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Outline

•Harmonic generation from metallic metasurfaces 
coupled to inter-subband transitions in semiconductor 
quantum wells

•Harmonic generation from all-dielectric metasurfaces
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First reports: Science 
502, 313 (2006)

Mode Matching:
Nature Nanotechnology 10, 412 
(2015)

Other geometries:
Phys. Rev. Lett. 103, 257404 (2009)

Metamaterials Photonic 
Crystals:
Nature Photonics 9, 180 (2015)

Nonloinear Metasurfaces: Harmonic Generation 
from Metallic Resonators 

And many more….

Efficiencies have been very, very low!

• Harmonic generation has been observed 
from planar metamaterials 
(“metasurfaces”) and plasmonic arrays.
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I2~ (I 
(2)L)2

(2)

I2~Q2

(2)

Conventional SHG, perfect 
phase-matching

Cavity-enhanced

L Use resonant (2) with 
semiconductor heterostructures ~ 
104 enhancement in (2) 

How Metasurfaces on Semiconductors Can Be 
Used for Enhanced Optical Nonlinearities  

Coherent Inc.
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Metasurfaces Provide New Functionality 
for Harmonic Generation

Metallic Metasurfaces have been used extensively for beam/phasefront/polarization 
manipulation: this is all degenerate:

(Shalaev, Capasso, Zhou,etc..) 




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Resonant Optical Nonlinearities: 
Intersubband Transitions in Quantum Wells

F. Capasso, C. Sirtori, and A.Y. Cho, IEEE J. Quantum Electron. 30, 1313 (1994)

~250 nm/V  - QWs

10s of pm/V - LiNbO3

ω

0 10 20

0

0.2

0.4

0.6

Z direction [nm]

E
n
e
r
g
y
 [

e
V

]

ω 2ω

ω

  

jiij Rz

ii

zzzN








13131212

132312)2(

2
)(


ω23

ω12

ω31

5 10 15 20 25

E
n

e
rg

y 
(e

V
)

Growth direction (nm)

Electrons

Electronic levels and wavefunctions 
can be engineered with 
semiconductor heterostructures

Resonant optical nonlinearities can be engineered too: 

Caveats: 
(2) comes with (1) too! 
χ(2)

zzz only 



7

Metasurfaces Coupled to Resonant χ(2)

“cavities”

(2) media

Resonators are designed to have 
resonances at 30 & 60 THz (5&10um)
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APL 104, 131104 (2014)

Salvo Campione
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Lee, Belkin, Alu, et al. Nature 511, 65-
69 (2014).

~60 µW/W2

max efficiency: ~2.3 mW/W2

SHG: Power and Frequency Dependence
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• Saturation is an issue
• Max. conversion efficiencies of few % are possible
• Added functionality is the advantage

Nature Communications 6, 7667 (2015) 



9

Identical point sources
+
Radiating with controllable phase difference 
==
Full control over beam direction and shape

Image from Wikipedia

Phased Arrays
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flipping induces π phase shift

Period determines  
angular separation
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Nature Communications 6, 7667 (2015) 
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•Cavities radiate polarized light
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Scaling This Approach to Shorter 
Wavelengths
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Material 1 Material 2 Material 1

10um to 5um: AlInAs barriers
InGaAs wells

2~ 0.24eV

How about 1.55um to 0.75um?
This requires a conduction band offset of ~1.6eV!!

III-Nitrides 

http://gorgia.no-ip.com/phd/html/thesis/phd_html/simone-jbook.html
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• Design: SHG 3 µm  1.5 µm (0.4 eV  0.8 eV)

• Traditional band structure calculation not enough

– Over estimation of IST

O. Wolf et al. Under review
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In a III-N heterostructure, metamaterials 
increase efficiency by over 2 orders of 
magnitude

SHG (3.2m>1.6m) Using AlGaN/GaN QWs
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Effect of Absorption on SHG
(unavoidable when using resonant (2))

Almogy&Yariv, Optics Letters (1994)

Dealt first by Boyd, Ashkin, Dziedzic, & Kleinman,  (1965).
Physical Review, 137(4A), A1305. 

For ~1000cm-1  (1/10um),
“effective length” (QxL) needs to 
be <few microns

“Cavity” with Q~10
Field decay length (L) ~200nm
QxL~2um…. >> OK, 
We cannot gain too much more by 
increasing Q!



Outline

•Harmonic generation from metallic metasurfaces 
coupled to inter-subband transitions in semiconductor 
quantum wells

•Harmonic generation from all-dielectric metasurfaces
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Dielectric Resonators for Metamaterials

Electric Magnetic

Images: A. Miroshnichenko

Magnetic dipole resonance: tailor 
Electric dipole resonance: tailor 

Annalen der Physik, 1909

(Ack: Ed Kuester, 
CU Boulder) 
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Some Recent Results with Dielectric 
Metasurfaces (Linear)Magnetic mirror

Fano resonances

Huygens Metasurfaces

Tailoring scattering

Phase-front manipulation

Nano Lett.15, 6261 (2015)Nano Lett. 15, 5369 (2015) Opt. Express 23, 22611 (2015)
Science 345, b

Optica 2015

Nature Comm. 2014. Nano Lett. 15, 7388 (2015)

ACS Nano 7, 7824 (2013) Nat. Comm. 4, 1527 (2013)

Adv. Optical Mater. 2015
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Optical Nonlinearities (THG) in Si Dielectric 
Metasurfaces

(With ANU & Moscow State)

Nano Letters (2015)

Strong enhancement near magnetic dipole 
resonance
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Silicon is “limited”for Optical Nonlinearities

•Silicon is centrosymmetric  NO second order 
nonlinearity

•Lots of III-V semiconductors have (2)

•Example, GaAs: 

atom.waterloo.ca

low index

How to obtain high index 
dielectric nanoresonators with 
III-V semiconductors??

III-V
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Etch maskEpitaxially grown: MBE, MOCVD

Etching

OxidationAl2O3

n~3.5 GaAs

n~1.6

Fabrication of Al(In)GaAs Based Dielectric MMs

Sheng Liu

1 μm

2 μm
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GaAs Dielectric Resonators (1 layer)

GaAs disk height ~300nm

Different diameters

• Extremely low loss below 
bandgap

• Crystalline
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Power Dependence
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Polarization, Selection Rules

GaAs 
resonator

pump
(x-pol)

z

y x

|E|2 enhancement for both 
electric and magnetic dipole 
resonance.

There are only Ex and Ez

component inside the GaAs
resonators.

Ey
2  2 xxy

(2)Ex
Ez



Orthogonal SHG polarization 
compared to the pump is 
expected 
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oops!

What happens at the M-dipole resonance?
1. Surface nonlinearity changes symmetry to mm2 

Ex
2  2 xxz

(2)Ex
Ez



can be large, considering the large field enhancement at the surface for this mode.

2. SHG is above bandgap of GaAs, absorption favors SHG generated at the surface.

Not predicted: Carletti et al,: “Enhanced second-harmonic generation from magnetic resonance in 
AlGaAs nanoantennas”, Optics Express, 23, 26544 (2015)
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SHG & THG….
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Active III-V Dielectric Resonators

GaAs
~870nm

InGaAs
~1025n
m

InAs
~1250nm
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Fabrication

before 
oxidation

after 
oxidation
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Room Temperature PL

f

1134nm

1167nm
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Comparison to FDTD Modeling
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The PL intensity enhancement is larger at electric dipole 
resonance than at the magnetic dipole resonance.
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This is not Lasing!
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T=8K Results
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Boyd, Ashkin, Dziedzic, & Kleinman, (1965). 
Physical Review, 137(4A), A1305. 

For ~1000cm-1, “effective length” (QxL) 
needs to be <few microns

Q~10
Field decay length (L) ~200nm
QxL~2um….

Effect of Absorption on SHG
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Metallic Dielectric

Metasurfaces
& Semiconductors

Tellurium cubes on BaF2
Planar resonators on III-V substrate

• Strong coupling to phonons, 
plasmons, intersubband 
transitions

• Voltage tuning, tunable filters
• Nonlinear optics

• Optical magnetism
• Unidirectional scattering, 

Huygens metasurfaces
• Nonlinear optics

Outline
Metasurfaces



LC tunable dielectric MSs

EBL and dry etching 
on SoI wafer
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Creating a Magnetic Mirror from a Collection 
of Magnetic Dipoles

A perfect magnetic conductor does not exist in nature  

Array of magnetic dipoles

Because the magnetic dipole responds in phase with the electric field, this 
represents an artificial magnetic conductor

We can create magnetic dipoles with Dielectric Resonators
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Multilayer III-V Dielectric Metamaterials

Epitaxially grown multi-layer 
GaAs/AlGaAs

GaAs 
Substrate

Etch Mask

GaAs 
Substrate

Etch Mask

Oxidation

AlGaAsGaAs AlxOy

2 μm
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I2~ (I 
(2)L)2

(2)

I2~Leff
2~(QL)2

(2)

Conventional SHG, perfect 
phase-matching

Cavity-enhanced

L

Non-resonant (2), conventional 
materials , ~10’s pm/V

Resonant (2) ~ 250 nm/V  (QWs)

ω23

ω12

ω31
But this comes with absorption! chi(1)



Sample damaged by strong pump and SEM images showing damage.

Low damage threshold, maybe 
due to etching induced defect 
on the surface.
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In a III-N 
heterostructure, 
metamaterials increase 
efficiency by over 2 
orders of magnitude

Omri Wolf
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