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Abstract

The impact of data shortfalls on reliability uncertainty is studied using the Rationale for

Assessing Degradation Arriving at Random (RADAR) Bayesian methodology for a series

system.
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1 Introduction

This article proposes using the RADAR methodology (a Rationale for Assessing Degradation

Arriving at Random (Vander Wiel et al. (2011)) to assess the impact of nuclear weapon

surveillance data shortfalls on reliability uncertainty. The RADAR approach provides an

advantageous alternative to the look-back period methodology proposed in Hamada et al.

(2015).

An outline of this article is as follows. First, we review the RADAR methodology. Then,

we apply the RADAR methodology to a system consisting of six subsystems in series. Next,

we consider the impact of data shortfalls when testing ceases or is stopped. Finally, we

conclude with a discussion.

Consider a system like the NEP with six subsystems: GTS, DET, HE, PIT, CASE, CSA.

There are multiple diagnostics applied in surveilling each subsystem. In this article, we will

summarize all these results as a pass or fail for each of the subsystems. A pass or fail does

not necessarily mean that the system will work or not but we treat them as such to assess

reliability uncertainty. In fact, we consider the scenario in which the surveillance data lead

to passes for all subsystems.

The number and frequency of surveillance can differ by subsystem, say, seven a year for

DET and one every three years for CSA. Note that these data counts and any others used

in this article are for illustrative purposes only.

Here, we consider a series system in which all the subsystems have to work in order for the

system to work. For a series system and assuming that the subsystems act independently,

the system reliability is the product of the subsystem reliabilities. As discussed above, we

will use pass/fail data to assess reliability and use a Bayesian approach to obtain a posterior

distribution on subsystem reliability. We can then randomly sample from each of these

subsystem reliability distributions and multiply them together to obtain a random sample

from the system reliability distribution. Here we use the 90% lower bound known as the 90%

credible lower bound to assess reliability uncertainty; that is, we are 90% confident that the

reliability exceeds this lower bound.
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2 The RADAR Methodology

Vander Wiel et al. (2011) propose the RADAR methodology with the following prior model

for reliability over time. Let πt be the reliability at year t that is defined as follows:

π0 = ρ0,

πt = ρtπt−1, t = 1, 2, . . . ,
(1)

where the annual degradation rate ρt is defined as

ρt = rt, t = 0, 1

ρt = rtρt−1, t = 2, 3, . . . .
(2)

Moreover, independent shocks rt are distributed as rt ∼ OneBeta(pt, at, bt), where the One-

Beta distribution is defined as

1 with probability pt,

Beta(at, bt), otherwise.
(3)

That is, with probability pt, the shock rt is less than 1 drawn from a Beta(at, bt) distribution.

Equation (2) implies that this less than one shock rt is applied in year t and every year

thereafter. Here, we use (a0, b0, p0) = (99, 1, 0.5) and (at, bt, pt) = (99, 1, 0.98) that Vander

Wiel et al. (2011) used in their examples.

Figure 1 shows the 0.5, 0.25, 0.10 quantiles of prior πt over 25 years for (at, bt, pt) =

(99, 1, 0.98).
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Figure 1: Prior πt 0.5, 0.25, 0.10 quantiles over 25 years for (a0, b0, p0) = (99, 1, 0.5) and
(at, bt, pt) = (99, 1, 0.98).

Now consider the data collected over time. Let Xt for t = 0, . . . , T denote the number

of passes out of nt tests. Here, we assume all passes, so that Xt = nt. Further, we let

the collection of data through the T th year be denoted by ST , where ST = {Xt = nt, t =

0, . . . , T}. Also, let N0:T =
∑T

i=0 nt and Nt:T =
∑T

i=t(i− t+ 1)nt.

Then, Vander Wiel et al. (2011) show that the posterior rt also has a OneBeta distribu-

tion:

rt|ST ∼ OneBeta(p′t,T , at+Nt:T , bt), (4)

where

p′t,T =
ptB(at, bt)

ptB(at, bt) + (1− pt)B(at +Nt:T , bt)
(5)

and B(a, b) = Γ(a)Γ(b)
Γ(a+b)

. Then the posterior πt can be expressed as πt = r0

∏T
i=1 r

t−i+1
i . For

t > T , rt still has its prior distribution because rt is independent of ST . The independence

no longer holds if there is at least one fail; see Vander Wiel et al. (2011) for details.
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3 Results for Two Scenarios

Suppose that for (GTS, DET, HE, PIT, CASE) subsystems, nt tests are (4, 7, 4, 1, 1) up to

T = 10 and for the CSA subsystem n0 = 1 and then 1 test every three years so that there

are a total of 4 tests at T = 10, i.e., the sequence is (1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0). We also

consider T = 20 so that for the CSA subsystem, there is a total of 7 tests at T = 20.

We use the reliability prior in Figure 1 and apply the RADAR methodology to obtain

posterior reliabilities whose 0.5, 0.25, 0.10 quantiles are plotted in Figure 2 for GTS and

HE, Figure 3 for DET, Figure 4 for PIT and CASE and Figure 5 for CSA for the scenario

T = 10. The posterior quantiles appear as black lines. The prior quantiles appear as red

lines. The green line corresponds to a reliability of 1 for reference. For the scenario T = 20,

the corresponding figures are Figures 6-9.

Note that all the ST data are being used to update all the reliabilities. That is, this is

what we know based on the data at T = 10 or T = 20.
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Figure 2: Reliability prior and posterior 0.5, 0.25, 0.10 quantiles for GTS and HE subsystems
for the scenario T = 10. The black and red lines correspond to posterior and prior quantiles,
respectively.
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Figure 3: Reliability prior and posterior 0.5, 0.25, 0.10 quantiles for DET subsystem for
the scenario T = 10. The black and red lines correspond to posterior and prior quantiles,
respectively.
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Figure 4: Reliability prior and posterior 0.5, 0.25, 0.10 quantiles for PIT and CASE sub-
systems for the scenario T = 10. The black and red lines correspond to posterior and prior
quantiles, respectively.
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Figure 5: Reliability prior and posterior 0.5, 0.25, 0.10 quantiles for CSA subsystem for
the scenario T = 10. The black and red lines correspond to posterior and prior quantiles,
respectively.
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Figure 6: Reliability prior and posterior 0.5, 0.25, 0.10 quantiles for GTS and HE subsystems
for the scenario T = 20. The black and red lines correspond to posterior and prior quantiles,
respectively.
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Figure 7: Reliability prior and posterior 0.5, 0.25, 0.10 quantiles for DET subsystem for
the scenario T = 20. The black and red lines correspond to posterior and prior quantiles,
respectively.
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Figure 8: Reliability prior and posterior 0.5, 0.25, 0.10 quantiles for PIT and CASE sub-
systems for the scenario T = 20. The black and red lines correspond to posterior and prior
quantiles, respectively.
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Figure 9: Reliability prior and posterior 0.5, 0.25, 0.10 quantiles for CSA subsystem for
the scenario T = 20. The black and red lines correspond to posterior and prior quantiles,
respectively.

To illustrate how we obtain the system reliability posterior, we show the reliability pos-

teriors of the subsystems in Figures 10 and 12 at T = 10 or T = 20, respectively. The

90% credible lower bounds on reliability appear as dashed lines. As discussed in the In-

troduction, the posterior system reliability distribution can be sampled by sampling all the

posterior subsystem reliability distributions and multiplying the subsystem reliabilities to

obtain a system reliability for a series system. The reliability posteriors for the systems are

shown in Figures 11 and 13 at T = 10 and T = 20, respectively. We see that although

the subsystem posteriors in Figures 10 and 12 increase monotonically, the series system

posteriors in Figures 11 and 13 do not with their peaks occurring at a reliability less than

one.
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Figure 10: Posterior Distribution of Subsystem Reliability at T = 10 (90% credible lower
bound as dashed line)
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Figure 11: Posterior Distribution of System Reliability at T = 10 (90% credible lower bound
as dashed line)
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Figure 12: Posterior Distribution of Subsystem Reliability at T = 20 (90% credible lower
bound as dashed line)

0.6 0.7 0.8 0.9 1.0

0
2

4
6

8

Reliability

D
en

si
ty

Figure 13: Posterior Distribution of System Reliability at T = 20 (90% credible lower bound
as dashed line)

The posterior system reliabilities whose 0.5, 0.25, 0.10 quantiles are plotted in Figures 14
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and 15 for T = 10 and T = 20, respectively, and correspond to the subsystem plots in

Figures 2-5 and Figures 6-9 for T = 10 and T = 20, respectively.
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Figure 14: Reliability prior and posterior 0.5, 0.25, 0.10 quantiles for system for the scenario
T = 10.
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Figure 15: Reliability prior and posterior 0.5, 0.25, 0.10 quantiles for system for the scenario
T = 20.

Based on this method, as shown by Figure 2, a reasonable sampling frequency maintains

a high credible lower bound for component reliability. There is a point of diminishing returns

for sampling frequency, as shown by comparing Figure 3 to Figure 2. For very low sampling

frequencies, the credible lower bound for component reliability can start to plummet, as

shown by Figure 9. When only examining results for individual components, this might not

seem too bad at first, given that the lowest 90% credible lower bound shown in Figure 12

is still above 0.9. The component results are multiplied together to produce the credible

lower bound for the system, however, and the 90% credible lower bound shown in Figure 13

is below 0.8, which indicates that sampling frequency matters: the sampling rates for the

CSA, PIT, and CASE are indeed too low.

4 Illustrating the Impact of Data Shortfalls

Suppose that we stop testing at T = 10 or T = 20 and consider the impact of no testing for

5 years after T . We summarize the 0.10 quantile of posterior reliability for the subsystems

and system in Tables 1 and 2 for T = 10 and T = 20, respectively. Figure 16 displays the
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system reliability uncertainty for 0-5 years of data shortfalls for T = 10 (solid) and T = 20

(dashed). We see that the system reliability uncertainty is much more at T = 20 than at

T = 10, i.e., before any data shortfall. This feature illustrates that even though we have an

additional 10 years of testing at the same rates, even more data is needed as a system ages

to maintain the same uncertainty. Figure 16 shows that data shortfalls have a significant

effect. The system 90% credible lower bound falls by more than 0.10 probability (i.e., 10

percentage points) in 5 years.

Table 1: Impact of Data Shortfalls for T = 10 on Reliability Uncertainty (90% credible lower
bound)

Number of Shortfall Years
0 1 2 3 4 5

GTS 0.975 0.972 0.969 0.965 0.960 0.954
DET 0.977 0.975 0.973 0.970 0.966 0.961
HE 0.975 0.972 0.969 0.965 0.960 0.954
PIT 0.968 0.964 0.958 0.952 0.944 0.936
CASE 0.968 0.964 0.958 0.952 0.944 0.936
CSA 0.965 0.959 0.953 0.945 0.936 0.926
SYSTEM 0.859 0.840 0.820 0.795 0.773 0.749

Table 2: Impact of Data Shortfalls for T = 20 on Reliability Uncertainty (90% credible lower
bound)

Number of Shortfall Years
0 1 2 3 4 5

GTS 0.971 0.968 0.964 0.960 0.954 0.947
DET 0.976 0.974 0.971 0.967 0.963 0.958
HE 0.971 0.968 0.964 0.960 0.954 0.947
PIT 0.945 0.938 0.929 0.920 0.911 0.901
CASE 0.945 0.938 0.929 0.920 0.911 0.901
CSA 0.905 0.895 0.884 0.872 0.861 0.849
SYSTEM 0.768 0.751 0.729 0.708 0.685 0.661
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Figure 16: Impact of Data Shortfalls on System Reliability Uncertainty (solid and dashed
are for T = 10 and T = 20).

5 Discussion

In this article, we showed how the impact of data shortfalls on reliability uncertainty can be

assessed. While quantitative, it provides a qualitative feel the impact on the actual reliability

uncertainty; recall that all the surveillance data on a subsystem are being assessed as a pass

or fail. Moreover, if an abnormal observation arises in surveillance, it is the SFI process that

determines whether reliability is impacted and to what degree. In this article, the numbers

used are illustrative. Other scenarios with different numbers and frequency can easily be

assessed.

The challenge will be to develop criteria for how to communicate uncertainty on reliability

to the assessment community and how or if we use uncertainty on reliability in reporting

reliability.
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