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Abstract—In this paper we propose closed form mathematical
equations and a Petri net that model the effectiveness of a moving
target defense (MTD). The numerical results from these two
models agree with one another, providing internal validation.
Furthermore, the output of these models indicates the existence
of parameter families that decrease the security of the protected
resource and parameter families that are optimal for the attacker.

I. INTRODUCTION

Cyber security is a critical topic: sophisticated cyber
attackers are motivated by power and money, and the systems
they target are growing in complexity [10].

Our attack model is the six phase attack sequence
comprising: survey, tool, implant, pivot, damage/exfiltration
and cleanup activities illustrated in Figure 1. During the
survey phase, the attacker identifies the key locations for
the attack: the vulnerable node (e.g., web server or operator
workstation) through which to enter the defender system, the
critical nodes (that control a critical process or store critical
data) and the intermediate nodes linking the entry node and
critical nodes. Survey data may include host name, subnet,
network address, MAC address, operating system and security
and application software. During the tool phase, the attacker
configures existing attack tools or creates new tools. During
the implant phase, the attacker establishes a presence on the
defender system. This could be from attacking a webserver,
phishing a human operator or tasking an insider. During the
pivot phase, the attacker will transition from the entry node
to the critical node. During a damage phase, the attacker
will perform some application specific action to disrupt the
defender’s core mission. Alternatively, during an exfiltration
phase, the attacker will transfer the defender’s critical data.
During the cleanup phase, the attacker will remove all artifacts
from the attack (e.g., registry entries, covert file systems or
tainted applications or libraries).

While intrusion detection, tolerance and response are
important and effective defensive measures, intrusion
prevention stops attackers earlier in the phased attack
sequence illustrated in Figure 1. Moving target defense, a
type of intrusion prevention, can not only stop the attacker
from implanting, but can also disrupt the survey phase.

Van Leeuwen et al. [12] propose the following taxonomy
of moving target defense (MTD) illustrated in Figure 2:
network and host based techniques comprise the first layer of
classification, and host based techniques are further classified
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Fig. 1. Phased attack sequence.

into dynamic runtime environment, dynamic code and data
and dynamic platform techniques.

In addition to proposing this taxonomy, Van Leeuwen et al.
also discusses the possibility of MTD instrumentation doing
more harm than good. That is, it is possible to provision an
MTD in such a way as to decrease the security of a protected
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Fig. 2. Moving target defense taxonomy.

resource. To explore this concept further, we propose closed
form mathematical equations and a Petri net to model the
effectiveness of an MTD: specifically, a dynamic platform
technique. The results of these models match one another, and
each model is governed by five parameters.

II. LITERATURE SEARCH

Hong and Kim [6] propose a Hierarchical Attack
Representation Model (HARM) to assess the effectiveness of
an MTD. HARM addresses the inability of flat approaches to
scale due to changes in network architecture. They contrast
HARM with the existing Attack Graph (AG) assessment
technique. Furthermore, the authors propose Importance
Measures (IM) to guide the parameterization of an MTD;
Hong and Kim contrast IM with exhaustive search (ES).
They categorized MTD techniques as shuffling, diversity or
redundancy, and the authors incorporated each into a HARM
model to measure effectiveness. Typically, redundancy is
not regarded as a moving target defense. Hong and Kim
found shuffling techniques had scalability issues, randomly
deployed diversity strategies can be inefficient and redundancy
techniques linearly increased system security risk. They use
risk (unitless), probability of attack success and reliability
(probability of attack success at some arbitrary time) as their
metrics. The authors’ model includes insider attacks. While it
may lack some of the fidelity of Hong and Kim’s approach, the
closed form mathematical model we propose is more intuitive
than HARM.

Collins [2] proposes a game theoretic way to assess the
effectiveness of an MTD. His MTD taxonomy comprises
permutation, ephemeralization and replication techniques,
which are network based, and checkpointing, which is host
based. The author bases his assessment on tags and assets.
Collins’ model includes pivoting and Denial of Service (DoS)
attacks. While this works well for network based MTDs, the
model we propose can analyze host based MTDs.

Evans et al. [4] propose a way to assess the effectiveness of
an MTD. This study discusses the utilization of a model for

assessing the effectiveness for MTD utilized against various
attack classes. They predict that for most cases (circumvention,
deputy, brute force and probing) in their attack model, their
brands of MTD provide a marginal benefit. However, their
brands of MTD, given a sufficiently high rediversification
rate, provide significant benefit for the incremental attack
case. While their investigation focuses on evaluating dynamic
runtime environment and dynamic application code and data
based MTDs, our proposal can analyze dynamic platform
based MTDs.

Okhravi et al. [9] propose another way to assess the
effectiveness of an MTD. Their investigation focuses on
evaluating dynamic platform techniques. The authors describe
dynamic platform techniques using four features: diversity,
multi-instance, limited duration and cleanup. Their attack
model is similar to our own in one sense: the attacker
has exploits for some platforms, but not others. However,
the authors assume a computer network attack (CNA) type
attacker who seeks to disrupt system operation rather than
a computer network exploitation (CNE) type attacker who
seeks to keep the protected resource operating as normal while
exfiltrating sensitive data. Where Okhravi et al. parameterize
the attacker based on how long they seek to disrupt the
protected resource, we parameterize the attacker based on how
long they seek to persist on the protected resource and how
well financed/skilled the attacker is.

Zaffarano et al. [14] propose a technique to assess the
effectiveness of an MTD. They propose four metrics each for
the attacker and defender: productivity, success, confidentiality
and integrity. While the authors provide equations to calculate
these eight metrics, critical pieces, namely the valuation
function, v(-), are missing. In this paper, the authors
construct a framework to quantify the impact of the various
MTD systems on the traditional Confidentiality, Integrity,
Availability (CIA) model of information security. Further,
they expand upon these traditional aspects to measure MTD
systems which might fail to prevent an attack, however
still successfully monitor and log said attack to offer aid
in attribution and remediation. The constructed framework
consists of large scale network emulation via hypervisor
virtualization. The authors then deployed enterprise level tasks
in an effort to create measurable network activity from which
to gauge the effectiveness of MTDs. The attack model of
Zaffarano et al. is strong, they consider a phased attack
sequence similar to what we illustrate in Figure 1. In future
work, we will achieve this level of fidelity by instrumenting
network emulation to further validate our results.

Crouse et al. [3] propose a method to assess the
effectiveness of an MTD. Their MTD taxonomy classifies
techniques into movement or deception categories. This
paper attempts to model the probability of success for an
attacker attempting to perform reconnaissance on a network
in the presence of either a honey pot defense strategy or
a network address shuffling strategy. The model developed
to gauge the effectiveness of the employed defenses is a
probabalistic measure of the reconnaissance success given an



undefended network. The model is then expanded to account
for employing the above mentioned defenses, and the results
show that honeypot defenses outperform network shuffling,
or deception defenses outperform movement defenses, but
that a combination of both defenses yields the greatest gains
in disrupting attacker reconnaissance. The authors’ attack
model considers probing and surveillance attacks; Crouse et
al. formulate these attacks into foothold, minimum to win and
shuffling drop scenarios. The probing and surveillance attacks
they consider fall into the survey phase of our attack model;
good data for survey activity is hard to come by because
of the large amount of noise from legitimate scanning and
recreational hacking. For this reason, our predictive model
focuses on the implant phase; there is no legitimate or
recreational scenario for dropping malware on a protected
resource.

Zhuang et al. [16] propose an approach to assess the
effectiveness of an MTD. Their model considers five
parameters: attack interval, adaptation interval, number of
nodes, adaptations per adaptation interval and attack success
likelihood. Like [9], this is interesting work, but does not
consider a persistent attacker who wishes to remain implanted
on a protected resource for a long time rather than an adversary
who gets in once and claims victory.

Xu et al. [13] survey current MTD techniques. Their
MTD taxonomy comprises four categories: software based
diversification, runtime based diversification, communication
diversification and dynamic platform techniques. The authors
propose four approaches to evaluating MTDs: attack based
experiments, probability models, simulation based evaluation
and hybrid approaches. Our work is a probability model for
dynamic platform techniques.

Green et al. [5] survey current network based MTDs.
They describe common elements of all network based MTDs:
moving, access control and distinguishability. Also, the authors
evaluate four contemporary network based MTDs.

Thompson et al. [11] study an implementation of the same
MTD dynamic platform technique we consider in this paper:
rotating OSs. They call their technique Multiple Operating
System Rotation Environment (MORE). The authors’ MTD
taxonomy hinges on whether movement is proactive or
reactive. Thompson et al. propose three metrics: probability
of exploit, impact of exploit and availability; unfortunately,
they do not provide numerical results.

Okhravi et al. [8] study a similar MTD dynamic platform
technique to what we consider in this paper: platform
diversity. They called their proposed design Trusted Dynamic
Logical Heterogeneity System (TALENT); TALENT pauses
an arbitrary critical infrastructure application written in C,
serializes it, transfers it to another (potentially OS and
hardware dissimilar) host and resumes it. This design is
the foundation of [9]. The authors evaluated TALENT via
executing an approximately 2000 line C application, which
contained a GUI, remotely via SSH. Then they measured the
time required to complete a migration of environments: The
migration of an environment for MTD purposes was roughly

1 second.

Lucas et al. [7] propose a framework, called Evolutionary
Algorithm (EA), for instrumenting an MTD that evolves
computer configurations. A key innovation with their design
is the destination for the movement (the new configuration)
is informed by the current environment. The authors’
framework comprises three components: one discovers new
configurations, another component instantiates the new
configurations, and a third component penetration tests the new
configurations. Lucas et al. used fitness (unitless) and pairwise
Hamming distance as metrics and compared their EA approach
with randomly generated configurations.

Zhang et al. [15] propose an MTD technique where clouds
are incentivized to migrate virtual machines (VMs) to different
hosts. Their attack model includes side channel attacks. The
authors use a game theoretic approach to compute the next
host and other aspects of the move. While the paper measures
their technique’s impact to the defender, it does not consider
the cost to the attacker.

III. MODEL
A. Closed Form Math Model

Equation 1 calculates the probability an information
operation (I0) will succeed. Intuitively, the probability an 10
will succeed is the likelihood an exploit is available for the
target (first term) multiplied by the likelihood the implemented
technique is successful (second term). The probability an
exploit is available for the target is one minus the probability
an exploit is not available for the target. The probability an
exploit is not available for the target is the complement of the
probability an exploit is available for a given configuration
raised to the number of configurations. The likelihood the
implemented technique is successful is the complement of
the probability of implant detection raised to the number
of implants required. Equation 2 calculates the number of
implants required: The number of implants required is the
IO length divided by churn time (the victim must be re-
implanted after each virtual machine (VM) reset) multiplied
by configuration count divided by two (assuming a uniform
distribution, the attacker will need to wait out half of the
configurations on average).

a=(1-(1-¢°(1-p) (1)

i = (c/h)(0/2) 2)

a indicates the probability of IO success; this is the output of
our closed form mathematical model. Applying Equation 1 to
the subsequent parameters yields a. e indicates the probability
an exploit is available for a given configuration. Because all
software has vulnerabilities; e is a function of the budget
and/or skill level of the attacker. o indicates the number
of MTD configurations; the defender chooses this value. p
indicates the probability of implant detection; this is a function
of the skill level of the attacker and the skill level of the
defender. ¢ indicates the number of implants required for the



TABLE I
CLOSED FORM MATHEMATICAL MODEL PARAMETERS.

Parameter Description
Name
a probability of 10 success
e probability an exploit is available for a given configuration
o number of MTD configurations
p probability of implant detection
% number of implants required
c 10 length (s)
h MTD churn time (s)

I0. Applying Equation 2 to the subsequent parameters yields
i. ¢ indicates the IO length in seconds; the attacker chooses
this value. The practitioner should choose a high value here
(e.g., months) to model nation state attackers and low values
here to model recreational hackers (e.g., hours). h indicates
the MTD churn time in seconds; the defender chooses this
value. Table I summarizes these parameters.

B. Stochastic Petri Net

There are three state components of the Markov chain
underlying our Petri (also known as place/transition) net
illustrated in Figure 3: the detection status of the IO, how
many implants have been successful and the success of
the 10. One place models the detection status component
(PID); a token here indicates the defender has detected
the 10. This is an absorbing state because a sophisticated
attacker wants to avoid attribution at all costs and will abort
the 10 after being detected. Another place models the IO
success component (PIOS); a token here indicates the IO has
completed successfully. This is an absorbing state because a
sophisticated attacker will end the mission after accomplishing
the objective to reduce the risk of detection and attribution.
Due to a limitation of the analysis software [1] which restricts
each place to 200 tokens, two places model the successful
implant count component (PSI1 and PSI200). A token in these
places indicates one and 200 successful malware installations,
respectively. The number of tokens in each place is called the
marking of the Petri net; one Petri net marking equates to
one node of the underlying Markov chain. Given two states
for detection status, two states for success status and the need
to accommodate at least 200 implants, the associated Markov
chain would have at least 2 - 2 - 200 = 800 nodes.

One timed transition, TCHURN, adds tokens to a vanishing
state. An immediate transition, TDETECTION, moves a token
from the vanishing state to the intrusion detected state with
some probability. Another immediate transition, TSUCCESS,
moves a token from the vanishing state to the implants
successful x1 state with some probability (the complement of
the TDETECTION probability). A third immediate transition
removes 200 tokens from the implants successful x1 state and
adds one token to the implants successful x200 state. A fourth

TABLE II
STOCHASTIC PETRI NET PARAMETERS.

Transition Name ‘ Function

TCHURN 1/churn time
TDETECTION probability of detection
TSUCCESS 1 — probability of detection
TSUFFICIENT 10 lengtzhi(;:ﬁf;r;tzion count

immediate transition, TSUFFICIENT, adds a token to the IO
successful state when there are sufficient tokens in the implants
successful places. Table II describes the functions governing
these transitions.

TCHURN

TDETECTION TSUCCESS

TSUFFICIENT

Fig. 3. Stochastic Petri net.

IV. RESULTS
A. Closed Form Math Model

The basic trends for Figures 4 through 7 are as expected.
First, Figure 4 shows shorter IOs are more likely to succeed.
Next, Figure 5 shows 1Os are more likely to succeed if exploits
are more readily available. Third, Figure 6 shows lower MTD
strength (equivalent to higher churn time) will increase the
likelihood of 10 success. Finally, Figure 7 shows IOs are more
likely to succeed if probability of implant detection is lower.

In addition to the expected basic trends, in all four graphs,
we see two interesting phenomena: First, it is possible to
make a system less secure by instrumenting an MTD if the
parameterization is unfavorable. The left most point in each
curve (configuration count equal to 1) represents a protected
resource without MTD instrumented. MTD is beneficial when
the configuration count is above some breakeven point. This
breakeven point is higher for shorter campaigns, higher exploit
availabilities, higher churn times and lower probabilities of
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of exploit availability (closed form model).
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Fig. 6. Probability of IO success versus configuration count and churn time
(closed form model).
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Fig. 7. Probability of 10 success versus configuration count and probability
of implant detection (closed form model).

the attacker. This optimal configuration count is lower for
longer 10s, higher exploit availabilities, lower churn times
and higher probabilities of detection. These relationships make
sense intuitively.

B. Stochastic Petri Net
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Fig. 8. Probability of 10 success versus configuration count and IO length
(stochastic model).

As expected, Figures 8 - 11 match Figures 4 - 7 very
closely. The mean squared error between the closed form and
stochastic results are on the order of 1077,

V. CONCLUSIONS

In this paper, we showed that it is possible to instrument
an MTD in a way that makes the protected resource more
vulnerable to attack. Furthermore, we identified parameter
families for which the MTD is optimally configured from the
attacker perspective. Two models, one closed form and one
stochastic, independently support these results.

There are two clear next steps in this line of investigation:
First, we will instrument a simulation or emulation to further
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(stochastic model).
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Fig. 11. Probability of IO success versus configuration count and probability

of implant detection (stochastic model).

strengthen the results we already identified. Also, we will
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derive additional models that cover other forms of MTD, such
as network based techniques, dynamic runtime environments
and dynamic code and data techniques.
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