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Background and Motivation

Why Uncertainty Quantification (UQ)?

George E. P. Box, 1919 - 2013

Fundamental work on:
• Time-series analysis

• Box-Cox transformation

• Response surface methodology

• ...

“Remember that all models are essentially wrong; the practical question
is how wrong do they have to be to not be useful.”
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Background and Motivation

• 1957: seminal work in molecular dynamics (MD),
Alder and Wainwright.

• 1964: first MD simulation based on a realistic
potential (Lennard-Jones): liquid Ar (Rahman).

• 1974: first MD simulation of liquid water
(Stillinger and Rahman).
. . .

MD simulation of Na+ and Cl− in water.

• MD is useful and cheap (vs. experiments) to
explore physical properties at the atomic level.

• Industrial/academic applications: liquids, solids,
proteins and nucleic acids (DNA, RNA).

• As every simulation technique, MD is an
approximation method with a few weaknesses...

MD snapshot of DNA (Biophys. group, UIUC)
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Background and Motivation: MD overview

• Classical MD simulation (Frenkel,2001; Allen & Tildesley,1987):

d2r(i,t)

dt2 =
f(i,t)

mi

f(i,t) = −∇riΦ(r(1,t), . . . , r(N,t)) i = 1, . . . ,N

• Φ is the potential (or force-field), defined before starting the simulation.

• Φ should be tailored to the target application.

• Reliability depends on the accuracy of Φ.

• Continuous development of potentials and experience over the years.

• MD potential represents an important source of uncertainty.
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Potential Uncertainty for Water

• More than 50 MD water models available (Guillot,2002; Wallqvist,2007).
• Only some physical properties are reproduced with a good degree of accuracy.

Acronym Date Type Sites Reference
SPC 1981 rigid 3 (Berendsen,1981)

TIP3P 1981 rigid 3 (Jorgensen,1983)
SPC/F 1985 flexible 3 (Toukan,1985)

SPC/FP 1991 flexible,polarizable 3 (Zhu,1991)
NSPCE 1998 rigid 3 (Errington,1998)
SPC/Fw 2006 flexible 3 (Wu,2006)

BF 1933 rigid 4 (Bernal,1933)
RWK 1982 flexible 4 (Reimers,1982)
TIP4P 1983 rigid 4 (Jorgensen,1983)

PTIP4P 1991 polarizable 4 (Sprik,1991)
TIP4P/FQ 1994 polarizable 4 (Rick,1994)
TIP4P-Ew 2004 rigid 4 (Horn,2004)

TIP4P/2005 2005 rigid 4 (Abascal,2005)
ST2 1973 rigid 5 (Stillinger,1974)

TIP5P 2000 rigid 5 (Mahoney,2000)
TIP5P-Ew 2004 rigid 5 (Rick,2004)

NvdE 2003 rigid 6 (Nada,2003)

Table: Reduced list of water models developed since 1933.
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Potential Uncertainty for Water

a Most water models use Lennard-Jones (LJ)
potential to describe Van der Waals forces.

ΦLJ(r) = 4ε
{(σ

r

)12
−
(σ

r

)6
}

◦ Different models involve different values of
the LJ parameters ε, σ.

b Rigid or flexible molecule.

c H2O structure: from 3-site to 6 sites models.
...

• Discussion holds for several other systems:
potential and parameters are important
sources of uncertainty to consider.
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Uncertainty Quantification (UQ)

• Estimating uncertainty in a model of a physical process of interest.

• Complex non-linear systems: small uncertainties and errors can be largely
amplified and strongly affect the model predictions.

• Key role when high-fidelity/risk prediction is of central importance.

• Polynomial chaos (PC) (Wiener,1938) and Bayesian inference (Bayes,1763).

PC expansion: X is a target RV - ci are coeff. - Ψi(ξ) polyn. of standard RV ξ

X ≈
∞∑

i=0

ciΨi(ξ)

Bayes’ theorem: D is data - θ is set of parameters (hypothesis)

Posterior︷ ︸︸ ︷
P(θ|D) =

Likelihood︷ ︸︸ ︷
P(D|θ)

Prior︷ ︸︸ ︷
P(θ)

C
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Talk Overview

Part I: Forward Propagation

• How uncertainty in a set of model parameters affects selected predictions.

ObservationsParameters

• Focus on MD simulations of concentration driven ionic flow in a silica nanopore.

• System’s heterogeneity is a key complexity of this study.

Part II: Inverse Problem

• Estimating target model parameters based on a set of observations.

ObservationsParameters

• Focus on MD simulations of bulk water.

• Estimation of potential parameters based on noisy observations of water observables.
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Forward Propagation: Nanopore Flow

? F. Rizzi, R.E. Jones, B.J. Debusschere and O.M. Knio - Part I – J. Chem. Phys., 138:194104, 2013.

? F. Rizzi, R.E. Jones, B.J. Debusschere and O.M. Knio - Part II – J. Chem. Phys., 138:194105, 2013.

? F. Rizzi, Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 2012.
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Why Nanopores?

• Synthetic nanopores are widely used in the
industry: desalination or other separation tasks.

• Selective control of transport:
identify & manipulate physical properties
or the interaction between the transported
ions (or molecules) and the pore walls.

• Inspired by their biological counterparts:
e.g. transmembrane protein channels.

• Complex and highly heterogeneous.

• MD simulations of nanopores are not new.

• UQ applied to nanopore simulations is novel.
• Characterize uncertanties in the system.
• Important for improving design capabilities.

Example of nanoporous membrane:
pore size∼ 20nm, (R.Narayan, NC State).

Proten channel schematic (web).
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Atomistic System and Geometry

• Silica pore model connecting two reservoirs containing a 1.5 mol/l solution of
sodium (Na+) and chloride (Cl−) ions in H2O (white-red).

• Reservoirs communicate only through the pore, PBC are imposed along x and y.

1 α-quartz crystal structure for the silica.

2 Cylindrical region of nominal diameter D.

3 Saturate dangling bonds with hydroxide groups
(OH−), to mimic real hydroxylation processes.

• Domain (xyz) 5.4× 6× 10.5 nm3.

• LAMMPS, simulation time ∼ 8 ns.
OH, Si,Obulk
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MD Potential

• Φtotal = Φbonded + ΦLJ + ΦCoulomb︸ ︷︷ ︸
non−bonded

• Φbonded (bond stretching and bending) is
modeled using harmonic potential.

Stretching

Bending

• Non-bonded interactions (Van der Waals + Electrostatic) are modeled as:

Φnon−bonded =

natoms∑
i=1,j>i

[
4εij

[(
σij

rij

)12

−
(
σij

rij

)6
]

︸ ︷︷ ︸
ΦLJ(rij)

+
qiqj

4πε0rij︸ ︷︷ ︸
ΦCoulomb(rij)

]

• LJ parameters {εαβ , σαβ} between atoms types α and β is defined for each
homoatomic pair present in the system, i.e. α = β. E.g. O ∼ O, H ∼ H, etc.

• Cross-interactions {εαβ , σαβ}, α 6= β, based on Lorentz-Berthelot (LB) rules:

σαβ = (σα + σβ) /2, and εαβ =
√
εαεβ .

• Parameters: silica (Lopes,2006), water (Jorgensen,1984), ions (Patra,2002).
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Concentration Control Algorithm

• Monitor concentration difference ∆c(t) = c2(t)− c1(t):
ci(t) = (molar) concentration at t of a target ionic species in i-th reservoir.

• Inject/remove ions in C1 and C2.

• No ion deletion, only swapping:
⇒ Natoms is constant.

• −∆cNa+ = 60/Vfluid = ∆cCl−

Flow Na+: left→ right
Flow Cl− : left← right

• Ionic flux (magnitude): J(t) =
Nexchanges(t)

tA and conductance: G(t) = J(t)
|∆c|

◦ Nexchanges is the number of ion exchanges between C1 and C2 over the time t.
◦ A is the nominal cross-sectional area of the pore.
◦ Validated against a steady flux measured via integration of the velocity

profiles of the ions over the cross-section of the pore.
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Dependence on the pore diameter
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Animation & Velocity Profile

• D = 12.5, 17, 21 and 27 Å.

• 5 replica simulations at each D to
account for intrinsic (thermal) noise.

• Different initial velocities and random
seed for CC algorithm.

• Time/spatial averaging of axial velocity
over 24 slabs orthogonal to pore axis.

• Water is stationary.

• Ions tend to flow along the pore
centerline with net mean velocity.
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Effect of the Pore Diameter: Conductance

• Extract steady state value of conductance G for Na+ and Cl−.

• Steady state when the coefficient of variation based on 500 values is below 1%.

• Steady-state value of GNa+ and GCl− as a function of D for all 5 replicas
showing the replica values (markers) and the mean trends (solid lines).

• Slope of GCl− is sharper than GNa+ .

• Overlapping of distributions for small D.

• For D ≥ 17: GCl− > GNa+ .

• The trend reverses for D = 12.5.

• Physical explanation?
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Physical Explanation

• Cross-over is the result of the interplay between size effects and ionic mobility.

• D = 12.5 Å: weak solvation shell⇒ strong effects of pore walls and confinement
favor ions with smaller ionic radius, i.e. Na+ (as seen by Lyndenbell,1996).

• D ≥ 17 Å: complete solvation shell around the ions
⇒ ion’s mobility dominates
⇒ FluxCl− > FluxNa+ because the diffusivity of Cl− is larger.

Na+, Cl−, H2O (white-red), OH, Si, Obulk
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Sensitivity to LJ potential parameters
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Problem Definition

• Fix D = 21 Å; choose εNa+ and εCl− , depths of the LJ potential for Na+ and Cl−.

εNa+ = 0.002033777 + 0.001992370 ξ1, [eV],
εCl− = 0.006504600 + 0.000863055 ξ2, [eV],

where {ξ1, ξ2} are i.i.d. uniform random variables U(−1, 1); values from literature.

• Directly affects the LJ potential for Na+-Na+ and Cl−-Cl− interactions.

• Since εαβ =
√
εαεβ for atom types α 6= β, it affects all the cross-interactions.
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Objective and Methods

• εNa+ = f1(ξ1), εCl− = f2(ξ2), with ξ1,2 ∼ U(−1, 1)

⇒ nanopore observables (flux, conductance) can be considered as random variables.

• How to “map” the uncertainty from εNa+ , εCl− to the observables?

• E.g. Monte Carlo: Sample ξ1, ξ2 to generate samples of εNa+ and εCl− ; run
one full MD simulation for each sample; collect data and generate statistics.

• We rely on Polynomial Chaos expansions (PCe):

(conductance) G ≈
P∑

i=0

giΨi(ξ1, ξ2) [e.g. linear PCe: G ≈ g0 + g1ξ1 + g2ξ2]

• P + 1 = (order + 2)!/(order! 2!); Ψ() = Legendre Polyn., and g = PC coefficients.

• PCe is an orthogonal expansion: scalar product, then pseudo-spectral approach.
? Regularity of data; noisy might be problematic; constraints on sampling.

• For noisy systems, as MD due to thermal noise, Bayesian regression works best.
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? Regularity of data; noisy might be problematic; constraints on sampling.
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Bayesian Regression: Collecting Data

• εNa+ = f1(ξ1) and εCl− = f2(ξ2).

• Sampling grid of 13 nodes (3 replicas each).

• Data-set of steady-state conductance values:

GNa+,Cl− =
{

GNa+,Cl−

i,j

}j=1,...,3
i=1,...,13,
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Bayesian Regression: Formulation

• Regression function is a PCe:

M(ξ1, ξ2) =

P∑
k=0

gkΨk(ξ1, ξ2),

• Regression model as

G` = M(ξ`) + γ`, ` = 1, . . . , 39.

◦ ξ` is the coordinate of the `-th data point G`
◦ γ` is a RV capturing the discrepancy between data and model prediction.

• Data points result from independent but statistically equivalent MD runs.

• Assume {γ`}39
`=1 to be independent and γ` ∼ N (0, σ`), ` = 1, . . . , 39.

? Gaussian model (verified): data extracted from MD using running averages.

• Consider a space-dependent noise σ` = σ(ξ) by parametrizing:

σ(ξ) = h0 + h1ξ1 + h2ξ2.
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Bayesian Regression: Formulation

• {hk}2
k=0 are hyperparameters, i.e. part of the unknowns: {g0, . . . , gP, h0, h1, h2}.

• Likelihood becomes:

L =

13∏
i=1

3∏
j=1

1√
2π[h0 + h1ξ1,i + h2ξ2,i]2

exp

(
− [Gi,j −

∑P
k=0 gkΨk(ξ1,i, ξ2,i)]

2

2[h0 + h1ξ1,i + h2ξ2,i]2

)
,

where Gi,j is the j-th observation obtained at the i-th sampling point, ξi.

• Bayes’ theorem yields the joint posterior

π
({

gk
}P

k=0,
{

hl
}2

l=0

∣∣∣ G
)
∝ L

(
G
∣∣{gk

}P
k=0,

{
hl
}2

l=0

)
Prior(

{
gk
}P

k=0,
{

hl
}2

l=0),

For the priors we use uniform distributions.

• Sample π() with a Markov chain Monte Carlo (MCMC) method based on
Adaptive Metropolis (AM): “walk” in the {g0, . . . , gP, h0, h1, h2}-space.
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Baysian Regression: Results

• Regression function order: e.g. ord = 1 (linear), ord = 2 (quadratic), etc.

• P + 1 = (ord + 2)!/(ord! 2!).

• MCMC yields a “chain” in the {g0, . . . , gP, h0, h1, h2}-space:
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. . .

• Samples are used to derive statistics of the posterior π(g0, . . . , gP, h0, h1, h2):
mean, variance, joint distributions ...
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Regression Function: Linear? Quadratic? ...

• Regression function M(ξ1, ξ2): constant? linear? higher-order?

• Bayes factor: discriminate between two “models” describing the same set of data.

• θp = {g0, . . . , gP, h0, h1, h2}: set of model parameters for a p-th order M(ξ).

• Integrates over the full parameter space.

• The (logn) of Bayes factor, B(θp1 ,θp2), is given by:

logn(B(θp1 ,θp2)) = logn

∫
L(G

∣∣θp1)Pr(θp1) dθp1∫
L(G

∣∣θp2)Pr(θp2) dθp2

• The more positive logn(B(θp1 ,θp2)), the stronger the support for θp1 (Kass,1995).
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Na+ Cl−

p2 = 0 p2 = 1 p2 = 2 p2 = 3 p2 = 0 p2 = 1 p2 = 2 p2 = 3
p1 = 0 – -19.341 -19.933 -16.285 – 2.484 2.737 6.499
p1 = 1 19.341 – -0.593 3.055 -2.284 – 0.254 4.015
p1 = 2 19.933 0.593 – 3.648 -2.737 -0.254 – 3.761
p1 = 3 16.285 -3.055 -3.648 – -6.499 -4.015 -3.761 –
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Posterior Uncertainty & Response Surface for Na+

• Quadratic regression model for GNa+ :

MGNa+
(ξ) = g0 + g1ξ1 + g2ξ2 + g3(3ξ2

1 − 1)/2 + g4ξ1ξ2 + g5(3ξ2
2 − 1)/2

• From Bayesian regression:
⇒ uncertain PCe.

• Generate sample spectra {gi}500
i=1

by sampling π(g) = π(g0, ..., g5)

• g0, g1 dominant in magnitude,
higher-order modes play a minor role.

• Plot sample response surfaces:
clear trend present.
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Posterior Uncertainty & Response Surface: Differences

• MAP estimate response surface for Na+:
GNa+ increases as εNa+ (i.e. ξ1) increases.

• For Cl− Bayes factor supported the
use of a constant M to represent GCl− .

• Insight: GCl− ∼ εCl− and GNa+ ∼ εNa+ but...
◦ smaller uncertainty range for εCl− yields

a smaller absolute variation for GCl− .

◦ trend of GCl− hidden by the noise level.
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Analysis of the Non-Deterministic PC Model

• The Bayesian regression yields a non-deterministic PC representation:

M(ξ1, ξ2) = g0Ψ0(ξ1, ξ2) + . . .+ gPΨP(ξ1, ξ2)

where {gl}P
l=0 is a random vector defined by a (P + 1)-dim density.

• The PC regression model, M(ξ1, ξ2), depends on:
1 the parametric uncertainty in the potential through the RVs ξ1, ξ2.

2 thermal noise through the uncertainty in the PC coefficients.

• Interpretation:
• Draw m samples of the parameters

{
ξ
(j)
1 , ξ

(j)
2

}m
j=1

• For any given
{
ξ
(j)
1 , ξ

(j)
2

}
, we can draw n different sample-spectra of

PC coefficients
{

gi
}n

i=1
, from their joint distribution π(g).

• We thus obtain n× m predictions for the target observable
{(

M
)

i,j

}n,m
i,j=1

.

• Each realization of the parameters, due to the random coefficients can be
associated with an arbitrary number of predictions of the observable M.
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PDF of Ionic Conductance

• The PC representation M(ξ1, ξ2) is useful to derive statistics.

• Given a value of ξ1, ξ2 (εNa+ , εCl− ), we
can sample the PC spectrum and obtain
the corresponding uncerainty.

• Estimate the full uncertainty in the
observable by sampling both the
germ ξ and the PC coefficients.

PDF of GNa+ for three values
of the potential parameters
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Transport Coefficients

• Separate MD study to compute fluid transport coefficients using Green-Kubo.
• For example, the Green-Kubo formula for dynamics viscosity, µ, is:

µ =
V

3kBT

∫ ∞
0

〈
ς(0) · ς(t)

〉
dt,

where ς(t) is the deviatoric stress, and kB is the Boltzmann’s constant.
• Construct PC expansion, F(εNa+(ξ1), εCl−(ξ2)), for µ and Na+ diffusivity D++

MAP of PCe response for µ MAP of PCe response for D++
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Correlations between the Ionic Conductance and Transport

• F(ξ) = f Ψ(ξ): PCe of one transport coefficient, µ or D++.

• M(ξ) = g Ψ(ξ): PCe of the Na+ conductance, GNa+ .

Cov(M,F) = E
[
(M − E[M])(F − E[F])

]
=

min(P,PF)∑
k=1

fkgk E
[
Ψ2

k(ξ)
]

• Sample π(g) and π(f)⇒ {gi}50000
i=1 and {fi}50000

i=1 .

• Each (gi, fi) gives one value of covariance.

• Plot histogram of correlation coefficient Θ.

• (GNa+ , µ) correlation is mainly negative:
ionic flux decreases when viscosity increases.

• Strong correlation between GNa+ and D++:
we expect the flux of Na+ to be mostly affected
by the diffusivity of Na+.
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Inverse problem for MD of bulk water

? F. Rizzi, H. Najm, B. Debusschere, K. Sargsyan, M. Salloum, H. Adalsteinsson and O. Knio -
Part I – SIAM Multiscale Modeling & Simulation, 10(4), 1428-1459, 2012.

? F. Rizzi, H. Najm, B. Debusschere, K. Sargsyan, M. Salloum, H. Adalsteinsson and O. Knio -
Part II – SIAM Multiscale Modeling & Simulation, 10(4), 1460-1492, 2012.

? F. Rizzi, Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 2012.
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Inverse Problem

• Consider a generic forward model: G = φ(H).

• The associated inverse problem becomes:

DataParameters: H
φ−1

Given data, what can we say about H?
Which H yields the best match between G and data?

• If formulated as an optimization, it yields single value for H.

• Bayesian approach yields a joint probability density function (PDF) on H.
• Joint PDFs contain correlations.
• Ideal for risk assesssment.
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Example

• Consider (x, y) = φ(x, y, t; a, b):

ẋ(t) = a2 − b2

ẏ(t) = ab + 0.01 sin(x)

• a, b are model parameters:

(a, b) ∼ N ([2 1],Cov)

• Two cases:
Uncorrelated parameters:

Cov =

[
0.6 0.0
0.0 1.45

]
Correlated parameters:

Cov =

[
0.6 −0.9
−0.9 1.45

]
• Same marginal densities.

• What is the impact of the correlation?
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Example: results

• Sample the joint PDFs: {(ai, bi)
U,C}n

i=1

• Compute trajectories from
(x0 = 1, y0 = 0.5).

• Two sets of predictions: {(xj, yj)
U,C
∣∣
T}n

j=1

• Estimate the joint PDFs.

• Model predictions are substantially different.
• Correlation has large impact.

• Especially important for more complicated
and non-linear systems.
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Example: results

• Joint distribution of the model inputs is a key information.

• In practice, nominal values with associated
confidence intervals and no details on the joint
density (or correlation).

• The most common approach is to presume
independence of model parameters, and to
use a convenient distribution for each based
on the known nominal values and bounds.

• Obtaining joint distribution? Probabilistic
parameter estimation.

• Bayesian inference yields the joint
distribution of the model parameters.
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Problem Statement

• MD simulations of bulk water at T = 298 K, P = 1 atm; run with LAMMPS.

x Suppose person A selects three potential parameters {α1, α2, α3}, and runs the
forward UQ to infer PCEs for some water observables: density, viscosity, etc.

M(ρ)(α1, α2, α3) = c0Ψ0(α1, α2, α3) + . . .+ cPΨP(α1, α2, α3)

with {c`}P
`=0 described by a (P + 1)-dim joint density.

x Person B secretly chooses three values of the
parameters: α̂1, α̂2, α̂3.

x Runs MD replicas and collects density
observations ρ = {ρi}N=10

i=1 .

x Given: PCe as a surrogate model and {ρi}N=10
i=1 .

x Challenge: to recover the “true” parameters
chosen by person B.

Data: {ρi}10
i=1
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Bayesian Inference Framework

• Bayesian theory suites inverse problems involving uncertainties and noisy data.

• Bayesian inference uses a set of observations ρ = {ρi}N=10
i=1 (evidence) to

calculate the probability that the hypothesisH = {α1, α2, α3} is true.

Bayes’ theorem

π
(
α1, α2, α3

∣∣ ρ)︸ ︷︷ ︸
Posterior

∝ L
(
ρ
∣∣ α1, α2, α3

)︸ ︷︷ ︸
Likelihood

P(α1, α2, α3)︸ ︷︷ ︸
Prior

� PRIOR: knowledge/information aboutH before considering the data.

� LIKELIHOOD: probability of “seeing” the data given a realization ofH.

� POSTERIOR: probability of the hypothesis given the data.

• An “update” of the current state of knowledge in view of new observations.

• Likelihood formulation?

F. Rizzi UQ in MD Min:



Background and Motivation Part I: Forward Propagation Part II: Inverse Problem Conclusions

Inverse Problem Formulation

• Additive Gaussian error model accounting for the deviation between each
observation, ρi, and the PCe surrogate prediction M(ρ)(α1, α2, α3)

ρi = M(ρ)(α1, α2, α3) + γi, i = 1, . . . ,N,

where {γi}N
i=1 are i.i.d. Gaussian RVs with density pγ = N (0, σ̃2).

• Recall that the surrogate PC model is uncertain

M(ρ)(α1, α2, α3) = c0Ψ0(α1, α2, α3) + . . .+ cPΨP(α1, α2, α3)

because {c`}P
`=0 are described by a (P + 1)-dim joint density.

• The PC coefficients thus have an associated variance.

• How do we account for the uncertainty in the PC model?
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Inverse Problem Formulation

• For a given sample α(j) = {α(j)
1 , α

(j)
2 , α

(j)
3 }, construct the constant vector

y = {Ψ0
(
α(j)), . . . ,ΨP

(
α(j))}T

• This implies that the non-deterministic PC model

M(α(j)) = c0Ψ0(α(j)) + c1Ψ1(α(j)) + . . .+ cPΨP(α(j))

= yTc

represents a linear combination of the random vector c = {c0, . . . , cP}T .

• If the random vector c ∼MVN (µ,Z) (verified) then, by definition, we have

yTc ∼ N
(
yTµ, yTZy

)
i.e. a univariate Gaussian with mean

(
yTµ

)
and variance

(
yTZy

)
.
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Inverse Problem Formulation

• Consequently, the error model becomes

ρi︸︷︷︸
data

= yTc︸︷︷︸
model prediction

+ γi︸︷︷︸
additive noise

, i = 1, . . . ,N,

γi ∼ N (0, σ̃2), for i = 1, . . . ,N, and yTc ∼ N
(
yTµ, yTZy

)
.

• Leading to the following likelihood:

L
(
{ρi}N

i=1

∣∣∣α1, α2, α3
)

=

N∏
i=1

1√
2π (yTZy + σ̃2)

exp

−
[
ρi − yTµ)

]2

2 (yTZy + σ̃2)


• Combines both surrogate uncertainty and data noise in a self-consistent manner.

• For each data, L is maximum if the data and surrogate mean coincide.
Deviations are weighted by the variances of the noise and uncertain surrogate.

• Regions of high data-noise or large surrogate-uncertainty are both penalized with
lower weighting on discrepancies between the data and the mean-surrogate model.
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Inverse Problem: Two Possible Likelihoods

Uncertain PC model

L
(
{ρi}N

i=1

∣∣∣α1, α2, α3
)

=

N∏
i=1

1√
2π (yTZy + σ̃2)

exp

−
[
ρi − yTµ)

]2

2 (yTZy + σ̃2)


Deterministic PC model

• What if the uncertainty in the PC surrogate coefficients is zero or negligible?
• The random vector c = {c0, . . . , cP}T has covariance zero Z ≈ 0
⇒ the PC surrogate model is now deterministic

L
(
{ρi}N

i=1

∣∣∣α1, α2, α3
)

=

N∏
i=1

1√
2π
(
��
�* 0

yTZy + σ̃2

) exp

−
[
ρi − yTµ)

]2

2
(
��
�* 0

yTZy + σ̃2

)


• Surrogate uncertainty drops out.

• The likelihood now involves only the data noise.
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Inverse Problem: Posterior Sampling

• Previous formulation was limited to density data {ρi}N
i=1.

• In the real study the formulation is based on two additional sets of data, namely
water enthalpy {hi}N

i=1 and self-diffusion {Di}N
i=1.

• The data set is thus: data = {ρi, hi,Di}N
i=1.

• From Bayes’ theorem, the joint posterior distribution is given by

π
(
{α1, α2, α3}, hyperp

∣∣∣ data
)
∝ L

(
data

∣∣{α1, α2, α3}, hyperp
)

Priors

• Sample the posterior using MCMC based on adaptive Metropolis.

• MCMC samples are used to construct posterior statistics.
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Inverse Problem: Results

• Joint posteriors based on Deterministic and Non-Deterministic surrogates.
• Substantial correlations are captured by the inference.

π(α1, α2) π(α1, α3) π(α2, α3)
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Detailed View of Posterior Performance

π(α1, α2)
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Detailed View of Posterior Performance

π(α2, α3)
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Three observables: density, self-diffusion and enthalpy

• Explore impact of number of data points.

• N data points for each observable, so 3N = total number of data points.

• More information available (larger N), less variance (uncertainty) in the posterior.

• Peak of PDF however varies slightly.

π(ε) π(σ) π(d)
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Posterior Correlations

• 3D-joint posterior based on the MCMC samples.

• New information: substantial correlation.
(Parameters initially assumed independent.)

• Correlation stems from the “physics”/data and
manifests during the inference.

π(ε,σ) π(ε, d) π(σ, d)
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What is the role of correlation?

• Is the correlation important?

• Build PDF with same mean but zero
off-diagonal elements = non-correlated.

• Same marginal densities.

• Goal: to analyze the effect of the correlated
samples vs. non-correlated samples.

(ε,σ) (ε, d) (σ, d)
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What is the role of correlation?

• Push forward correlated and uncorrelated
samples to compute predictions.

• Plot the predictions:
1 Data used for the inference.
2 Predictions from correlated PDF.
3 Predictions from uncorrelated PDF.
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Summary & Conclusions

X UQ successfully applied to MD simulations.

• Two distinct sources of uncertainty:
1 parametric uncertainty in the potential
2 intrinsic (thermal) noise

• Part I focused on the impact of potential uncertainties on key observables
of the nanopore, revealing how thermal noise can play a key role.

• Part II showed the importance of taking account the uncertainty in the PC
coefficients when running the inverse problem in noisy systems.

• PC expansions and Bayesian inference allowed us to isolate the impact of
parametric uncertainty and properly capture the effect of the intrinsic noise.

• Showed the suitability of using PCe in the MD context for both
the forward propagation and inverse problem.

• Potential for application to experimental data.
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Summary & Conclusions

• Our group currently working on resilience computing for PDEs.

• Approach/implementation targeting resilience to:
• Silent / Soft errors such as bit-flips.
• Missing data due to communication issues or node failures.

• Approach involves casting PDE into sampling problem, followed by resilient
data manipulation to get solution update.

• How about resilience for MD?
• Data loss.
• Reconstruct missing parts and full physical structure.
• etc...

U.S. DoE, Office of Science, ASCR, under Award Number 13-016717.
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Thank you for your attention
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Φ
L
J
[e
V
]

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
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