|\lambda_2, \lambda_1)$$

$$\vdots$$

$$x_d = F_{d|d-1, \dots, 1}(\lambda_d|\lambda_{d-1}, \dots, \lambda_1)$$



- Inverse Rosenblatt transformation $\lambda = R^{-1}(\mathbf{x})$ ensures a well-defined input PC construction

$$\lambda_i = \sum_{k=0}^{K-1} \lambda_{ik} \Psi_k(\mathbf{x})$$

- Caveat: the conditional distributions are often hard to evaluate accurately.

Strong discontinuities/nonlinearities challenge global polynomial expansions

- Basis enrichment [Ghosh & Ghanem, 2005]
- Stochastic domain decomposition
 - Wiener-Haar expansions,
Multiblock expansions,
Multiwavelets, [Le Maître *et al*, 2004,2007]
 - also known as Multielement PC [Wan & Karniadakis, 2009]
- Smart splitting, discontinuity detection
[Archibald *et al*, 2009; Chantrasmi, 2011; Sargsyan *et al*, 2011; Jakeman *et al*, 2012]
- Data domain decomposition,
 - Mixture PC expansions [Sargsyan *et al*, 2010]
- Data clustering, classification,
 - Piecewise PC expansions

Piecewise PC expansion with classification

- Cluster the training dataset into non-overlapping subsets \mathcal{D}_1 and \mathcal{D}_2 , where the behavior of function is smoother
- Construct global PC expansions $g_i(\mathbf{x}) = \sum_k c_{ik} \Psi_k(\mathbf{x})$ using each dataset individually ($i = 1, 2$)
- Declare a surrogate

$$g_s(\mathbf{x}) = \begin{cases} g_1(\mathbf{x}) & \text{if } \mathbf{x} \in^* \mathcal{D}_1 \\ g_2(\mathbf{x}) & \text{if } \mathbf{x} \in^* \mathcal{D}_2 \end{cases}$$

* Requires a classification step to find out which cluster \mathbf{x} belongs to. We applied Random Decision Forests (RDF).

- Caveat: the sensitivity information is harder to obtain.