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Abstract—In this paper we propose closed form mathematical
equations and a Petri net that model the effectiveness of a moving
target defense (MTD). The numerical results from these two
models agree with one another, providing internal validation.
Furthermore, the output of these models indicates the existence
of parameter families that decrease the security of the protected
resource and parameter families that are optimal for the attacker.

I. INTRODUCTION

Cyber security is a critical topic: sophisticated cyber

attackers are motivated by power and money, and the systems

they target are growing in complexity [10].

Our attack model is the six phase attack sequence

comprising: survey, tool, implant, pivot, damage/exfiltration

and cleanup activities illustrated in Figure 1. During the

survey phase, the attacker identifies the key locations for

the attack: the vulnerable node (e.g., web server or operator

workstation) through which to enter the defender system, the

critical nodes (that control a critical process or store critical

data) and the intermediate nodes linking the entry node and

critical nodes. Survey data may include host name, subnet,

network address, MAC address, operating system and security

and application software. During the tool phase, the attacker

configures existing attack tools or creates new tools. During

the implant phase, the attacker establishes a presence on the

defender system. This could be from attacking a webserver,

phishing a human operator or tasking an insider. During the

pivot phase, the attacker will transition from the entry node

to the critical node. During a damage phase, the attacker

will perform some application specific action to disrupt the

defender’s core mission. Alternatively, during an exfiltration

phase, the attacker will transfer the defender’s critical data.

During the cleanup phase, the attacker will remove all artifacts

from the attack (e.g., registry entries, covert file systems or

tainted applications or libraries).

While intrusion detection, tolerance and response are

important and effective defensive measures, intrusion

prevention stops attackers earlier in the phased attack

sequence illustrated in Figure 1. Moving target defense, a

type of intrusion prevention, can not only stop the attacker

from implanting, but can also disrupt the survey phase.

Van Leeuwen et al. [12] propose the following taxonomy

of moving target defense (MTD) illustrated in Figure 2:

network and host based techniques comprise the first layer of

classification, and host based techniques are further classified

Fig. 1. Phased attack sequence.

into dynamic runtime environment, dynamic code and data

and dynamic platform techniques.

In addition to proposing this taxonomy, Van Leeuwen et al.

also discusses the possibility of MTD instrumentation doing

more harm than good. That is, it is possible to provision an

MTD in such a way as to decrease the security of a protected
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Fig. 2. Moving target defense taxonomy.

resource. To explore this concept further, we propose closed

form mathematical equations and a Petri net to model the

effectiveness of an MTD: specifically, a dynamic platform

technique. The results of these models match one another, and

each model is governed by five parameters.

II. LITERATURE SEARCH

Hong and Kim [6] propose a Hierarchical Attack

Representation Model (HARM) to assess the effectiveness of

an MTD. HARM addresses the inability of flat approaches to

scale due to changes in network architecture. They contrast

HARM with the existing Attack Graph (AG) assessment

technique. Furthermore, the authors propose Importance

Measures (IM) to guide the parameterization of an MTD;

Hong and Kim contrast IM with exhaustive search (ES).

They categorized MTD techniques as shuffling, diversity or

redundancy, and the authors incorporated each into a HARM

model to measure effectiveness. Typically, redundancy is

not regarded as a moving target defense. Hong and Kim

found shuffling techniques had scalability issues, randomly

deployed diversity strategies can be inefficient and redundancy

techniques linearly increased system security risk. They use

risk (unitless), probability of attack success and reliability

(probability of attack success at some arbitrary time) as their

metrics. The authors’ model includes insider attacks. While it

may lack some of the fidelity of Hong and Kim’s approach, the

closed form mathematical model we propose is more intuitive

than HARM.

Collins [2] proposes a game theoretic way to assess the

effectiveness of an MTD. His MTD taxonomy comprises

permutation, ephemeralization and replication techniques,

which are network based, and checkpointing, which is host

based. The author bases his assessment on tags and assets.

Collins’ model includes pivoting and Denial of Service (DoS)

attacks. While this works well for network based MTDs, the

model we propose can analyze host based MTDs.

Evans et al. [4] propose a way to assess the effectiveness of

an MTD. This study discusses the utilization of a model for

assessing the effectiveness for MTD utilized against various

attack classes. They predict that for most cases (circumvention,

deputy, brute force and probing) in their attack model, their

brands of MTD provide a marginal benefit. However, their

brands of MTD, given a sufficiently high rediversification

rate, provide significant benefit for the incremental attack

case. While their investigation focuses on evaluating dynamic

runtime environment and dynamic application code and data

based MTDs, our proposal can analyze dynamic platform

based MTDs.

Okhravi et al. [9] propose another way to assess the

effectiveness of an MTD. Their investigation focuses on

evaluating dynamic platform techniques. The authors describe

dynamic platform techniques using four features: diversity,

multi-instance, limited duration and cleanup. Their attack

model is similar to our own in one sense: the attacker

has exploits for some platforms, but not others. However,

the authors assume a computer network attack (CNA) type

attacker who seeks to disrupt system operation rather than

a computer network exploitation (CNE) type attacker who

seeks to keep the protected resource operating as normal while

exfiltrating sensitive data. Where Okhravi et al. parameterize

the attacker based on how long they seek to disrupt the

protected resource, we parameterize the attacker based on how

long they seek to persist on the protected resource and how

well financed/skilled the attacker is.

Zaffarano et al. [14] propose a technique to assess the

effectiveness of an MTD. They propose four metrics each for

the attacker and defender: productivity, success, confidentiality

and integrity. While the authors provide equations to calculate

these eight metrics, critical pieces, namely the valuation

function, v(·), are missing. In this paper, the authors

construct a framework to quantify the impact of the various

MTD systems on the traditional Confidentiality, Integrity,

Availability (CIA) model of information security. Further,

they expand upon these traditional aspects to measure MTD

systems which might fail to prevent an attack, however

still successfully monitor and log said attack to offer aid

in attribution and remediation. The constructed framework

consists of large scale network emulation via hypervisor

virtualization. The authors then deployed enterprise level tasks

in an effort to create measurable network activity from which

to gauge the effectiveness of MTDs. The attack model of

Zaffarano et al. is strong, they consider a phased attack

sequence similar to what we illustrate in Figure 1. In future

work, we will achieve this level of fidelity by instrumenting

network emulation to further validate our results.

Crouse et al. [3] propose a method to assess the

effectiveness of an MTD. Their MTD taxonomy classifies

techniques into movement or deception categories. This

paper attempts to model the probability of success for an

attacker attempting to perform reconnaissance on a network

in the presence of either a honey pot defense strategy or

a network address shuffling strategy. The model developed

to gauge the effectiveness of the employed defenses is a

probabalistic measure of the reconnaissance success given an



undefended network. The model is then expanded to account

for employing the above mentioned defenses, and the results

show that honeypot defenses outperform network shuffling,

or deception defenses outperform movement defenses, but

that a combination of both defenses yields the greatest gains

in disrupting attacker reconnaissance. The authors’ attack

model considers probing and surveillance attacks; Crouse et

al. formulate these attacks into foothold, minimum to win and

shuffling drop scenarios. The probing and surveillance attacks

they consider fall into the survey phase of our attack model;

good data for survey activity is hard to come by because

of the large amount of noise from legitimate scanning and

recreational hacking. For this reason, our predictive model

focuses on the implant phase; there is no legitimate or

recreational scenario for dropping malware on a protected

resource.

Zhuang et al. [16] propose an approach to assess the

effectiveness of an MTD. Their model considers five

parameters: attack interval, adaptation interval, number of

nodes, adaptations per adaptation interval and attack success

likelihood. Like [9], this is interesting work, but does not

consider a persistent attacker who wishes to remain implanted

on a protected resource for a long time rather than an adversary

who gets in once and claims victory.

Xu et al. [13] survey current MTD techniques. Their

MTD taxonomy comprises four categories: software based

diversification, runtime based diversification, communication

diversification and dynamic platform techniques. The authors

propose four approaches to evaluating MTDs: attack based

experiments, probability models, simulation based evaluation

and hybrid approaches. Our work is a probability model for

dynamic platform techniques.

Green et al. [5] survey current network based MTDs.

They describe common elements of all network based MTDs:

moving, access control and distinguishability. Also, the authors

evaluate four contemporary network based MTDs.

Thompson et al. [11] study an implementation of the same

MTD dynamic platform technique we consider in this paper:

rotating OSs. They call their technique Multiple Operating

System Rotation Environment (MORE). The authors’ MTD

taxonomy hinges on whether movement is proactive or

reactive. Thompson et al. propose three metrics: probability

of exploit, impact of exploit and availability; unfortunately,

they do not provide numerical results.

Okhravi et al. [8] study a similar MTD dynamic platform

technique to what we consider in this paper: platform

diversity. They called their proposed design Trusted Dynamic

Logical Heterogeneity System (TALENT); TALENT pauses

an arbitrary critical infrastructure application written in C,

serializes it, transfers it to another (potentially OS and

hardware dissimilar) host and resumes it. This design is

the foundation of [9]. The authors evaluated TALENT via

executing an approximately 2000 line C application, which

contained a GUI, remotely via SSH. Then they measured the

time required to complete a migration of environments: The

migration of an environment for MTD purposes was roughly

1 second.

Lucas et al. [7] propose a framework, called Evolutionary

Algorithm (EA), for instrumenting an MTD that evolves

computer configurations. A key innovation with their design

is the destination for the movement (the new configuration)

is informed by the current environment. The authors’

framework comprises three components: one discovers new

configurations, another component instantiates the new

configurations, and a third component penetration tests the new

configurations. Lucas et al. used fitness (unitless) and pairwise

Hamming distance as metrics and compared their EA approach

with randomly generated configurations.

Zhang et al. [15] propose an MTD technique where clouds

are incentivized to migrate virtual machines (VMs) to different

hosts. Their attack model includes side channel attacks. The

authors use a game theoretic approach to compute the next

host and other aspects of the move. While the paper measures

their technique’s impact to the defender, it does not consider

the cost to the attacker.

III. MODEL

A. Closed Form Math Model

Equation 1 calculates the probability an information

operation (IO) will succeed. Intuitively, the probability an IO

will succeed is the likelihood an exploit is available for the

target (first term) multiplied by the likelihood the implemented

technique is successful (second term). The probability an

exploit is available for the target is one minus the probability

an exploit is not available for the target. The probability an

exploit is not available for the target is the complement of the

probability an exploit is available for a given configuration

raised to the number of configurations. The likelihood the

implemented technique is successful is the complement of

the probability of implant detection raised to the number

of implants required. Equation 2 calculates the number of

implants required: The number of implants required is the

IO length divided by churn time (the victim must be re-

implanted after each virtual machine (VM) reset) multiplied

by configuration count divided by two (assuming a uniform

distribution, the attacker will need to wait out half of the

configurations on average).

a = (1− (1− e)o)(1− p)i (1)

i = (c/h)(o/2) (2)

a indicates the probability of IO success; this is the output of

our closed form mathematical model. Applying Equation 1 to

the subsequent parameters yields a. e indicates the probability

an exploit is available for a given configuration. Because all

software has vulnerabilities; e is a function of the budget

and/or skill level of the attacker. o indicates the number

of MTD configurations; the defender chooses this value. p
indicates the probability of implant detection; this is a function

of the skill level of the attacker and the skill level of the

defender. i indicates the number of implants required for the



TABLE I
CLOSED FORM MATHEMATICAL MODEL PARAMETERS.

Parameter Description

Name

a probability of IO success

e probability an exploit is available for a given configuration

o number of MTD configurations

p probability of implant detection

i number of implants required

c IO length (s)

h MTD churn time (s)

IO. Applying Equation 2 to the subsequent parameters yields

i. c indicates the IO length in seconds; the attacker chooses

this value. The practitioner should choose a high value here

(e.g., months) to model nation state attackers and low values

here to model recreational hackers (e.g., hours). h indicates

the MTD churn time in seconds; the defender chooses this

value. Table I summarizes these parameters.

B. Stochastic Petri Net

There are three state components of the Markov chain

underlying our Petri (also known as place/transition) net

illustrated in Figure 3: the detection status of the IO, how

many implants have been successful and the success of

the IO. One place models the detection status component

(PID); a token here indicates the defender has detected

the IO. This is an absorbing state because a sophisticated

attacker wants to avoid attribution at all costs and will abort

the IO after being detected. Another place models the IO

success component (PIOS); a token here indicates the IO has

completed successfully. This is an absorbing state because a

sophisticated attacker will end the mission after accomplishing

the objective to reduce the risk of detection and attribution.

Due to a limitation of the analysis software [1] which restricts

each place to 200 tokens, two places model the successful

implant count component (PSI1 and PSI200). A token in these

places indicates one and 200 successful malware installations,

respectively. The number of tokens in each place is called the

marking of the Petri net; one Petri net marking equates to

one node of the underlying Markov chain. Given two states

for detection status, two states for success status and the need

to accommodate at least 200 implants, the associated Markov

chain would have at least 2 · 2 · 200 = 800 nodes.

One timed transition, TCHURN, adds tokens to a vanishing

state. An immediate transition, TDETECTION, moves a token

from the vanishing state to the intrusion detected state with

some probability. Another immediate transition, TSUCCESS,

moves a token from the vanishing state to the implants

successful x1 state with some probability (the complement of

the TDETECTION probability). A third immediate transition

removes 200 tokens from the implants successful x1 state and

adds one token to the implants successful x200 state. A fourth

TABLE II
STOCHASTIC PETRI NET PARAMETERS.

Transition Name Function

TCHURN 1/churn time

TDETECTION probability of detection

TSUCCESS 1− probability of detection

TSUFFICIENT
IO length·configuration count

churn time·2

immediate transition, TSUFFICIENT, adds a token to the IO

successful state when there are sufficient tokens in the implants

successful places. Table II describes the functions governing

these transitions.

Fig. 3. Stochastic Petri net.

IV. RESULTS

A. Closed Form Math Model

The basic trends for Figures 4 through 7 are as expected.

First, Figure 4 shows shorter IOs are more likely to succeed.

Next, Figure 5 shows IOs are more likely to succeed if exploits

are more readily available. Third, Figure 6 shows lower MTD

strength (equivalent to higher churn time) will increase the

likelihood of IO success. Finally, Figure 7 shows IOs are more

likely to succeed if probability of implant detection is lower.

In addition to the expected basic trends, in all four graphs,

we see two interesting phenomena: First, it is possible to

make a system less secure by instrumenting an MTD if the

parameterization is unfavorable. The left most point in each

curve (configuration count equal to 1) represents a protected

resource without MTD instrumented. MTD is beneficial when

the configuration count is above some breakeven point. This

breakeven point is higher for shorter campaigns, higher exploit

availabilities, higher churn times and lower probabilities of
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detection. Also, there is an optimal configuration count for
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the attacker. This optimal configuration count is lower for

longer IOs, higher exploit availabilities, lower churn times

and higher probabilities of detection. These relationships make

sense intuitively.

B. Stochastic Petri Net
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Fig. 8. Probability of IO success versus configuration count and IO length
(stochastic model).

As expected, Figures 8 - 11 match Figures 4 - 7 very

closely. The mean squared error between the closed form and

stochastic results are on the order of 10−9.

V. CONCLUSIONS

In this paper, we showed that it is possible to instrument

an MTD in a way that makes the protected resource more

vulnerable to attack. Furthermore, we identified parameter

families for which the MTD is optimally configured from the

attacker perspective. Two models, one closed form and one

stochastic, independently support these results.

There are two clear next steps in this line of investigation:

First, we will instrument a simulation or emulation to further
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strengthen the results we already identified. Also, we will

derive additional models that cover other forms of MTD, such

as network based techniques, dynamic runtime environments

and dynamic code and data techniques.
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