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Abstract

In neutron multiplicity counting one may fit a curve by minimizing an objective function,
χ2
n. The objective function includes the inverse of an n by n matrix of covariances, W . The

inverse of the W matrix has a closed form solution. In addition W−1 is a tri-diagonal matrix.
The closed form and tri-diagonal nature allows for a simpler expression of the objective function
χ2
n. Minimization of this simpler expression will provide the optimal parameters for the fitted

curve.
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1 The Calculation of χ2

In Walston [6] we find reference to the χ2 and the Lawrence Livermore National Laboratory
(LLNL) W matrix. The Los Alamos National Laboratory (LANL) W matrix is the same as
the LLNL W because the correlation is identical between the random variables of the gate
size. The estimates of the correlation will have the same expected value and those of LLNL
are more variable as the gate data from all except the largest gate size is not entirely utilized
for each gate size.

In Walston [6] we find the i, j element of the n by n matrix W is

Wi,j = ρi,jσY2F (Ti)σY2F (Tj). (1)

Define the i, j element of the n by n matrix Σ as:

Σi,j =

{
σY2F (Ti), i = j

0, i 6= j.
(2)

Σ is an n by n diagonal matrix with zeros on the off diagonal.
The n by n correlation matrix P contains the correlations as:

Pi,j = ρi,j . (3)

The correlations are listed in Prasad, Snyderman, and Walston [5], and the correlation matrix,
P , is in fact the Lehmer matrix, proposed by Lehmer [1], or

Pi,j = min(i, j)/max(i, j). (4)

In matrix form:
W = ΣPΣ. (5)

The inverse of W is:
W−1 = Σ−1P−1Σ−1 (6)

as
WW−1 = ΣPΣΣ−1P−1Σ−1 = I = W−1W. (7)

The inverse of the Lehmer matrix P is a tri-diagonal matrix P−1, originally solved in
Lehmer, Smiley, Smiley, and Williamson [2], with entries:

P−1
i,j =


4i3/(4i2 − 1), i = j and i < n

n2/(2n− 1), i = j = n

−min(i, j)(min(i, j) + 1)/(2 min(i, j) + 1), |i− j| = 1

0, |i− j| > 1.

(8)

P−1 is a tri-diagonal matrix with zeros on the off tri-diagonal. The Lehmer matrix has also been
used to test the inversion of a tri-diagonal matrix, Newman and Todd [4] and for evaluation
of matrix inversion programs Lewis [3].

The inverse of Σ is the n by n matrix Σ−1 where

Σ−1
i,j =

{
1
σi,j

, i = j

0, i 6= j.
(9)



For completeness use (6), (8) and (9) to write the i, j-th term of W−1 as

W−1
i,j =


Σ−2
i,i 4i3/(4i2 − 1), i = j and i < n

Σ−2
n,nn

2/(2n− 1), i = j = n

−Σ−1
i,i Σ−1

j,jmin(i, j)(min(i, j) + 1)/(2 min(i, j) + 1), |i− j| = 1

0, |i− j| > 1.

(10)

The curve fit uses parameters which minimize χ2 where

χ2 = E2F
TW−1E2F. (11)

Rewriting (11) by using (6) to expand W−1 yields:

χ2 = E2F
TΣ−1P−1Σ−1E2F. (12)

Divide the residual E2F by its corresponding standard deviation to create scaled residuals
as:

E2F,σ = Σ−1E2F. (13)

In this way one may “absorb” the Σ−1 into the residual to compute the χ2. Using (13)
and (12) obtain:

χ2 = E2F,σ
TP−1E2F,σ. (14)

2 Example Correlation Matrix with n = 5

As an example let n = 5 then we have:

P5 =


1 1/2 1/3 1/4 1/5

1/2 1 2/3 2/4 2/5
1/3 2/3 1 3/4 3/5
1/4 2/4 3/4 1 4/5
1/5 2/5 3/5 4/5 1

 . (15)

Simplify fractions:

P5 =


1 1/2 1/3 1/4 1/5

1/2 1 2/3 1/2 2/5
1/3 2/3 1 3/4 3/5
1/4 1/2 3/4 1 4/5
1/5 2/5 3/5 4/5 1

 . (16)

Evaluate fractions:

P5 =


1 .5 .33̄ .25 .2
.5 1 .66̄ .5 .4
.33̄ .66̄ 1 .75 .6
.25 .5 .75 1 .8
.2 .4 .6 .8 1

 . (17)

Using equation (8) to invert P5 yields:



P−1
5 =


4/3 −2/3 0 0 0
−2/3 32/15 −6/5 0 0

0 −6/5 108/35 −12/7 0
0 0 −12/7 256/63 −20/9
0 0 0 −20/9 25/9

 . (18)

Factor (18) by 1 over 315 = 5× 7× 9 and P−1
5 may be written as:

P−1
5 =

1

315


420 −210 0 0 0
−210 672 −378 0 0

0 −378 972 −540 0
0 0 −540 1280 −700
0 0 0 −700 875

 . (19)

For n = 5, use (19) and (14) where E2F,σi is the i-th scaled residual or i-th element of
E2F,σ to obtain:

χ2
5 =

[
E2F,σ1 E2F,σ2 E2F,σ3 E2F,σ4 E2F,σ5

] 1

315


420 −210 0 0 0
−210 672 −378 0 0

0 −378 972 −540 0
0 0 −540 1280 −700
0 0 0 −700 875



E2F,σ1
E2F,σ2
E2F,σ3
E2F,σ4
E2F,σ5

 .
(20)

Multiply the last two terms of (20)

χ2
5 =

[
E2F,σ1 E2F,σ2 E2F,σ3 E2F,σ4 E2F,σ5

] 1

315


420E2F,σ1 − 210E2F,σ2

−210E2F,σ1 + 672E2F,σ2 − 378E2F,σ3
−378E2F,σ2 + 972E2F,σ3 − 540E2F,σ4
−540E2F,σ3 + 1280E2F,σ4 − 700E2F,σ5

−700E2F,σ4 + 875E2F,σ5

 .
(21)

Multiply the two arrays in (21)

χ2
5 =

1

315



420E2F,σ
2
1 − 210E2F,σ1E2F,σ2 +

−210E2F,σ1E2F,σ2 + 672E2F,σ
2
2 − 378E2F,σ3E2F,σ2 +

−378E2F,σ2E2F,σ3 + 972E2F,σ
2
3 − 540E2F,σ3E2F,σ4 +

−540E2F,σ3E2F,σ4 + 1280E2F,σ
2
4 − 700E2F,σ4E2F,σ5 +

−700E2F,σ4E2F,σ5 + 875E2F,σ
2
5

. (22)

Collect like terms in (22)

χ2
5 =

1

315



420E2F,σ
2
1 − 420E2F,σ1E2F,σ2 +

672E2F,σ
2
2 − 756E2F,σ2E2F,σ3 +

972E2F,σ
2
3 − 1080E2F,σ3E2F,σ4 +

1280E2F,σ
2
4 − 1400E2F,σ4E2F,σ5 +

875E2F,σ
2
5

. (23)



Multiply the terms in (23) and rearrange as

χ2
5 =

{
4
3E2F,σ

2
1 + 32

15E2F,σ
2
2 + 108

35 E2F,σ
2
3 + 256

63 E2F,σ
2
4 + 25

9 E2F,σ
2
5 +

−4
3E2F,σ1E2F,σ2 −

12
5 E2F,σ2E2F,σ3 −

24
7 E2F,σ3E2F,σ4 −

40
9 E2F,σ4E2F,σ5

. (24)

3 χ2 for General n

The previous example of computing χ2
5 with n = 5 motivates a general solution of minimizing

χ2
n by generalizing the steps used to create (24). To determine χ2

n we sum the appropriate
terms of the tri-diagonal P−1 matrix. Define χ2

n(i, j):

χ2
n(i, j) =


4i3

(4i2−1)
E2F,σ

2
i i = j and i < n

n2

(2n−1)E2F,σ
2
n i = j = n

−2 i(i+1)
(2i+1)E2F,σiE2F,σi+1 j = i+ 1 and i < n

0 otherwise.

(25)

Utilizing the terms defined in (25) and (14) we obtain the general expression:

χ2
n =

n∑
i=1

n∑
j=1

χ2
n(i, j) . (26)

Eliminating the zero terms in (26) yields:

χ2
n =

n∑
i=1

χ2
n(i, i) +

n−1∑
i=1

χ2
n(i, i+ 1) . (27)

Substitution of (25) in (27) yields:

χ2
n =

n−1∑
i=1

4i3

(4i2 − 1)
E2F,σ

2
i +

n2

(2n− 1)
E2F,σ

2
n − 2

n−1∑
i=1

i(i+ 1)

(2i+ 1)
E2F,σiE2F,σi+1. (28)

Minimizing (28) with respect to the parameters that define E2F,σ provides the fitted curve
while accounting for the correlation between the various gate lengths.

4 Enhancements and Future Work

In order to reduce the computational load fewer than n points may be included in the fit.
Excluding points does not effect the tri-diagonal nature of the resulting W−1 matrix. One
may derive a similar formula to (28) which excludes various points in the fit. Excluding points
may decrease the computational load of the fit and if not done wisely it may also decrease the
quality of the fit.

One advantage of exclusion of points is to increase the numerical stability of the solution.
This is done by improving the condition number of the W matrix. [4] demonstrate that the
condition number of the Lehmer matrix is greater than n and less than 4n2. Reducing the
size of the matrix by excluding the largest points may directly improve the condition number.
It is hypothesized that exclusion of points, which may not be the largest, may also result in a
better condition number.



Future research may include choosing only a small number of points to use in fitting the
curve. Mark Smith-Nelson, personal communication, has suggested only including points
distributed more or less uniformly throughout the x-axis region as well as including points
where the curvature is highest. One may select these fewer than n points in an optimal
manner with an appropriate statistical experimental design.

The analysis used in Prasad, Snyderman, and Walston [5] may be used to provide a similar
and direct Monte Carlo estimation of the LANL W matrix. In this way directly confirming
the Lehmer functional form of the LANL P correlation matrix.
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