
Behavior of the Maximum Likelihood in Quantum State Tomography

Travis L Scholten and Robin Blume-Kohout
Center for Computing Research (CCR), Sandia National Labs and University of New Mexico

(Dated: July 27, 2016)

Quantum state tomography on a d-dimensional system demands resources that grow rapidly with
d. Model selection can be used to tailor the number of fit parameters to the data, but some common
assumptions that underly canonical model selection techniques are often violated. This is due to the
presence of boundaries in the quantum state space. Here, we study the behavior of the maximum
likelihood in different Hilbert space dimensions, and derive an expression for a complexity penalty
– the expected value of the loglikelihood ratio statistic (roughly, the logarithm of the maximum
likelihood) – which can be used to make an appropriate choice for d.

In quantum information science, an experimentalist
may wish to determine the quantum state ρ0 that is pro-
duced by a specific initialization procedure. This can be
done using quantum state tomography [1]: many copies
of ρ0 are produced; they are measured in diverse ways;
and finally the outcomes of those measurements (data)
are collated and analyzed to produce an estimate ρ̂. This
is a straightforward statistical inference process [2, 3],
where the data are used to fit the parameters of a statisti-
cal model – provided that we know what statistical model
to use. But this is not always the case. In state tomogra-
phy, the parameter is ρ, the model is the set of all possible
density matrices on a Hilbert space H (equipped with the
Born rule). It is not always a priori obvious what H or
its dimension is; examples include optical modes [4–8]
and leakage levels in AMO and superconducting [9, 10]
qubits. Choosing an appropriate Hilbert space on the
fly is model selection, and while model selection is well-
studied in classical statistics [11], applying it to quantum
tomography leads to some surprising twists. These prob-
lems stem from the positivity boundary (ρ ≥ 0), and the
techniques we use to resolve them are broadly applicable
to quantum tomography on low-rank states.

Selecting between multiple models often requires fit-
ting each model’s parameters using maximum likelihood
estimation (MLE) [12–14], which reports the parameter
values that maximize the likelihood (the probability of
the observed data). Classical estimation problems usu-
ally satisfy local asymptotic normality [15, 16], meaning
that: (1) as Nsamples →∞, ρ̂MLE is normally distributed
around the true state ρ0 with covariance matrix I−1, and
(2) the likelihood function in a neighborhood of ρ̂MLE is
locally Gaussian with Hessian I, where I is the Fisher
information.

In state tomography, these conditions are violated by
the constraint ρ̂MLE ≥ 0. This constraint distorts the
distribution of estimates, even in the asymptotic limit,
precisely when ρ0 is rank-deficient within H. (That is,
when ρ0 is on the boundary of H. See Figure 1.) While
the behavior of MLEs is well-studied classically, its be-
havior near boundaries is not. How boundaries affect
ρ̂MLE – and its derived properties – is of broad interest in
state and process estimation [17, 18], and is also critical
for model selection [19–23].

We will focus on the special and simple case where

ρ̂MLE ≥ 0 ρ̂MLE ≥ 0
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FIG. 1: Impact of the boundary on maximum likelihood to-
mography. Top: Two views through the qutrit state space.
Without the positivity constraint, some estimates (orange cir-
cles) are negative, and do not represent valid estimates of a
quantum state. The distribution of ρ̂MLE (blue circles) is gen-
erally non-normal, and depends on the true state ρ0 (star).
Bottom: Comparison of the classical theory (Wilks Theo-
rem) prediction for the loglikelihood ratio 〈λ〉 to numerical
data for true states of rank r = 1 . . . 10. The Wilks Theorem
fails badly for low-rank states; our main result (Equation 10)
fixes this problem (see Figure 3).

I at ρ0 is proportional to the Hilbert-Schmidt metric,
so the likelihood function (and the distribution of the
unconstrained estimates ρ̂) is given by

L(ρ) = Pr(ρ̂|ρ) ∝ e−||ρ−ρ̂||
2
2/2ε

2

(1)

for some ε that scales as 1/
√
Nsamples. In practice, I de-

pends on ρ0 and the particular tomographic measurement
performed, but the interaction of an arbitrary Fisher in-
formation with the boundary is complex and intractable.
The isotropic assumption greatly simplifies our study of
the problem, and permits the derivation of analytic re-
sults which capture realistic tomographic scenarios sur-
prisingly well.

In this case, ρ̂ is often negative (see Figure 1). For each
such ρ̂, the actual ρ̂MLE is the solution to the following
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optimization problem:

ρ̂MLE = argmin
ρ∈B(H)

Tr(ρ)=1,ρ≥0

Tr[(ρ̂− ρ)2], (2)

and the distribution of ρ̂MLE is not generally normal. We
do not attempt to derive Pr(ρ̂MLE) explicitly. Instead,
we demonstrate a method for computing the behavior
of useful statistics which depend on ρ̂MLE, such as the
expected value of the loglikelihood ratio statistic 〈λ〉, a
key quantity in model selection.
MODEL SELECTION: Model selection becomes rel-
evant when several candidate models could be fit to the
data. A model’s “size” is the number of free parameters
in it, and as a general rule, the best model is the small-
est one that fits the data well. Many model selection
techniques use a statistic to quantify goodness of fit; a
commonly used statistic is the loglikelihood ratio [14, 23],

λ(M1,M2) = −2 log

 max
ρ∈M1

L(θ)

max
ρ∈M2

L(θ)

 . (3)

Intuitively, the model with the higher likelihood is more
plausible – except that models with more adjustable pa-
rameters will almost always fit the data better! This is
very clear in the case of nested models (the smaller is a
submanifold of the larger) [45]. If two models are equally
valid – i.e. they both contain the true state ρ0 – the
larger one will nonetheless usually fit the data better be-
cause its extra parameters allow it to fit more of the noise
in the data. For the same reason, the larger model’s fit
will be less accurate. This makes it imperative to correct
for overfitting, by handicapping larger models.

For this reason, any model selection method that relies
(explicitly or implicitly) on a statistic to quantify “how
well ModelM fits the data” also relies on a null theory to
predict how that statistic will behave if ρ0 ∈ M [46]. A
model selection criterion based on an invalid null theory
(or a criterion used in a context where its null theory
does not apply) will tend to choose the wrong model.

When local asymptotic normality holds if ρ0 ∈ M1 ⊂
M2, whereM1 has k free parameters andM2 has K+k
free parameters, then the null theory for λ is given by
the Wilks Theorem [24]: λ is a χ2

K random variable, so
that 〈λ〉 = K.

Suppose we used model selection to decide whether a
particular d-dimensional Hilbert space Hd is suitable by
compare Hd to Hd+1 using λ. We define the model Md

as

Md = {ρ | ρ ∈ B(Hd), Tr(ρ) = 1, ρ ≥ 0}, (4)

where B(H) is the space of bounded operators on H.
Now, before we can use an empirically observed λ to de-
cide whether Hd+1 is significantly better, we need a null
theory for its behavior when it isn’t better (i.e., when
ρ0 is in both Md and Md+1). In what follows, it’s use-
ful to reduce the problem of computing λ(Md,Md+1) to

that of computing λ(ρ0,Md) and λ(ρ0,Md+1) using the
identity

λ(Md,Md+1) = λ(ρ0,Md+1)− λ(ρ0,Md), (5)

where

λ(ρ0,Md) = −2 log

 L(ρ0)

max
ρ∈Md

L(ρ)

 . (6)

When ρ0 is full-rank, the Wilks Theorem appplies, and
λ ∼ χ2

d2−1 [47]. However, the behavior of λ depends
crucially on the rank of ρ0. If ρ0 is rank-deficient, then
the boundary looms, local asymptotic normality does not
hold, and the Wilks Theorem does not apply! Even if ρ0
is full-rank in Md, it will be rank-deficient in Md+1.
Thus, to do model selection for Hilbert space dimension
in state tomography, we must understand the behavior
of λ(ρ0,Md) – i.e., derive a replacement Wilks Theorem
– for rank-deficient ρ0. Some of the more technical de-
tails of this derivation are deferred to Appendix I in the
Supplementary Material.
DERIVING A WILKS REPLACEMENT: In this
derivation, we assume that ρ0, ρ̂MLE ∈ Md, that r ≡
Rank(ρ0) < d, and that the Fisher information at ρ0
is I = ε21l. The loglikelihood ratio that we’re trying
to predict is equal to λ(ρ0, ρ̂MLE) = ε−2Tr[(ρ̂MLE − ρ0)2],
where ρ̂MLE is the MLE over Md. The unconstrained
MLE is distributed as Pr(ρ̂) = N (ρ0, ε

21l).
We need a procedure to compute ρ̂MLE given ρ̂ – i.e., to

solve the optimization problem in Eq. (2). Fortunately,
for the special case of isotropic Fisher information, this
problem was solved in Ref. [25]:

1. Subtract q1l from the unconstrained ρ̂, for a partic-
ular real scalar q,

2. “Truncate” ρ̂−q1l, by replacing each of its negative
eigenvalues with zero.

Here, q is defined implicitly such that
Tr [Trunc(ρ̂− q1l)] = 1.

Although this was intended as a (very fast) numerical
algorithm, we will abuse it (by a series of approximations)
to derive a closed-form expression for the average 〈λ〉. We
begin by observing that λ(ρ0, ρ̂MLE) can be written as a
sum over matrix elements,

λ = ε−2Tr[(ρ̂MLE − ρ0)2] = ε−2
∑
jk

||(ρ̂MLE − ρ0)jk||2

=
∑
jk

λjk where λjk = ε−2||(ρ̂MLE − ρ0)jk||2, (7)

and therefore 〈λ〉 =
∑
jk〈λjk〉. Each term 〈λjk〉 quan-

tifies the average mean-squared error of a single matrix
element of MLE, and while the Wilks Theorem predicts
〈λjk〉 = 1 for all j, k, numerical simulations (see Fig.
2) show that this only holds true for some matrix ele-
ments. Others contribute much less than 1 unit on aver-
age, meaning that the Wilks Theorem predicts too high
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a value for the total 〈λ〉. Thus motivated, we divide the
parameters of ρ̂ into two parts (see Fig. 2),

• The “kite” comprises all diagonal elements and all
elements on the kernel (null space) of ρ0,

• The “L” comprises all off-diagonal elements on the
support of ρ0 and between the support and the
kernel,

and observe that 〈λ〉 = 〈λ〉L + 〈λ〉kite. The rationale for
this division is simple: small fluctuations on the “L” do
not change the zero eigenvalues of ρ̂ to 1st order, whereas
those on the “kite” do.

``Kite"``L"

``L"

Matrix Elements of ρ̂

1 0.98 0.12 0.12 0.12 0.11 0.11 0.3

1 1 0.12 0.12 0.11 0.12 0.33 0.11

1 1 0.12 0.12 0.12 0.34 0.12 0.11

1 1 0.12 0.12 0.29 0.12 0.11 0.12

0.99 0.99 0.13 0.38 0.12 0.12 0.12 0.12

0.94 1 0.35 0.13 0.12 0.12 0.12 0.12

1 2.6 1 0.99 1 1 1 0.98

2.7 1 0.94 0.99 1 1 1 1

〈
λjk
〉

FIG. 2: When a rank-2 state is reconstructed in d = 8 dimen-
sions, the total loglikelihood ratio λ(ρ0,M8) is the sum of con-
tributions λjk from errors in each matrix element (ρ̂MLE)jk.
Left: Numerics show a clear division; some matrix elements
contribute 〈λjk〉 ∼ 1 as predicted by the Wilks Theorem,
while others contribute either more or less. Right: The nu-
merical results motivate dividing the elements of ρ̂ into two
parts: the “kite” and the “L”.

The error of the unconstrained estimate is δ = ρ̂− ρ0,
a normally-distributed traceless matrix. To simplify the
analysis, we explicitly drop the Tr(ρ) = 1 constraint and
let δ be N (0, ε21l) distributed over the d2-dimensional
space of Hermitian matrices (a good approximation when
d� 2), which makes δ proportional to an element of the
Gaussian unitary ensemble (GUE) [26].

Now, to first order in ε, elements of δ in the “L” do
not affect positivity, so they are unconstrained by the
boundary, and behave exactly as expected from classical
theory. Each matrix element δjk in the “L” has Gaussian
fluctuations and so for those elements, 〈λjk〉 = 1. As
there are 2rd − r(r + 1) of them in the “L”, 〈λ〉L =
2rd− r(r + 1).

Computing 〈λ〉kite is a bit harder, because the bound-
ary does constrain elements in the “kite”. Here, we turn
to the “truncation” algorithm given above for finding
ρ̂MLE, which is most naturally performed in the eigenbasis
of ρ̂. Exact diagonalization of ρ̂ is not feasible analyti-
cally, but only the small eigenvalues of ρ̂ are critical in
truncation. As long as all the nonzero eigenvalues of ρ0
are much larger than ε, the eigenbasis of ρ̂ is accurately

approximated by: (1) the eigenvectors of ρ0 on its sup-
port; and (2) the eigenvectors of δker = ΠkerδΠker, where
Πker is the projector onto the kernel of ρ0.

Changing to this basis diagonalizes the “kite” portion
of δ, and leaves all elements of the “L” unchanged (to 1st
order in ε). The diagonal elements of ρ̂ now fall into two
categories:

1. r elements corresponding to the eigenvalues of ρ0
and given by pj = ρjj + δjj where δjj ∼ N (0, ε2).

2. N ≡ d − r elements that are eigenvalues of δker,
which we denote κ = {κj : j = 1 . . . N}.

The κj are random variables, but are not normally
distributed. Instead, δker is proportional to a GUE(N)
matrix. For N � 1, the distribution of any eigenvalue
converges to a Wigner semicircle distribution [27] given

by Pr(κ) = 2
πR2

√
R2 − κ2 for |κ| ≤ R, with R = 2ε

√
N .

The eigenvalues are not independent; they tend to avoid
collisions (“level avoidance” [28]), and typically form a
surprisingly regular array over the support of the Wigner
semicircle. Since our goal is to compute 〈λ〉, we can cap-
italize on this behavior by replacing each random sample
of κ with a typical sample κ̄ given by its order statis-
tics. These are the average values of the sorted κ, so
κj is the average value of the jth largest value of κ.
Large random samples are usually well approximated (for
many purposes) by their order statistics even when the
elements of the sample are independent, and level avoid-
ance makes the approximation even better. We make
one further approximation, by assuming (as an ansatz)
that N � 1, and thus that the distribution of the κj is
effectively continuous and identical to Pr(κ). (See Ap-
pendix I for a more detailed discussion of this series of
approximations.)

To proceed with truncation, we observe that the κj
are symmetrically distributed around κ = 0, so half
of them are negative. Therefore, with high probabil-
ity, Tr [Trunc(ρ̂)] > 1, and so we will need to subtract
q1l from ρ̂ before truncating. The appropriate q solves
Tr [Trunc(ρ̂− q1l)] = 1. This equation can be solved us-
ing the ansatz established so far, and some series expan-
sions (see Appendix I), and yields the solution:

q ≈ 2
√
N − (240rπ)2/5

4
N1/10 +

(240rπ)4/5

80
N−3/10. (8)

Now that we know how much to subtract off in the
truncation process, we can compute 〈λ〉kite. Defining



4

(x)+ = max(x, 0):

〈λ〉kite =

r∑
j=1

(ρjj − (pj − q))2 +

N∑
j=1

[
(κj − q)+

]2
≈ r + rq2 +N

∫ 2ε
√
N

κ=q

Pr(κ)(κ− q)2dκ

= r + rq2 +
N(N + q2)

π

(
π

2
− sin−1

(
q

2
√
N

))
−q(q

2 + 26N)

24π

√
4N − q2. (9)

Thus, the total expected value, 〈λ〉 = 〈λ〉L + 〈λ〉kite, is

〈λ(ρ0,Md)〉 = 2rd− r2 + rq2

+
N(N + q2)

π

(
π

2
− sin−1

(
q

2
√
N

))
− q(q2 + 26N)

24π

√
4N − q2 (10)

where q is given in Equation (8), N = d − r, and r =
Rank(ρ0).

Equation (10) is our main result. To test its validity,
we compare it to numerical simulations for d = 2, . . . , 30
and r = 1, . . . , 10, in Figure 3. The prediction of Wilks
theorem is wildly incorrect for r � d. In contrast, Equa-
tion 10 is almost perfectly accurate when r � d, but it
does begin to break down (albeit fairly gracefully) as r
becomes comparable to d. We conclude that our analysis
(and Equation (10)) correctly models tomography if the
Fisher information is isotropic (I ∝ 1l).
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FIG. 3: Numerical results for 〈λ〉 (dots) compared to the pre-
diction of the Wilks Theorem (solid red line) and our replace-
ment theory as given in Eq. 10, (dashed lines). Our formula
depends on the rank r of ρ0 (unlike the Wilks prediction),
and is nearly perfect for r � d. It becomes less accurate as r
approaches d/2, and is invalid when r ≈ d.

HETERODYNE TOMOGRAPHY: In practice, the
Fisher information is rarely isotropic. So we tested our
idealized result by applying it to a realistic, challenging,
and experimentally relevant problem: quantum hetero-
dyne state tomography [5, 6, 8, 29] of a single optical

mode. States of this continuous-variable system are de-
scribed by density operators on the infinite-dimensional
Hilbert space L2(R). Fitting these infinitely many pa-
rameters to finitely much data demands simpler models.
We consider a family of nested models motivated by a
low-energy (few-photon) ansatz, and choose the Hilbert
space Hd to be that spanned by the photon number
states {|0〉 . . . |d− 1〉}. Heterodyne (a.k.a. double ho-
modyne) tomography reconstructs ρ0 using data from
repeated measurements of the coherent-state POVM,
{|α〉〈α|/π, α = x + ip ∈ C}, which corresponds to sam-
pling directly from the state’s Husimi Q-function [30].

We examined the behavior of λ for 13 distinct true
states ρ0, both pure and mixed, supported onH2,H3,H4,
and H5. We used rejection sampling to simulate 100 het-
erodyne datasets with up to Nsamples = 105, and found
MLEs over each of the 9 models M2, . . . ,M10 using nu-
merical optimization [48]. For each true state and each
d, we averaged λ(ρ0,Md) over all 100 datasets to obtain
an empirical average loglikelihood ratio λ̄ for each (ρ0, d)
pair.
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FIG. 4: The Wilks Theorem (orange dots) dramatically over-
estimates 〈λ(ρ0,Md)〉 in optical heterodyne tomography. Our
formula, Equation 10 (blue squares), is far more accurate.
Residual discrepancies, discussed in Appendix III, appear
to stem largely from non-asymptoticity (Nsamples is not yet
“asymptotically large”). The solid red line of equality corre-
sponds to perfect correlation between theory (〈λ〉) and prac-
tice (λ̄).

Results of this test are shown in Figure 4, where we plot
(a) the Wilks prediction, and (b) Equation (10), against
the empirical λ̄, for a variety of true states and recon-
struction dimensions. Our formula correlates very well
with the empirical average, while the Wilks Theorem (un-
surprisingly) overestimates λ dramatically for low-rank
states. Whereas a model selection procedure based on
Wilks Theorem would tend to falsely reject larger Hilbert
spaces (by setting the threshold for acceptance too high),
our formula provides a reliable null theory.

Interestingly, as d grows, Eq. (10) also begins to over-
predict. Further investigation (see Appendix III) indi-
cates that a more accurate description is that the numer-
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ical experiments are underachieving, because Nsamples is
not large enough – λ̄ is still growing with Nsamples. Our
analysis is explicitly asymptotic, and does not cover this
case. Failing to reach asymptotic behavior at Nsamples =
105 is surprising, and suggests that heterodyne tomog-
raphy is a particular exceptional and challenging case to
model statistically.
CONCLUSIONS: Wilks Theorem is not generally reli-
able in quantum state tomography, but our Eq. (10) pro-
vides a much more broadly applicable replacement that
can be used in model selection methods. This includes
protocols like the AIC and BIC [11, 31, 32] that do not
explicitly use the Wilks Theorem, but rely on the same
assumptions (asymptotic normality, etc). Null theories
of the loglikelihood ratios have many other applications,
including hypothesis testing [14, 23] and confidence re-
gions [33], and our result is directly applicable to them.
Refs. [23, 33] both point out explicitly that their meth-
ods are unreliable near boundaries and therefore cannot
be applied to rank-deficient states; our result fixes this
outstanding problem. However, our numerical experi-
ments with heterodyne tomography show (perhaps sur-
prisingly) that quantum tomography can still surprise,
and may violate all asymptotic statistics results. In such

cases, bootstrapping [34] may be the only reliable way
to construct null theories for λ. Finally, the methods
presented here have application beyond the analysis of
loglikelihoods. They shed light on the behavior of ρ̂MLE

for rank-deficient states, and can be used to predict other
derived properties such as the average rank of the esti-
mate, which is independently interesting for (e.g.) quan-
tum compressed sensing [18, 35, 36].
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SUPPLEMENTAL MATERIAL

I. DERIVATION OF THE WILKS
REPLACEMENT: TECHNICAL DETAILS

In our derivation of the loglikelihood ratio statistic’s
expected value 〈λ〉, we used several approximations and
ansätze. Perhaps the most important was the replace-
ment of a random sample of GUE eigenvalues, κ, by a
“typical” sample κ (and the subsequent replacement of
this discrete typical sample with a continuous density of
values. Let us discuss this in a bit more detail.

FIG. 5: Typical samples of GUE(N) eigenvalues are accu-
rately approximated by order statistics of the distribution
(average values of sorted sample). Top: The sorted eigen-
values of one randomly chosen GUE(100) matrix. Bottom:
Approximate values of the order statistics of the GUE(100)
distribution, computed as the average of 100 the sorted eigen-
values of 100 randomly chosen GUE(100) matrices.

First, we illustrate the claim made in the main text
that the eigenvalues of a GUE(N) matrix are usually
well-approximated by their order statistics. Suppose that
κ are the eigenvalues of a GUE(N) matrix, sorted from
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highest to lowest. Figure 5 illustrates such a sample for
N = 100. It also shows the average values of 100 such
samples (all sorted). These are the order statistics κ of
the distribution (more precisely, what is shown is a good
estimate of the order statistics; the actual order statis-
tics would be given by the average over infinitely many
samples). The point of the figure is to show that, while
the order statistics are slightly more smoothly and pre-
dictably distributed than a single (sorted) sample. . . the
two are remarkably similar. A single sample κ will fluc-
tuate around the order statistics, but these fluctuations
are relatively small, partly because the sample is large,
and partly because the GUE eigenvalues experience level
repulsion. Thus, the “typical” behavior of a sample – by
which we mean the mean value of a statistic of the sam-
ple – is well captured by the order statistics (which have
no fluctuations at all).

We now turn to the problem of modeling κ quantita-
tively. We note up front that we are only going to be
interested in certain properties of κ: specifically, partial
sums of all κi greater or less than some threshold (this
threshold is q in the main text), or partial sums of func-
tions of the κi (e.g. (κi − q)2). We require only that
an ansatz be accurate for such quantities. We do not
use this fact explicitly, but it motivates our approach –
and we do not claim that our ansatz is accurate for all
conceivable statistics.

In general, if a sample κ of size N is drawn so that each
κ has the same probability distribution function Pr(κ),
then a good approximation for the jth order statistic
is given by the inverse cumulative distribution function
(c.d.f.):

κj ≈ CDF−1
(
j − 1/2

N

)
. (11)

This is closely related to the observation that the his-
togram of a sample tends to look similar to the underly-
ing probability distribution function. More precisely, it
is equivalent to the observation that the empirical dis-
tribution function (the c.d.f. of the histogram) tends
to be (even more) similar to the underlying c.d.f. (For
i.i.d. samples, this is the content of the GlivenkoCan-
telli theorem). Figure 6 compares the order statistics of
GUE(100) and GUE(10) eigenvalues (computed as nu-
merical averages over 100 random samples) to the in-
verse c.d.f. for the Wigner semicircle distribution. Even
though the Wigner semicircle model of GUE eigenvalues
is only exact as N → ∞, it provides a nearly-perfect
model for κ even at N = 10 (and remains surprisingly
good all the way down to N = 2).

In the main text, we make the further simplifying ap-
proximation that the distribution of the κj is effectively
continuous. For the quantities that we compute, this
is equivalent to replacing the empirical distribution func-
tion (which is a step function) by the c.d.f. of the Wigner
semicircle distribution. So, whereas for any given sam-
ple the partial sum of all κi > q jumps discontinuously
when q = κi for any i, in this approximation it changes

FIG. 6: Order statistics of the GUE(N) eigenvalue distribu-
tion are very well approximated by the inverse c.d.f. of the
Wigner semicircle distribution. Top: Comparison of the or-
der statistics of the GUE(100) distribution (as shown in Fig.
5) to the inverse cdf of the Wigner semicircle distribution
for N=100. Bottom: Comparison of the order statistics of
the GUE(10) distribution to the inverse cdf of the Wigner
semicircle distribution for N=10. Agreement in both cases is
essentially perfect.

smoothly. This accurately models the average behavior
of partial sums.

These approximations provide the ansatz that we use
in the main text, for the eigenvalues of ρ̂, as {pj}∪ {κj},
where the pj are N (ρjj , ε

2) random variables, and the
κj are the (fixed, smoothed) order statistics of a Wigner
semicircle distribution.

Another rather technical portion of our derivation is
the finding of an (approximate) solution to the equation

f(q) = 1 (12)

where

f(q) = Tr [Trunc(ρ̂− q1l)] , (13)

Given the assumptions and approximations above, and
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letting (x)+ denote max(x, 0),

f(q) =

r∑
j=1

(pj − q) +

N∑
j=1

(κj − q)+

≈ 1− rq + ∆ +N

∫ 2ε
√
N

κ=q

(κ− q)Pr(κ)dκ

= 1− rq + ∆ +
ε

12π

[
(q2 + 8N)

√
−q2 + 4N

−12qN
(
π
2 − sin−1

(
q

2
√
N

)) ] ,
(14)

where ∆ =
∑r
j=1 δjj is a N (0, rε2) random variable. We

also chose to replace a discrete sum (line 1) with an inte-
gral (line 2). This approximation is valid when N � 1,
where (as noted in the main text) we can accurately
approximate a discrete collection of closely spaced real
numbers by a smooth density or distribution over the
real numbers that has approximately the same contin-
uous distribution function (cdf). It is also remarkably
accurate in practice.

In yet another approximation, we replace ∆ with its
average value, which is zero. We could obtain an even
more accurate expression by treating the fluctuations in
∆ more carefully, but this crude approximation turns out
to be quite accurate already.

To solve for f(q) = 1, it is necessary to further sim-
plify the complicated expression resulting from the in-
tegral. To do so, we assume that ρ0 is relatively low-
rank, so r � N . In this case, the sum of the positive
κj is large compared with r, almost all of them need to

be subtracted away, and therefore q is close to 2ε
√
N .

We therefore replace the complicated expression with its
leading order Taylor expansion around q = 2ε

√
N , sub-

stitute into f(q) = 1, and obtain the equation

rq =
4

15π
n1/4

(
2
√
N − q

)5/2
. (15)

This equation is a quintic polynomial, so it has no closed-
form solution. However, its roots have a well-defined
asymptotic (n → ∞) expansion that becomes accurate
quite rapidly (e.g., for N > 4):

q ≈ 2
√
N− (240rπ)2/5

4
N1/10 +

(240rπ)4/5

80
N−3/10. (16)

This completes our exposition of two significant tech-
nical details in the derivation.

II. THE “L”

In the main text, we asserted several properties of ma-
trix elements of δ which lie in the “L”. Here, we show
how those properties arise. To do so, we observe that
that the δjk in the “L” may be seen as errors which arise

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

Matrix Elements of ρ0

1 0.059 0.06 0.063 0.061 0.058 0.06 0.15

1 0.062 0.065 0.063 0.058 0.065 0.16 0.06

1 0.066 0.062 0.065 0.062 0.16 0.065 0.058

1 0.063 0.062 0.066 0.14 0.062 0.058 0.061

0.99 0.069 0.069 0.18 0.066 0.065 0.063 0.063

0.94 0.063 0.17 0.069 0.062 0.062 0.065 0.06

1 0.18 0.063 0.069 0.063 0.066 0.062 0.059

5.4 1 0.94 0.99 1 1 1 1

〈
λjk
〉
 (1000 Trials)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0.5 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0

1 0.98 0.12 0.12 0.12 0.11 0.11 0.3

1 1 0.12 0.12 0.11 0.12 0.33 0.11

1 1 0.12 0.12 0.12 0.34 0.12 0.11

1 1 0.12 0.12 0.29 0.12 0.11 0.12
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1 0.98 0.98 1 0.19 0.19 0.19 0.48

1 1 1 0.97 0.19 0.19 0.53 0.19

1 1 0.98 1 0.2 0.55 0.19 0.19

1 1 1 0.98 0.48 0.2 0.19 0.19

0.99 0.99 1.1 1.1 0.98 1 0.97 1

0.94 1 1.2 1.1 1 0.98 1 0.98

1 1.1 1 0.99 1 1 1 0.98

1.2 1 0.94 0.99 1 1 1 1

FIG. 7: Contributions of each matrix element of ρ̂MLE to 〈λ〉,
for three different ρ0, as computed in numerical simulations
for d = 8. Left: The matrix elements of ρ0. Right: The
average scaled mean-squared-errors of individual matrix el-
ements, 〈λjk〉, as defined in Eq. 6. Discussion: While the
Wilks Theorem predicts that each matrix element should con-
tribute ≈ 1, only those in the “L” (see Fig. 3) do so; those in
the “kite” behave quite differently and (generally) contribute
less to 〈λ〉.

due to small unitary perturbations of the true state ρ0.
Writing ρ̂ = U†ρ0U , where U = eiεH , we have

ρ̂ ≈ ρ0 + iε[ρ0, H] +O(ε2)

Taking matrix elements, we have

〈j|ρ̂|k〉 = 〈j|ρ0|k〉+ iε〈j|[ρ0, H]|k〉

In the event j = k, then 〈j|[ρ0, H]|j〉 = 0. If 〈j|ρ0|j〉 = 0
as well, then 〈j|ρ̂|j〉 = 0. In turn, this implies 〈j|δ|j〉 = 0.
Thus, small unitaries cannot create errors in the diagonal
matrix elements unless ρ0 had support there as well. If
j 6= k, then 〈j|ρ̂|k〉 = iε〈j|[ρ0, H]|k〉 6= 0, in general. This
implies δjk 6= 0, in general. Thus, small unitaries can in-
troduce errors only on off-diagonal elements, or diagonal
elements on which ρ0 has support.

These off-diagonal elements are precisely the “L”.
They are described by the set {δjk s.t. 〈j|ρ0|j〉 6= 0, j 6=
k, 0 ≤ j, k ≤ d− 1}.

Now, because the δjk in this set arise due to small
unitary perturbations of ρ0, it follows that they cannot
change the spectrum of ρ̂, at least to first order in ε. As
such, they may fluctuate in an unconstrained manner,
and because those fluctuations are Gaussian in nature,
〈λjk〉 = 1. There are 2rd− r(r+ 1) such elements, giving
a total expected value 〈λ〉L = 2rd− r(r + 1).
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III. BREAKDOWN OF OUR MODEL IN THE
CASE OF HETERODYNE TOMOGRAPHY
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FIG. 8: Preliminary results comparing our theory (Eq. 10)
and the Wilks theorem to the empirical expectation value of
λ for heterodyne tomography in larger dimension (d) than
shown in Fig. 4. For these larger Hilbert space dimensions,
our theory begins to fail, for several reasons that we detail
in this section. Most importantly, even at N = 105 sam-
ples, we observe (see Fig. 9) that the empirical λ has not yet
asymptoted – it is still increasing (very slowly) with N . Thus,
simulations of heterodyne tomography at the N values consid-
ered so far underperform our theory. We conjecture that our
theory will become more and more accurate as N → ∞, but
that (because certain important events are very, very rare),

this convergence will only occur at very large N = eO(d). A
secondary effect is the anisotropy of the Fisher information
(see Fig. 10), which causes smaller but significant deviations
from our theory.

Although Figure 4 shows reasonable agreement be-
tween our expression for 〈λ〉 and the numerically com-
puted average λ̄, the discrepancies are sufficiently large
that it behooves us to examine why this may be the
case. In this section, we show how finite-sample effects,
anisotropy of the Fisher information, and the behavior
of the loglikelihood ratio statistic for Poisson-distributed
data could explain some of the discrepancy we see in pre-
liminary results for reconstructions in higher dimension
d (see Fig. 8).

We start by plotting λ̄ as a function of the number of
heterodyne counts N . Both the Wilks Theorem and our
result are derived in an asymptotic limit N → ∞; for
finite but large N , our results may be invalid. As seen in
Figure 9, λ̄ may be growing, even for N ∼ 105, depending
on ρ0 and d.

Thus, part of the discrepancy between our expression
and the numerical results is simply a finite-sample ef-
fect. Next, we check whether the Fisher information is
actually isotropic - a key ingredient in our derivation.
To estimate the Fisher information, we use a numeri-
cal average of 100 observed informations (Hessians of the
loglikelihood function), H̄. In Figure 10, we plot, for
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FIG. 9: The empirical average λ̄may have achieved its asymp-
totic value, or is still growing, depending on the true state ρ0
and the model dimension d. Solid lines indicate the value
of our formula for the asymptotic expected value, given in
Equation (10).

several H̄, their condition number κ, which is the ratio
of the largest eigenvalue to the smallest. Importantly,
κ = 1 if, and only if, all the eigenvalues are the same
(i.e., the Fisher information is isotropic). The condition
number appears to grow with d, meaning the anisotropy
is becoming more severe.
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FIG. 10: The condition number κ of the estimated Fisher In-
formation matrix grows with the model dimension, indicating
an increase in anisotropy. The dashed lines indicate different
true states ρ0, and the solid line is κ = 1.

If the anisotropy is so severe, why is our model rea-
sonably accurate? To answer this question, we compute
the scaled mean squared errors 〈λjk〉 (defined in Equa-
tion (7)) for the heterodyne estimates, and compare them
to those of our model. As shown in Figure 11, we see
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qualitative agreement - matrix elements in the coherent
“L” contribute about 1 unit of expected value, while ma-
trix elements in the kernel of ρ0 contribute less than our
model predicts.

Looking at each 〈λjk〉 as a function of the sample size
N and (j, k), we see in Figure 12 that each contribution
grows starting from zero, and some elements (notably
those in the “L”) rapidly achieve their asymptotic con-
tribution of 1. Those within the “kite”, however, grow
much more slowly. Further, the anisotropic nature of the
Fisher information may be such that the “kite” elements
will never attain the values predicted by our theory.

Finally, we conjecture, based on strong theoretical sup-
port from an an analysis of the loglikelihood ratio statis-
tic for classical Poisson distributions (Appendix IV) that
certain matrix elements — namely, those in the coher-
ent “L” with support on higher-energy photon states |n〉
— do not reach their asymptotic contribution level un-
til extremely large sample sizes N . If this conjecture is
true, then at least some of our model’s failure to match
the observed values occurs simply because the empirical
datasets are not yet “asymptotically” large, meaning in-
dividual 〈λjk〉 are not yet asymptotic, causing 〈λ〉 to not
have achieved its asymptotic value either.
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FIG. 11: The scaled mean squared errors 〈λjk〉 assuming an
isotropic Fisher information (left), and for heterodyne tomog-
raphy (right). Top: ρ0 = |0〉〈0|, Bottom: ρ0 = I2/2. Qualita-
tively, the behavior of the contributions is the same, though
there are quantitative differences, particularly within the kite.
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FIG. 12: Examining how our model for 〈λ〉 disagrees with
simulated heterodyne experiments. We take ρ0 = |0〉〈0| and
d = 8. Top Left: The fluctuations in the “L” 〈λ0k〉 as a
function of sample size N . Top Right: At the largest N stud-
ied, the fluctuations in the “L” from coherences with differ-
ent number states. For the higher number states, 〈λ0k〉 is
substantially less than 1. Bottom Left: The total from the
“kite” versus N . It is clear the total is still growing. Bottom
Right: The individual “kite” elements 〈λjk〉; most are small
compared to the model.

IV. THE POISSON DIP/BUMP PHENOMENON

Here we show how, 〈λ〉 depends strongly on the ex-
pected number of counts for Poisson-distributed data.
Suppose we are given count data which is Poisson dis-
tributed, so that the probability of observing K counts
is

Pr(K) =
e−θ0θK0
K!

(17)

where θ0 is the rate parameter, and 〈K〉 = θ0. Suppose
further we observed C counts. The likelihood function
for the rate parameter θ is simply

L(θ) = Pr(C|θ) =
e−θθC

C!
(18)

We will compare the models

M0 : θ = θ0 M1 : θ ∈ [0,∞)

using the loglikelihood ratio statistic. By definition, we
have

λ(θ0, θ̂) = −2 log

(
L(θ0)

L(θ̂)

)
(19)

with θ̂ as the MLE of the likelihood function in Equation

(18). Doing the maximization, we find θ̂ = C. Plugging
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in this MLE and writing out the likelihood function yields

λ(θ0, θ̂) = −2 log

(
eC−θ0

(
θ0
C

)C)
= −2 (C − θ0 + C log(θ0)− C log(C)) (20)

According to the Wilks Theorem, λ ∼ χ2
1, since M1 is

a one-dimensional model. Accordingly, 〈λ〉 = 1. Let’s
compute 〈λ〉 using the expression above:

〈λ〉 = −2(〈C〉 − θ0 + 〈C〉 log(θ0)− 〈C log(C)〉) (21)

Using the fact 〈C〉 = θ0, the above equation simplifies
some:

〈λ〉 = −2(θ0 log(θ0)− 〈C log(C)〉) (22)

We compute the expected value of C log(C) as

〈C log(C)〉 =
∞∑
C=0

C log(C)Pr(C) =
∞∑
C=0

C log(C)
e−θ0θC0
C!

= θ0e
−θ0

∞∑
C=0

log(C + 1)θC0
C!

(In general, for a random variable X, 〈f(X)〉 6= f(〈X〉),
unless f is linear.) Putting this expression into equation
(22) gives

〈λ〉 = −2

(
θ0 log(θ0)− θ0e−θ0

∞∑
C=0

log(C + 1)θC0
C!

)
(23)

In Figure 13, we plot 〈λ〉 as a function of θ0, where
we truncate the sum at 150 terms. It is clear 〈λ〉 de-
pends strongly on θ0. Curiously, we see that as θ0 → 0+,
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FIG. 13: For Poisson-distributed data, the behavior of the
loglikelihood ratio statistic depends strongly on the expected
number of counts θ0. The single parameter in the Poisson
model will be fully contributing – i.e., 〈λ〉 = 1– only when
the expected number of counts is large. When θ0 << 1, the
parameter is “under-fluctuating”, as 〈λ〉 << 1. As shown
in the inset, there exists a regime (1 . θ0 . 5) where the
parameter is “super-fluctuating” - i.e., 1 . 〈λ〉.

〈λ〉 → 0. Why is this the case? When the number of
counts is 0, the parameter θ is not a “parameter” at all,
since it cannot fluctuate. It has to be set to 0! Phrased
another way, the Wilks Theorem establishes a conversion
factor between fluctuating parameters and 〈λ〉. When
parameters do not fluctuate very much, they do not con-
tribute much to the statistic. Taken to the extreme, if
a parameter cannot fluctuate at all, and the value it is
pinned to happens to be the true value, then its scaled
mean squared error is 0, so 〈λ〉 = 0.

In heterodyne tomography, if we build a model with
support in a D-dimensional Hilbert space MD, but the
true state which generated the data has support on a
d < D-dimensional Hilbert space, then the probability
of observing any α values with radius r >

√
d drops

off as e−d. (Recall Pr(α) = 〈α|ρ|α〉 ∝ e−|α|
2

.) With
very few “counts” out in this region in phase space,
the additional O(D2 − d2) parameters we added do not
fluctuate very much, and these parameters are “under-
fluctuating”. Conversely, in order for a parameter inMD

which has support on a high-energy Fock state |n〉, with
n > d, to contribute to the LLRS, we may have to draw
O(en) samples before its contribution is 1. Thus, in or-
der for the parameters with support in |D〉 to contribute,
we may require O(eD) samples. In looking at Figure 13,
we see that, if θ0 ∼ 10, we have 〈λ〉 ∼ 1. Thus, when
building an estimate inM10, we may need approximately
10e10 ∼ 2.2 × 105 coherent state outcomes before the
scaled mean squared error of the matrix element (10, 10)
in the estimate is 1, which is consistent with the plots
shown in Figure 12.


