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Background and Motivation

Fundamental work on:

e Time-series analysis
e Box-Cox transformation
e Response surface methodology

George E. P. Box, 1919 - 2013
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Background and Motivation Part I: Forward Propagation Part II: Inverse Problem Conclusions

Background and Motivation

Why Uncertainty Quantification (UQ)?

Fundamental work on:

e Time-series analysis
e Box-Cox transformation
e Response surface methodology

George E. P. Box, 1919 - 2013

“Remember that all models are essentially wrong; the practical question
is how wrong do they have to be to not be useful.”
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Part II: Inverse

Background and Motivation Part I: Forward Propagation

Background and Motivation

e 1957: seminal work in molecular dynamics (MD),
Alder and Wainwright.

e 1964: first MD simulation based on a realistic
potential (Lennard-Jones): liquid Ar (Rahman).

e 1974: first MD simulation of liquid water
(Stillinger and Rahman).

MD simulation of Na™ and C1~ in water.

e MD is useful and cheap (vs. experiments) to
explore physical properties at the atomic level.

e Industrial/academic applications: liquids, solids,
proteins and nucleic acids (DNA, RNA).

e As every simulation technique, MD is an

approximation method with a few weaknesses...
MBD snapshot of DNA (Biophys. group, UIUC)
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Background and Motivation

Background and Motivation: MD overview

e Classical MD simulation (Frenkel,2001; Allen & Tildesley,1987):

dz i fi
l'(z,l) _ ﬂ f(i,t) = _vl‘iq)(r(l,t)a A ,I'(NJ)) J 1 = 17 . ’N
dt m;

e & is the potential (or force-field), defined before starting the simulation.

o & should be tailored to the target application.
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Background and Motivation

Background and Motivation: MD overview

e Classical MD simulation (Frenkel,2001; Allen & Tildesley,1987):

dzr,- fl'
(2”) — W £y = —=Ve@(ra, -, Ty) J i=1,....N
dt m;

d is the potential (or force-field), defined before starting the simulation.

® should be tailored to the target application.

Reliability depends on the accuracy of ®.

Continuous development of potentials and experience over the years.

MD potential represents an important source of uncertainty.
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Background and Motivation

Potential Uncertainty for Water

e More than 50 MD water models available (Guillot,2002; Wallqvist,2007).

e Only some physical properties are reproduced with a good degree of accuracy.

Acronym Date Type Sites Reference
SPC 1981 rigid 3 (Berendsen,1981)
TIP3P 1981 rigid 3 (Jorgensen,1983)
SPC/F 1985 flexible 3 (Toukan,1985)
SPC/FP 1991  flexible,polarizable 3 (Zhu,1991)
NSPCE 1998 rigid 3 (Errington,1998)
SPC/Fw 2006 flexible 3 (Wu,2006)
BF 1933 rigid 4 (Bernal,1933)
RWK 1982 flexible 4 (Reimers,1982)
TIP4P 1983 rigid 4 (Jorgensen,1983)
PTIP4P 1991 polarizable 4 (Sprik,1991)
TIP4P/FQ 1994 polarizable 4 (Rick,1994)
TIP4P-Ew 2004 rigid 4 (Horn,2004)
TIP4P/2005 2005 rigid 4 (Abascal,2005)
ST2 1973 rigid 5 (Stillinger,1974)
TIP5P 2000 rigid 5 (Mahoney,2000)
TIP5P-Ew 2004 rigid 5 (Rick,2004)
NvdE 2003 rigid 6 (Nada,2003)

Table: Reduced list of water models developed since 1933.
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Background and Motivation

Potential Uncertainty for Water

a Most water models use Lennard-Jones (LJ) .
potential to describe Van der Waals forces. ;‘ 1 Repulsion range
o\ 12 o\ 6 P
Byy(r) = 4e { (f) - (f) } TS
r r ;\
s - Attraction range
o Different models involve different values of
the LJ parameters ¢, 0. R O
b Rigid or flexible molecule. / \ / ?\
H+ +H H+ +H
¢ H,O0 structure: from 3-site to 6 sites models. 3-site d-site
a2 q)2 a3 93
o Discussion holds for several other systems: \O}'
potential and parameters are important 4 +\ 4 %’3\
sources of uncertainty to consider. H ) H H . +H
S-site 6-site
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Background and Motivation

Uncertainty Quantification (UQ)

o Estimating uncertainty in a model of a physical process of interest.

e Complex non-linear systems: small uncertainties and errors can be largely
amplified and strongly affect the model predictions.

e Key role when high-fidelity/risk prediction is of central importance.

e Polynomial chaos (PC) (Wiener,1938) and Bayesian inference (Bayes,1763).
PC expansion: X is a target RV - ¢; are coeff. - ¥;(&) polyn. of standard RV &

Bayes’ theorem: D is data - @ is set of parameters (hypothesis)

Likelihood  Prior

Posterior P e
—
ein) _ P0IO) P(6)

C
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B: und and Motivation Part I: For d P ) Part II: Ir

Talk Overview

Part I: Forward Propagation

e How uncertainty in a set of model parameters affects selected predictions.

Parameters

e Focus on MD simulations of concentration driven ionic flow in a silica nanopore.

e System’s heterogeneity is a key complexity of this study.

Part II: Inverse Problem

e Estimating target model parameters based on a set of observations.

Parameters [« @

e Focus on MD simulations of bulk water.

e Estimation of potential parameters based on noisy observations of water observables.
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Part I: Forward Propagation

Forward Propagation: Nanopore Flow )

« F. Rizzi, R.E. Jones, B.J. Debusschere and O.M. Knio - Part I —J. Chem. Phys., 138:194104, 2013.
= F. Rizzi, R.E. Jones, B.J. Debusschere and O.M. Knio - Part Il — J. Chem. Phys., 138:194105, 2013.
* F. Rizzi, Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 2012.
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Part I: Forward Propagation

Why Nanopores?

e Synthetic nanopores are widely used in the
industry: desalination or other separation tasks.

e Selective control of transport:
identify & manipulate physical properties
or the interaction between the transported
ions (or molecules) and the pore walls.

Example of nanoporous membrane:
pore size ~ 20nm, (R.Narayan, NC State).
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Part I: Forward Propagation

Why Nanopores?

e Synthetic nanopores are widely used in the
industry: desalination or other separation tasks.

e Selective control of transport:
identify & manipulate physical properties
or the interaction between the transported
ions (or molecules) and the pore walls.

o Inspired by their biological counterparts: Example of nanoporous membrane:
e.g. transmembrane protein channels. pore size ~ 20nm, (R.Narayan, NC State).

Mechanically gatod channel closod Mechanicaly gated channel open

call
membrane

Proten channel schematic (web).
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Part I: Forward Propagation

Why Nanopores?

e Synthetic nanopores are widely used in the
industry: desalination or other separation tasks.

e Selective control of transport:
identify & manipulate physical properties
or the interaction between the transported
ions (or molecules) and the pore walls.

o Inspired by their biological counterparts: Example of nanoporous membrane:
e.g. transmembrane protein channels. pore size ~ 20nm, (R.Narayan, NC State).

e Complex and highly heterogeneous. T
Extracellular flid ! C{

Mechanically gated channel opon

e MD simulations of nanopores are not new.

e UQ applied to nanopore simulations is novel.

e Characterize uncertanties in the system.
e Important for improving design capabilities.

o © 04 o
O oo

call
membrane

Proten channel schematic (web).
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Part I: Forward Propagation

Atomistic System and Geometry

o Silica pore model connecting two reservoirs containing a 1.5 mol/l solution of
sodium (Na™) and chloride (Cl ) ions in H,O (white-red).

e Reservoirs communicate only through the pore, PBC are imposed along x and y.

silica pore

reservoir T 4 reservoir

D
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Part I: Forward Propagation

Atomistic System and Geometry

o Silica pore model connecting two reservoirs containing a 1.5 mol/l solution of
sodium (Na™) and chloride (C1~) ions in H,O (white-red).

e Reservoirs communicate only through the pore, PBC are imposed along x and y.

silica pore

reservoir T 4 reservoir

D

1 «-quartz crystal structure for the silica.

Opuirs Si
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Part I: Forward Propagation

Atomistic System and Geometry

o Silica pore model connecting two reservoirs containing a 1.5 mol/l solution of
sodium (Na™) and chloride (C1~) ions in H,O (white-red).

e Reservoirs communicate only through the pore, PBC are imposed along x and y.

silica pore

reservoir T 4 reservoir

D

I a-quartz crystal structure for the silica.

2 Cylindrical region of nominal diameter D.

Opuirs Si
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Part I: Forward Propagation

Atomistic System and Geometry

o Silica pore model connecting two reservoirs containing a 1.5 mol/l solution of
sodium (Na™) and chloride (Cl ) ions in H,O (white-red).

e Reservoirs communicate only through the pore, PBC are imposed along x and y.

silica pore

reservoir T 4 reservoir

D

1 a-quartz crystal structure for the silica.
2 Cylindrical region of nominal diameter D.

3 Saturate dangling bonds with hydroxide groups
(OH7), to mimic real hydroxylation processes.

e Domain (xyz) 5.4 x 6 x 10.5 nm>.
o LAMMPS, simulation time ~ 8 ns.

Obulk5 Si, H
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Part I: Forward Propagation

MD Potential

° (I)total = (I)bonded + (I)LJ + (I)Coulomh
—_———

non—bonded Bending

e ®pn0q (bond stretching and bending) is S‘:m

modeled using harmonic potential. \
Non-bonded

e Non-bonded interactions (Van der Waals + Electrostatic) are modeled as:

Natoms O 12 o 6 qq
y y 7
(I)m)n—bonded = E |:4€ij ( ) - ( ) + 4 :|
= rij rij TEQFij
i=1,j>i \ ,

Py (rlj) (I)Coulomb(ri/)
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Part I: Forward Propagation

MD Potential

° (I)total = (pbonded + (I)LJ + (I)Coulomh
—_———

Bending

e ®pyn40q (bond stretching and bending) is S‘:m ‘
modeled using harmonic potential.
£ P m

e Non-bonded interactions (Van der Waals + Electrostatic) are modeled as:

Natoms 12 6
Z Oij Oij qiqj
(I)rwn—bonded = |:4€ij () - () +
i1 j>i V,'j V,'j 471'607‘,7
= ——

Py (rlj) (I)Coulomb(ri/)

non—bonded

o LJ parameters {43,043} between atoms types a and 3 is defined for each
homoatomic pair present in the system, i.e. « = 3. E.g. O ~ O, H ~ H, etc.

o Cross-interactions {e, 8, 0a g}, « # 3, based on Lorentz-Berthelot (LB) rules:
0ap = (00 +05) /2, and €48 = \/Eals.
o Parameters: silica (Lopes,2006), water (Jorgensen,1984), ions (Patra,2002).
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Part I: Forward Propagation

Concentration Control Algorithm

e Monitor concentration difference Ac(t) = ¢,(7) — ¢1(2):
¢;(f) = (molar) concentration at ¢ of a target ionic species in i-th reservoir.

e Inject/remove ions in C; and C,. —

e No ion deletion, only swapping: Na
= Nyoms 1S constant. . control v > L ontrol
J— — nm region 7 region
o —Acy,+ = 60/ Vg = Acgr- C : ,
Flow Na™: left — right

Flow C1~ : left + right

F. Rizzi UQ in MD Min:



Part I: Forward Propagation

Concentration Control Algorithm

e Monitor concentration difference Ac(t) = ¢,(7) — ¢1(2):
¢;(f) = (molar) concentration at ¢ of a target ionic species in i-th reservoir.

e Inject/remove ions in C; and C,. —

e No ion deletion, only swapping: Na
= Nyioms 18 constant. . control v > L ontrol
J— — nm region 7 region
o —Acy,+ = 60/ Vg = Acgr- C : ,
Flow Na™: left — right
Flow CI~ : left < right B
N, exchanges (t )

) _ J@
" and conductance: G(l‘) = aq

© Nexchanges 1s the number of ion exchanges between C; and C, over the time 1.

o Ionic flux (magnitude): J () =

o A is the nominal cross-sectional area of the pore.

o Validated against a steady flux measured via integration of the velocity
profiles of the ions over the cross-section of the pore.
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Part I: Forward Propagation

Dependence on the pore diameter |
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Part I: Forward Pro

Animation & Velocity Profile

e D=125,17,21 and 27 A. e Time/spatial averaging of axial velocity

.. . over 24 slabs orthogonal to pore axis.
e 5 replica simulations at each D to & P

account for intrinsic (thermal) noise. e Water is stationary.

¢ Different initial velocities and random e Jons tend to flow along the pore
seed for CC algorithm. centerline with net mean velocity.

03
025 [ Na" e Waer|
02
0.5
0.1
0.05

"=50 -40 =30 20 =10 0 10 20 30 40 50

Na™, C1”, H,O (white-red), Opu, Si, 'H 7-coordinate [A]
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Part I: Forward Propagation

Effect of the Pore Diameter: Conductance

o Extract steady state value of conductance G for Na* and Cl~.
e Steady state when the coefficient of variation based on 500 values is below 1%.

e Steady-state value of Gy,+ and G¢;- as a function of D for all 5 replicas
showing the replica values (markers) and the mean trends (solid lines).

150

Na

e Slope of G- is sharper than Gy,+. 125" €L
e Overlapping of distributions for small D. 100
e ForD > 17: G- > Gyt i 75

O Cross-over

e The trend reverses for D = 12.5. 50
e Physical explanation? 2
0

12.5 17 21 27
Pore Diameter, D [A]
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Part I: Forward

Physical Explanation

e Cross-over is the result of the interplay between size effects and ionic mobility.

e D = 12.5 A: weak solvation shell = strong effects of pore walls and confinement
favor ions with smaller ionic radius, i.e. Na™ (as seen by Lyndenbell,1996).

150/
125 ¢
- 100
=
£
ERE
N Cross-over
50
25
NS
12.5 17 21 27

Pore Diameter, D [A] Na™, CI—, H,O (white-red), - H, Si, Ope
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Part I: Forward Propagation

Physical Explanation

e Cross-over is the result of the interplay between size effects and ionic mobility.

e D = 12.5 A: weak solvation shell = strong effects of pore walls and confinement
favor ions with smaller ionic radius, i.e. Na™ (as seen by Lyndenbell,1996).

e D>17 A: complete solvation shell around the ions
= ion’s mobility dominates

= Fluxc—- > Fluxy,+ because the diffusivity of CI™ is larger.

150/

125~ ¢
- 100
=
£
ERE
N Cross-over

50 l -

. /%/

0 f

12.5 17 21 27 4~ .
Pore Diameter, D [A] Na™, CI™, H,O (white-red), - 'H, Si, Op,x
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Part I: Forward Propagation

Physical Explanation

e Cross-over is the result of the interplay between size effects and ionic mobility.

e D = 12.5 A: weak solvation shell = strong effects of pore walls and confinement
favor ions with smaller ionic radius, i.e. Na™ (as seen by Lyndenbell,1996).

e D>17 A: complete solvation shell around the ions
= ion’s mobility dominates

= Fluxc—- > Fluxy,+ because the diffusivity of CI™ is larger.

150/ ot
125~ ¢
- 100
=
~ N 8
g 4]
N Cross-over
50 l : /
25
0 H
125 17 21 27 4~ .
Pore Diameter., D [A] Na™, CI™, H,O (white-red), - 'H, Si, Op,x
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Part I: Forward

Physical Explanation

e Cross-over is the result of the interplay between size effects and ionic mobility.

e D = 12.5 A: weak solvation shell = strong effects of pore walls and confinement
favor ions with smaller ionic radius, i.e. Na™ (as seen by Lyndenbell,1996).

e D>17 A: complete solvation shell around the ions
= ion’s mobility dominates

= Fluxc—- > Fluxy,+ because the diffusivity of CI™ is larger.

150 <+

125/ €L %

Cross-over

125 17 21 27 Lo )
Pore Diameter, D [A] Na™, C1™, HO (white-red), ' H, Si, Opyix
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Part I: Forward Propagation

Sensitivity to LJ potential parameters |
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Part I: Forward Propagation
Problem Definition

e Fix D = 21 A; choose ey,+ and ¢, depths of the LJ potential for Na* and Cl~.

eng+ = 0.002033777 + 0.001992370 &;,

[eV],
ecr- = 0.006504600 + 0.000863055 &>,

[eV],
where {£, &} are i.i.d. uniform random variables ¢/ (—1, 1); values from literature

o Directly affects the LJ potential for Na*-Na*t and C1~-CI~ interactions.

Range for Na*

Range for CI”

s
» TA]
&y, (r) for Nat-Nat and CI~-Cl—

F. Rizzi
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Part I: Forward Propagation

Problem Definition

e Fix D = 21 A; choose ey,+ and ¢, depths of the LJ potential for Na* and Cl~.

enat = 0.002033777 4+ 0.001992370 &,  [eV],
e~ = 0.006504600 + 0.000863055 &,  [eV],

where {£;, &, } are i.i.d. uniform random variables U/ (—1, 1); values from literature.
o Directly affects the LJ potential for Na*-Na*t and C1~-CI~ interactions.

e Since 43 = ,/Eq€p for atom types « # 3, it affects all the cross-interactions.

-3 -3

x 10 x 10
Range for Na® LJ Tor cross
2 ange for 2 Na™=CI” interaction
@ (e —acs) Range for CI”
0 0
Z - 5 - Buo(ERin, e
O s 272 v
s -
5_4 Brste — an) 5_4 Nominal curve
. () . -
Pr(pe-+ac-)
-8 -8
2 3 4 5 6 71 8 9 2 3 4 5 6 71 8 9
r 1Al 1Al
&y, (r) for Nat-Nat and CI~-CI— ®y(r) for cross Nat-Cl—
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Part I: Forward Propagation

Objective and Methods

o enet =fi1&1), eq- =h(&), with o ~U(-1,1)

= nanopore observables (flux, conductance) can be considered as random variables.
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Part I: Forward Propagation

Objective and Methods

o enet =fi1&1), eq- =h(&), with o ~U(-1,1)

= nanopore observables (flux, conductance) can be considered as random variables.
e How to “map” the uncertainty from ey,+, ¢/~ to the observables?

e E.g. Monte Carlo: Sample £, &, to generate samples of €y,+ and £¢;—; run
one full MD simulation for each sample; collect data and generate statistics.
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Part I: Forward Propagation

Objective and Methods

=

enat =f1(&1),  ea- =f(&), with & ~U(-1,1)

nanopore observables (flux, conductance) can be considered as random variables.
How to “map” the uncertainty from ey,+, €c;— to the observables?

E.g. Monte Carlo: Sample &, &, to generate samples of €y,+ and £¢—; run
one full MD simulation for each sample; collect data and generate statistics.

We rely on Polynomial Chaos expansions (PCe):
P

(conductance) G ~ Zg, (&1,&) [e.g. linear PCe: G = go + g1&1 + £282)
i=0

P+ 1 = (order + 2)!/(order! 2!); ¥ () = Legendre Polyn., and g = PC coefficients.

PCe is an orthogonal expansion: scalar product, then pseudo-spectral approach.

* Regularity of data; noisy might be problematic; constraints on sampling.
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Part I: Forward Propagation

Objective and Methods

o enet =fi1&1), eq- =h(&), with o ~U(-1,1)

= nanopore observables (flux, conductance) can be considered as random variables.
e How to “map” the uncertainty from ey,+, ¢/~ to the observables?

e E.g. Monte Carlo: Sample £, &, to generate samples of €y,+ and £¢;—; run
one full MD simulation for each sample; collect data and generate statistics.

e We rely on Polynomial Chaos expansions (PCe):
P

(conductance) G ~ Zg, (&1,&) [e.g. linear PCe: G = go + g1&1 + £282)
i=0

o P+ 1= (order +2)!/(order! 2!); U() = Legendre Polyn., and g = PC coefficients.

e PCe is an orthogonal expansion: scalar product, then pseudo-spectral approach.

* Regularity of data; noisy might be problematic; constraints on sampling.

e For noisy systems, as MD due to thermal noise, Bayesian regression works best.

F. Rizzi UQ in MD Min:
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Part I: Forward Propagation

Bayesian Regression: Formulation

e Regression function is a PCe: D)
. \ :
M(&1, &) = ng‘lfk &,&), . ==
k=0 == =
=
1 s M i . 3
05 - : L o5 |
-05 - "5 O ’
§ -1 -l g
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Part I: Forward Pro

Bayesian Regression: Formulation

e Regression function is a PCe: D)
3 \ : .
M(&, &) = ng‘lfk &1,&), . =
k=0 e =
o Regression model as =
G =M(&,) + e, ¢=1,...,39. 05 o=l 1t s 1
-05 - 05 O
13 -1 -1 g
2 1

o &, is the coordinate of the ¢-th data point G,
o ¢ is a RV capturing the discrepancy between data and model prediction.
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Part I: Forward Pro

Bayesian Regression: Formulation

e Regression function is a PCe:

9
.\ : .
M(&1, &) = ng‘lfk £1,6), « = =
k=0 = =
o Regression model as =
Gi=M®E) v,  L=1,...,39. 05 ey
-05 . ’_05 0 )
& -1 -l 'El

o &, is the coordinate of the ¢-th data point G,

o ¢ is a RV capturing the discrepancy between data and model prediction.

o Data points result from independent but statistically equivalent MD runs.

o Assume {v,}32, to be independent and v, ~ N (0,0,), £ = 1,...,39.
* Gaussian model (verified): data extracted from MD using running averages.
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Part I: Forward Propagation

Bayesian Regression: Formulation

e Regression function is a PCe:

9
.\ : .
M(&,6) = ng‘lfk £1,6), . — =
k=0 F13 . = : ; s
o Regression model as =
Gy =M(&)) + e, {=1,...,39. 05 o~ | e o5 |
-05 . ’_05 0 )
g Ll 'El

o &, is the coordinate of the ¢-th data point G,

o ¢ is a RV capturing the discrepancy between data and model prediction.

Data points result from independent but statistically equivalent MD runs.

Assume {7¢}32, to be independent and v, ~ N(0,0¢), £ = 1,...,39.
* Gaussian model (verified): data extracted from MD using running averages.

Consider a space-dependent noise oy, = o (£) by parametrizing:

(&) = ho + m& + .

F. Rizzi UQ in MD Min:



Part I: Forward Propagation

Bayesian Regression: Formulation

o {h}7_, are hyperparameters, i.e. part of the unknowns: {go, ..., gp, o, 11, h2}.

e Likelihood becomes:

_[Gi = Zf:o V(€11 &.0))?
L= H H 2l + hlfl Ao T ( 2o+ mrg + &2 )

i=1 j=1

where G; is the j-th observation obtained at the i-th sampling point, §;.

F. Rizzi UQ in MD Min:



Part I: Forward Propagation

Bayesian Regression: Formulation

o {h}7_, are hyperparameters, i.e. part of the unknowns: {go, ..., gp, o, 11, h2}.

e Likelihood becomes:

(Gij— Zf:o V(€11 &.0))?
L= exp [ — 52, 7
,11,11 V/2m[ho + hlfl i+ m&)? P < 2[ho 4 hi&1,i + ho&ai]?

where G; is the j-th observation obtained at the i-th sampling point, §;.

e Bayes’ theorem yields the joint posterior

7 ({adio (g | ) o £ (6] ety M}y Prior({aity_ys i}y,

For the priors we use uniform distributions.

e Sample () with a Markov chain Monte Carlo (MCMC) method based on
Adaptive Metropolis (AM): “walk” in the {go, ..., gp, ho, k1, b2 }-space.

F. Rizzi UQ in MD Min:



Background and Motivatior Part I: Forward Pro Part II: Inverse Conclusion

Baysian Regression: Results

e Regression function order: e.g. ord = 1 (linear), ord = 2 (quadratic), etc.
o P+ 1= (ord+2)!/(ord! 2!).

e MCMC yields a “chain” in the {go, . .., gp, ho, i1, hp }-space:
80
75
70
65

40
35

0.5 1

25 3 34.5 25 3 35
x 10

x 10*
MCMC for g gf the regression fun(jrlion MCMC for (ho)z of the noise variance
M(&) = k=g 8x Wi (§) for Na™. (&) = ho + &) + hats for Nat,

1.5 2
MCMC step 0 0.3 !

1.5 2
MCMC step

e Samples are used to derive statistics of the posterior 7(go, . - ., gp, o, 1, h2):
mean, variance, joint distributions ...
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Part I: Forward Propagation

Regression Function: Linear? Quadratic? ...

o Regression function M (&), &): constant? linear? higher-order?

e Bayes factor: discriminate between two “models” describing the same set of data.
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Part I: Forward Propagation

Regression Function: Linear? Quadratic? ...

e Regression function M(£;,&,): constant? linear? higher-order?
e Bayes factor: discriminate between two “models” describing the same set of data.
e 0, ={g0,...,8p, ho, h1,hy}: set of model parameters for a p-th order M(§).

o Integrates over the full parameter space.

The (log,) of Bayes factor, B(6,,,8,,), is given by:
f‘C(GIHPl)Pr(opl) depl
" f‘C(G|0P2)Pr(0ﬂz) dopz

log,(B(6,,,6,,)) = log

The more positive log, (B(6,,,0,,)), the stronger the support for 6, (Kass,1995).

Na™ Cl-
P2=0 pp=1 pp=2 pp=3[pp=0 pp=1 pp=2 py=3
p1=0 2.484 2.737 6.499
pr=1
pL= 19.933  0.593 3.648
p1=3
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Part I: Forward Pro

Posterior Uncertainty & Response Surface for Na*

e Quadratic regression model for Gy,+:
Mg, (&) = g0+ g6 + 06 + 636 — 1)/2+ gabi&a + 2:(36 — 1)/2

e From Bayesian regression: ® g0, g1 dominant in magnitude,
= uncertain PCe. higher-order modes play a minor role.

0.5 80

0.4

TTTTAT
DB W= O
193
o

0.3

T (gx)
g [nm/ns)
)
=)

02 20 \\ Linear Quadratic

0.1

—%(}15-10—5 0 5 1015202530 354045 50 55 60 -20
gk [nm/ns]

Index, k
Marginalized posteriors of PC coefficients.

Basic statistics of PC spectrum.
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Part I: Forward Pro

Posterior Uncertainty & Response Surface for Na*

e Quadratic regression model for Gy,+:

Mg, . (€) = g0+ &1&1 + 226 + 8336 — 1)/2 + ga&i&r + 2:(36 — 1)/2

e From Bayesian regression: ® g0, g1 dominant in magnitude,
= uncertain PCe. higher-order modes play a minor role.
o Generate sample spectra {g;}3% e Plot sample response surfaces:
by sampling 7(g) = 7(go, .-, &5) clear trend present.
60 -
pet _10
50 =
45 g 80
40 =8
35 N P
£ 20 e ==
<15 £ 404
S 10 3 P i
5 = e n s h Lo
0 & 209 " o " Lo
b = T
-10 1 [ L [y 0 [
_15 | 0;1 4 i i i + !
- 05 _ _ 05
05 1 2 3 4 5 g 05 -1 -05 go
Index, k 2 !
Sample spectra. Sample response surfaces.
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Part I: Forward

Posterior Uncertainty & Response Surface: Differences

o MAP estimate response surface for Nat:
Gy,+ increases as ey,+ (i.e. £1) increases.

e For C1~ Bayes factor supported the
use of a constant M to represent G¢j-.

F. Rizzi

UQ in MD

80+

60-

40+

20+

MAP(M) and G4+ [nm/ns]

0 T
L o5 o
&

100

B =N =3
[=) =) =)

()
=]

M (&,&) and Gey- [nm/ns|

Min:

~05_1 -0.5

Cl

i

g

S

0.5

1

55

50

45

40

35

30

69.5

169

[ 168.5

68



Part I: Forward Pro

Posterior Uncertainty & Response Surface: Differences

. 55
e MAP estimate response surface for Na™: - 100 Na*
. . . =
Gy,+ increases as ey,+ (i.e. &) increases. E 204 50
+
e For CI~ Bayes factor supported the 5 60- ) . 45
use of a constant M to represent G- . 3 | TT—
404 . H - . i 40
. : .
° In51ght: GCI_ ~ Ecl- and GNa+ ~ ENg+ but... = “
. . % 20-
o smaller uncertainty range for e~ yields N 35
a smaller absolute variation for G- . S e
o trend of G- hidden by the noise level. 03 Q-05-1 05 0 05
3
x10 100 -
2 Range for Na* B Cl 69.5
Bl — aer) Range for CI™ E 80
0 £ .
- g 60 : . ' 69
%7 rs(pre+) ’%‘
54 Dy (e — a,-) = 40- t168.5
3
Dps{ier + a,e) o =
P Brs() < 20
=
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Part I: Forward Propagation

Analysis of the Non-Deterministic PC Model

e The Bayesian regression yields a non-deterministic PC representation:

M(&1,6) = goVo(&1,6) + ...+ 8pVp(61,6)

where {g;}1_, is a random vector defined by a (P + 1)-dim density.

e The PC regression model, M(¢;, &), depends on:
@ the parametric uncertainty in the potential through the RVs &, &.

@ thermal noise through the uncertainty in the PC coefficients.
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Part I: Forward Propagation

Analysis of the Non-Deterministic PC Model

e The Bayesian regression yields a non-deterministic PC representation:

M(&1,6) = goVo(&1,6) + ...+ 8pVp(61,6)

where {g;}1_, is a random vector defined by a (P + 1)-dim density.

e The PC regression model, M(¢;, &), depends on:
@ the parametric uncertainty in the potential through the RVs &, &.

@ thermal noise through the uncertainty in the PC coefficients.

o Interpretation:
e Draw m samples of the parameters {rf Y), 520 ) };n:l
e For any given {f 1(’ >, 2(’ ) }, we can draw n different sample-spectra of

PC coefficients {g;}"_, from their joint distribution (g).

=1’

e We thus obtain n x m predictions for the target observable { (M )iJ}

n,m

ij=1"
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Part I: Forward Propagation

Analysis of the Non-Deterministic PC Model

The Bayesian regression yields a non-deterministic PC representation:

M(&1,6) = goVo(&1,6) + ...+ 8pVp(61,6)

where {g;}1_, is a random vector defined by a (P + 1)-dim density.

The PC regression model, M (&, &,), depends on:
@ the parametric uncertainty in the potential through the RVs &, &.

@ thermal noise through the uncertainty in the PC coefficients.

o Interpretation:
e Draw m samples of the parameters {rf Y), 520 ) };n:l
e For any given {f 1(’ >, 2(’ ) }, we can draw n different sample-spectra of

PC coefficients {g;}"_, from their joint distribution (g).

=1’

e We thus obtain n x m predictions for the target observable { (M )iJ}

n,m

ij=1"

Each realization of the parameters, due to the random coefficients can be
associated with an arbitrary number of predictions of the observable M.
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Part I: Forward

PDF of Ionic Conductance

o The PC representation M (1, &) is useful to derive statistics.

e Given a value of &1, & (eyg+, Eci-), We
can sample the PC spectrum and obtain
the corresponding uncerainty.

0.4 T
0.5 o
w0 o
0.3 05 °
Al
-1-05 005 1
g g
202 "1
0.1

30 40 50 60
Gne [nm/ns|

PDF of Gy, + for three values
of the potential parameters
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Part I: Forward Propagation

PDF of Ionic Conductance

o The PC representation M (1, &) is useful to derive statistics.

e Estimate the full uncertainty in the
observable by sampling both the
germ £ and the PC coefficients.

e Given a value of &1, & (eyg+, Eci-), We
can sample the PC spectrum and obtain

the corresponding uncerainty.

0.4 I 0.1
0.5 L
wf' 0 o
0.3 05
Al
-1-053 0 05 1
302 §
2.0.
0.1
30 40 50 60
Gne [nm/ns| 30 40 60
Gy, [nm/ns|

PDF of Gy,+ 'for three values Full PDF of Gy, +
of the potential parameters @
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Part I: Forward Propagation

Transport Coefficients

e Separate MD study to compute fluid transport coefficients using Green-Kubo.

e For example, the Green-Kubo formula for dynamics viscosity, (i, is:

. /0°°<<<o>-<<r>>dr,

where (¢) is the deviatoric stress, and kg is the Boltzmann’s constant.
e Construct PC expansion, F(ey,+ (€1), - (§2)), for p and Nat diffusivity DT+

<107 x107
9.85
30.012
9.8 3
£ 001
9.75 + 0008
+ 0.
07 ~ 0.006 25
9.65 E 0.004
9.6 %04002
9.55 T 0 B
= 1
9.5 0.5
9.45 i " N5
-0.5 < 0 .
3 -1 _ 0.
2 1 Sgl
MAP of PCe response for MAP of PCe response for D+
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Part I: Forward Propagation

Correlations between the Ionic Conductance and Transport

o F(&) =f W(&): PCe of one transport coefficient, 1 or DT,
o M(&) =g ¥ (&): PCe of the Nat conductance, G+

Cov(M,F) = E[(M —E[M])(F - E[F))]
in(P,Pr)
figr E [‘1’%(5)}

k=1
e Sample 7(g) and 7(f) = {gi}fgoloo and {f,-}fg‘}oo.

e Each (g;, f;) gives one value of covariance.
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Part I: Forward Propagation

Correlations between the Ionic Conductance and Transport

o F(&) =f W(&): PCe of one transport coefficient, 1 or DT,

o M(&) =g ¥ (&): PCe of the Nat conductance, G+

5000

(Conductance, viscosity)

Cov(M,F) = E[(M —E[M])(F - E[F])]
min(P,Pr)

Z fign B[T(E)]

4000

@
=3
1=
S

frequency

S
=
=
S

=)
S
S

Sample 7(g) and 7 (f) = {g:}3°9% and {f;}3%9%.

Each (g;, f;) gives one value of covariance.

j?l -08-06-04-02 0 02 04 06 08
C]

Plot histogram of correlation coefficient O.

(Gya+, ) correlation is mainly negative:
ionic flux decreases when viscosity increases.
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Part I: Forward Propagation

Correlations between the Ionic Conductance and Transport

o F(&) =f W(&): PCe of one transport coefficient, 1 or DT,
o M(&) =g ¥ (&): PCe of the Nat conductance, G+

Cov(M,F) = E[(M —E[M])(F - E[F))]

mm P Pp

Z fign B[T(E)]

Sample 7(g) and 7 (f) = {g:}3°9% and {f;}3%9%.

Each (g;, f;) gives one value of covariance.
Plot histogram of correlation coefficient O.

(Gya+, ) correlation is mainly negative:
ionic flux decreases when viscosity increases.

Strong correlation between Gy,+ and DT +:
we expect the flux of Na™ to be mostly affected
by the diffusivity of Na*.

5000

Conductance, viscosit;
4000 ( ’ v

frequency
@
(=3
(=1
(=]

%)
=3
1=
S

=)
S
S

91 -08-06-04-02 0 02 04 06 08 1
C]
5000

(Conductance, diffusivity)
4000

frequency
&
(=3
(=1
(=]

)
=3
1=
S

1000

91 ~08-06-04-02 0 02 04 06 08 1
e
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Part II: Inverse Problem

Inverse problem for MD of bulk water J

% F. Rizzi, H. Najm, B. Debusschere, K. Sargsyan, M. Salloum, H. Adalsteinsson and O. Knio -
Part I — SIAM Multiscale Modeling & Simulation, 10(4), 1428-1459, 2012.

« F. Rizzi, H. Najm, B. Debusschere, K. Sargsyan, M. Salloum, H. Adalsteinsson and O. Knio -
Part 1T — SIAM Multiscale Modeling & Simulation, 10(4), 1460-1492, 2012.

% F. Rizzi, Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 2012.
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Part II: Inverse Problem
Inverse Problem

e Consider a generic forward model: G = ¢(H).

F. Rizzi UQ in MD Min:



Part II: Inverse Problem
Inverse Problem

e Consider a generic forward model: G = ¢(H).

e The associated inverse problem becomes:

¢71

Given data, what can we say about H?
Which H yields the best match between G and data?
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Part II: Inverse Problem
Inverse Problem

e Consider a generic forward model: G = ¢(H).

e The associated inverse problem becomes:

¢71

Given data, what can we say about H?
Which H yields the best match between G and data?

e If formulated as an optimization, it yields single value for H.
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Part II: Inverse Problem
Inverse Problem

e Consider a generic forward model: G = ¢(H).

e The associated inverse problem becomes:

¢71

Given data, what can we say about H?
Which H yields the best match between G and data?

e If formulated as an optimization, it yields single value for H.

e Bayesian approach yields a joint probability density function (PDF) on H.
e Joint PDFs contain correlations.

o Ideal for risk assesssment.
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Part II: Inverse Problem

Example

o Consider (x,y) = ¢(x,y,1;a,b):

() = a —b* .
y(t) = ab+0.01sin(x) A
3
e a, b are model parameters: 2
© 1
(a,b) ~ N([2 1], Cov) 0
-1
e Two cases: o
Uncorrelated parameters: 8 8 8§93 % 5§ -3

c 0.6 0.0 T Tt T

Y= 100 145

Correlated parameters: 5
Cov — 0.6 —09 )
=109 145 8
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Part II: Inverse Problem

Example

o Consider (x,y) = ¢(x,y,1;a,b):

i(t) = @b .
y(t) = ab+0.01sin(x) .
3
e a, b are model parameters: 2
© 1
(a,b) ~ N([2 1], Cov) 0
-1
e Two cases: 2
Uncorrelated parameters: 4282 %338 3

c 0.6 0.0 T Tt T

Y= 100 145

Correlated parameters: 5
Cov — 06 —09 z
=09 145 :

e Same marginal densities.
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Part II: Inverse Problem

Example

o Consider (x,y) = ¢(x,y,1;a,b):

() = a —b* .
y(t) = ab+0.01sin(x) .
3
e a, b are model parameters: 2
© 1
(a,b) ~ N([2 1], Cov) 0
-1
e Two cases: o
Uncorrelated parameters: 484829338 3

c 0.6 0.0 T Tt T

Y= 100 145

Correlated parameters: 5
Cov — 06 —09 )
=09 145 e

Same marginal densities.

What is the impact of the correlation?
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Part II: Inverse Problem
Example: results

5

e Sample the joint PDFs: {(a;, b;)YV“}"_, z

o Compute trajectories from 2

(xo = 1,y0 = 0.5). P

e Two sets of predictions: {(xj,yj)U’C|T o -(1):

¢ Estimate the joint PDFs. -2
= )
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Part II: Inverse

Example: results

1000

e Model predictions are substantially different. 500
e Correlation has large impact. >~
o Especially important for more complicated 0

and non-linear systems.

=500
—1500 -1000 -500 0 500 1000 1500

>
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Part II: Inverse Problem

Example: results

e Joint distribution of the model inputs is a key information.
0.7¢ g

0.6}

o In practice, nominal values with associated 05
confidence intervals and no details on the joint 04
density (or correlation). 03

0.2,
e The most common approach is to presume

independence of model parameters, and to
use a convenient distribution for each based
on the known nominal values and bounds. 035

0.1

0.

o Obtaining joint distribution? Probabilistic
parameter estimation.

e Bayesian inference yields the joint
distribution of the model parameters.
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Part II: Inverse Problem

Problem Statement

e MD simulations of bulk water at 7 = 298 K, P = 1 atm; run with LAMMPS.

(]
W Suppose person A selects three potential parameters {«, az, a3}, and runs the
forward UQ to infer PCEs for some water observables: density, viscosity, etc.

M®) (a1, 0, 3) = coWolan, an,3) + ... + cpUp(ar, ar, a3)

with {c,}/_, described by a (P + 1)-dim joint density.
£=0 y
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Part II: Inverse Problem
Problem Statement

e MD simulations of bulk water at 7 = 298 K, P = 1 atm; run with LAMMPS.

W Suppose person A selects three potential parameters {«, a;, a3}, and runs the
forward UQ to infer PCEs for some water observables: density, viscosity, etc.

M®) (a1, 0, 3) = coWolan, an,3) + ... + cpUp(ar, ar, a3)
with {c,}}_, described by a (P + 1)-dim joint density.

976

i Person B secretly chooses three values of the 2
parameters: &, Go, Q3. s '
° 94, . 3
¥ Runs MD replicas and collects density E NI \
. = 0973 ! ; * )
observations p = {p; }¥51°. g : J
972] .
971 ‘
970
1 2 3 4 5 6 7 8 9 10
Observation
. 10
Data: {p;},2,
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Part II: Inverse Problem
Problem Statement

e MD simulations of bulk water at 7 = 298 K, P = 1 atm; run with LAMMPS.

M) (a1, 0, 3) = coWolan, an,3) + ... + cpUp(ar, ar, a3)
with {c,}}_, described by a (P + 1)-dim joint density.

976

975
974 .

973 : : ®

p (kg/m®)

972 .

(] ;
® Given: PCe as a surrogate model and {p; }¥5'°. a1 ‘

) 970
¥ Challenge: to recover the “true” parameters v

chosen by person B.

4 5 6 7 8 9 10
Observation

Data: {p;}}2,
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Part II: Inverse Problem
Bayesian Inference Framework

e Bayesian theory suites inverse problems involving uncertainties and noisy data.

o Bayesian inference uses a set of observations p = {p;}¥5'? (evidence) to

calculate the probability that the hypothesis H = {«y, s, a3} is true.

Bayes’ theorem

4 (&1,042,043 } P)j“\ﬁ (P | 041702,043) al,az,%)

J/

TV NV
Posterior Likelihood P' tor

¢ PRIOR: knowledge/information about A before considering the data.
o LIKELIHOOD: probability of “seeing” the data given a realization of H.
o POSTERIOR: probability of the hypothesis given the data.

e An “update” of the current state of knowledge in view of new observations.

e Likelihood formulation?
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Part II: Inverse Problem

Inverse Problem Formulation

e Additive Gaussian error model accounting for the deviation between each
observation, p;, and the PCe surrogate prediction M () (a1, a2, a3)

pi:M(p)(alaa27a3)+7ia izla"'7N7

where {;}"_, are i.i.d. Gaussian RVs with density p, = N(0,5?).
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Part II: Inverse Problem

Inverse Problem Formulation

e Additive Gaussian error model accounting for the deviation between each
observation, p;, and the PCe surrogate prediction M () (a1, a2, a3)

pi:M(p)(alaa27a3)+7ia izla"'7N7

where {;}"_, are i.i.d. Gaussian RVs with density p, = N(0,5?).

e Recall that the surrogate PC model is uncertain
M) (o, 00, 03) = coWo(ar, aa, 3) + . .. + cpUp(ay, an, a3)

because {c,}}_, are described by a (P + 1)-dim joint density.
e The PC coefficients thus have an associated variance.

e How do we account for the uncertainty in the PC model?
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Part II: Inverse Problem

Inverse Problem Formulation

e For a given sample o) = {aY), ag ), ag )}, construct the constant vector

y= (). Bp(a))"
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Part II: Inverse Problem

Inverse Problem Formulation

e For a given sample o) = {aY), ag ), ag )}, construct the constant vector

y= {\Ilo(a(j)), cey \Ilp(a(j))}T
e This implies that the non-deterministic PC model

M(a(’)) = Co\Ifo(aO))—FCl (a(’)) .+CP\I’P(QO))
= y c

represents a linear combination of the random vector ¢ = {co, ..., cp}.
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Part II: Inverse Problem

Inverse Problem Formulation

e For a given sample o) = {aY), ag ), ag ) }, construct the constant vector

y= (). Bp(a))"

e This implies that the non-deterministic PC model

M(a(’)) = Co\Ifo(aO)) +c ¥ (a(’)) . +CP\I’p(a(j))
= y c
represents a linear combination of the random vector ¢ = {co, ..., cp}.

e If the random vector ¢ ~ MVN (u, Z) (verified) then, by definition, we have

ye~ NG p, y'Zy)

i.e. a univariate Gaussian with mean (y” 1) and variance (y”Zy).
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Part II: Inverse Problem

Inverse Problem Formulation

e Consequently, the error model becomes

T .
pi = yc + i ’ l:17"’7Nu
~~ ~~ ~~
data model prediction  additive noise

v ~N(0,6%), fori=1,...,N, and y'c~N(Qy"p, y'Zy).
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Part II: Inverse Problem

Inverse Problem Formulation

e Consequently, the error model becomes

pi = ch + i ’ i:17"’7Nu
~—~ ~—~ ~—~
data model prediction  additive noise
v ~N(0,6%), fori=1,...,N, and y'c~N(Qy"p, y'Zy).

e Leading to the following likelihood:

2

H [pi—yTu)}

Qar,Q ,a —_—
b «/27r(yTZy+02 2072y +5?)

L({pih)
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Part II: Inverse Problem

Inverse Problem Formulation

e Consequently, the error model becomes

pi = ch + i ’ i:17"’7Nu
~—~ ~—~ ~—~
data model prediction  additive noise
v ~N(0,6%), fori=1,...,N, and y'c~N(Qy"p, y'Zy).

e Leading to the following likelihood:

2

H [pi—yTu)}

Qar,Q ,a —_—
b «/27r(yTZy+02 2072y +5?)

L({pih)

e Combines both surrogate uncertainty and data noise in a self-consistent manner.

e For each data, £ is maximum if the data and surrogate mean coincide.
Deviations are weighted by the variances of the noise and uncertain surrogate.
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Part II: Inverse Problem

Inverse Problem Formulation

e Consequently, the error model becomes

pi = ch + i ’ i:17"’7Nu
~—~ ~—~ ~—~
data model prediction  additive noise
v ~N(0,6%), fori=1,...,N, and y'c~N(Qy"p, y'Zy).

e Leading to the following likelihood:

2

H [pi—yTu)}

Qar,Q ,a —_—
b «/27r(yTZy+02 2072y +5?)

L({pih)

e Combines both surrogate uncertainty and data noise in a self-consistent manner.

e For each data, £ is maximum if the data and surrogate mean coincide.
Deviations are weighted by the variances of the noise and uncertain surrogate.

e Regions of high data-noise or large surrogate-uncertainty are both penalized with
lower weighting on discrepancies between the data and the mean-surrogate model.
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Part II: Inverse Problem

Inverse Problem: Two Possible Likelihoods

Uncertain PC model

[pi —yTu)]2
2072y +452)

N
L({pi fv_ ’a , 00, O ex
({Pz}_l 1, Q2 3 11_[1 o (yTZy—i—az) p
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Background and Motivati Part I: Forward F I Part II: Inverse Problem

Inverse Problem Two P0551ble leehhoods

Uncertain PC model

2
y N 1 [Pi *}’TIJJ)]
Eltpdtifonened) = 11 Zommasop | “25z v o

Deterministic PC model
e What if the uncertainty in the PC surrogate coefficients is zero or negligible?

e The random vector ¢ = {c, . ..,cp}! has covariance zero Z ~ 0
= the PC surrogate model is now deterministic

[m —yru)]2

2 (Mi &2)

N
ﬁ({ﬂi}ﬁvﬁ ‘041, a2, a3 H exp | —

e Surrogate uncertainty drops out.

e The likelihood now involves only the data noise.
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Part II: Inverse Problem

Inverse Problem: Posterior Sampling

e Previous formulation was limited to density data {p; }Y_,.

e In the real study the formulation is based on two additional sets of data, namely
water enthalpy {;}Y_, and self-diffusion {D;} ;.

e The data set is thus: data = {p;, hi, D;}_,.
e From Bayes’ theorem, the joint posterior distribution is given by

T ({0417 ap, 03}, hyperp‘ data) o E(data‘{al, g, 03}, hyperp) Priors

e Sample the posterior using MCMC based on adaptive Metropolis.

e MCMC samples are used to construct posterior statistics.
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Part II: Inverse Problem

Inverse Problem: Results

e Joint posteriors based on Deterministic and Non-Deterministic surrogates.

e Substantial correlations are captured by the inference.
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Detailed View of Posterior Performance

True point

uncertain PC surrogate

7T(Oé1, &2)
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Detailed View of Posterior Performance

True point

uncertain PC surrogate

7T(Oé1, 043)
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Part II: Inverse Problem

Detailed View of Posterior Performance

True point

uncertain PC surrogate

7T(Oé2, 043)
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Part II: Inverse Problem

Three observables: density, self-diffusion and enthalpy

Explore impact of number of data points.

N data points for each observable, so 3N = total number of data points.

More information available (larger N), less variance (uncertainty) in the posterior.

Peak of PDF however varies slightly.
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Part II: Inverse Problem

Posterior Correlations

.. . 0.143~
e 3D-joint posterior based on the MCMC samples.
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e New information: substantial correlation. 0.141
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Part II: Inverse Problem

What is the role of correlation?
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Part II: Inverse Problem

What is the role of correlation?

e Push forward correlated and uncorrelated
samples to compute predictions.

45
e Plot the predictions: 43
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Summary & Conclusions

v" UQ successfully applied to MD simulations.

e Two distinct sources of uncertainty:

@ parametric uncertainty in the potential
@ intrinsic (thermal) noise

e Part I focused on the impact of potential uncertainties on key observables
of the nanopore, revealing how thermal noise can play a key role.

e Part II showed the importance of taking account the uncertainty in the PC
coefficients when running the inverse problem in noisy systems.

e PC expansions and Bayesian inference allowed us to isolate the impact of
parametric uncertainty and properly capture the effect of the intrinsic noise.

e Showed the suitability of using PCe in the MD context for both
the forward propagation and inverse problem.

e Potential for application to experimental data.
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Conclusions
Summary & Conclusions

e Qur group currently working on resilience computing for PDEs.

Approach/implementation targeting resilience to:

o Silent / Soft errors such as bit-flips.
e Missing data due to communication issues or node failures.

Approach involves casting PDE into sampling problem, followed by resilient
data manipulation to get solution update.

How about resilience for MD?

e Data loss.
e Reconstruct missing parts and full physical structure.
e etc...

U.S. DoE, Office of Science, ASCR, under Award Number 13-016717.
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Thank you for your attention ]
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Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
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