

UQ in Molecular Dynamics Simulations: Forward and Inverse Problem

SAND2015-10607PE

F. Rizzi^{†,‡}, O. Knio^{‡,}, R. Jones[†], H. Adalsteisson[†], H. Najm[†],
K. Sargsyan[†], M. Salloum[†], C. Safta[†], B. Debusschere[†]*

[†]Sandia National Laboratories, Livermore, CA

[‡]Johns Hopkins University, Baltimore, MD

^{*} Duke University, Durham, NC

Sensitivity, Error and Uncertainty Quantification for Atomic, Plasma and Material Data

– Stony Brook Univ., Nov. 2015 –

Supported by the US Department of Energy (DOE)
Advanced Scientific Computing Research (ASCR)

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Background and Motivation

Why Uncertainty Quantification (UQ)?

George E. P. Box, 1919 - 2013

Fundamental work on:

- Time-series analysis
- Box-Cox transformation
- Response surface methodology
- ...

“Remember that all models are essentially wrong; the practical question is how wrong do they have to be to not be useful.”

Background and Motivation

Why Uncertainty Quantification (UQ)?

George E. P. Box, 1919 - 2013

Fundamental work on:

- Time-series analysis
- Box-Cox transformation
- Response surface methodology
- ...

“Remember that all models are essentially wrong; the practical question is how wrong do they have to be to not be useful.”

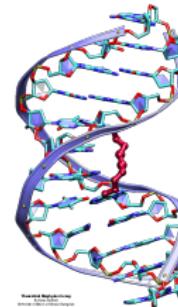
Background and Motivation

- 1957: seminal work in **molecular dynamics** (MD), Alder and Wainwright.
- 1964: first MD simulation based on a realistic potential (Lennard-Jones): liquid Ar (Rahman).
- 1974: first MD simulation of liquid water (Stillinger and Rahman).

...

MD simulation of Na^+ and Cl^- in water.

- MD is useful and cheap (vs. experiments) to explore physical properties at the atomic level.
- Industrial/academic applications: liquids, solids, proteins and nucleic acids (DNA, RNA).
- As every simulation technique, MD is an **approximation** method with a few **weaknesses**...



MD snapshot of DNA (Biophys. group, UIUC)

Background and Motivation: MD overview

- Classical MD simulation (Frenkel,2001; Allen & Tildesley,1987):

$$\frac{d^2\mathbf{r}_{(i,t)}}{dt^2} = \frac{\mathbf{f}_{(i,t)}}{m_i} \quad \mathbf{f}_{(i,t)} = -\nabla_{\mathbf{r}_i} \Phi(\mathbf{r}_{(1,t)}, \dots, \mathbf{r}_{(N,t)}) \quad i = 1, \dots, N$$

- Φ is the **potential** (or force-field), defined *before* starting the simulation.
- Φ should be tailored to the target application.
- Reliability depends on the accuracy of Φ .
- Continuous development of potentials and experience over the years.
- MD potential represents an important source of **uncertainty**.

Background and Motivation: MD overview

- Classical MD simulation (Frenkel,2001; Allen & Tildesley,1987):

$$\frac{d^2\mathbf{r}_{(i,t)}}{dt^2} = \frac{\mathbf{f}_{(i,t)}}{m_i} \quad \mathbf{f}_{(i,t)} = -\nabla_{\mathbf{r}_i} \Phi(\mathbf{r}_{(1,t)}, \dots, \mathbf{r}_{(N,t)}) \quad i = 1, \dots, N$$

- Φ is the **potential** (or force-field), defined *before* starting the simulation.
- Φ should be tailored to the target application.
- Reliability depends on the accuracy of Φ .
- Continuous development of potentials and experience over the years.
- **MD potential** represents an important source of **uncertainty**.

Potential Uncertainty for Water

- More than 50 MD water models available (Guillot,2002; Wallqvist,2007).
- Only some physical properties are reproduced with a good degree of accuracy.

Acronym	Date	Type	Sites	Reference
SPC	1981	rigid	3	(Berendsen,1981)
TIP3P	1981	rigid	3	(Jorgensen,1983)
SPC/F	1985	flexible	3	(Toukan,1985)
SPC/FP	1991	flexible,polarizable	3	(Zhu,1991)
NSPCE	1998	rigid	3	(Errington,1998)
SPC/Fw	2006	flexible	3	(Wu,2006)
BF	1933	rigid	4	(Bernal,1933)
RWK	1982	flexible	4	(Reimers,1982)
TIP4P	1983	rigid	4	(Jorgensen,1983)
PTIP4P	1991	polarizable	4	(Sprik,1991)
TIP4P/FQ	1994	polarizable	4	(Rick,1994)
TIP4P-Ew	2004	rigid	4	(Horn,2004)
TIP4P/2005	2005	rigid	4	(Abascal,2005)
ST2	1973	rigid	5	(Stillinger,1974)
TIP5P	2000	rigid	5	(Mahoney,2000)
TIP5P-Ew	2004	rigid	5	(Rick,2004)
NvdE	2003	rigid	6	(Nada,2003)

Table: Reduced list of water models developed since 1933.

Potential Uncertainty for Water

- a Most water models use Lennard-Jones (LJ) potential to describe Van der Waals forces.

$$\Phi_{LJ}(r) = 4\epsilon \left\{ \left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right\}$$

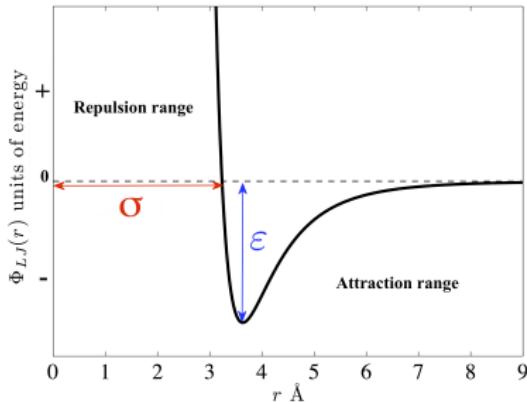
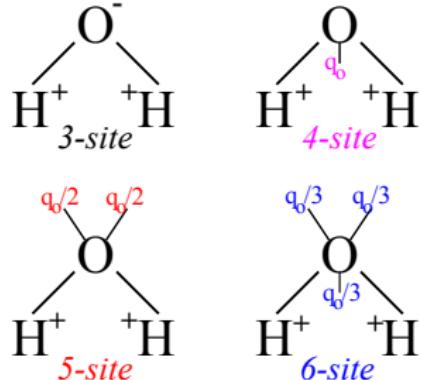
- o Different models involve different values of the LJ parameters ϵ, σ .

- b Rigid or flexible molecule.

- c H_2O structure: from 3-site to 6 sites models.

...

- Discussion holds for several other systems: potential and parameters are important sources of uncertainty to consider.



Uncertainty Quantification (UQ)

- Estimating uncertainty in a model of a physical process of interest.
- Complex non-linear systems: small uncertainties and errors can be largely amplified and strongly affect the model predictions.
- Key role when high-fidelity/risk prediction is of central importance.
- Polynomial chaos (PC) (Wiener, 1938) and Bayesian inference (Bayes, 1763).

PC expansion: X is a target RV - c_i are coeff. - $\Psi_i(\xi)$ polyn. of standard RV ξ

$$X \approx \sum_{i=0}^{\infty} c_i \Psi_i(\xi)$$

Bayes' theorem: \mathbf{D} is data - $\boldsymbol{\theta}$ is set of parameters (hypothesis)

$$\widehat{\mathcal{P}(\boldsymbol{\theta}|\mathbf{D})} = \frac{\overbrace{\mathcal{P}(\mathbf{D}|\boldsymbol{\theta})}^{Likelihood} \overbrace{\mathcal{P}(\boldsymbol{\theta})}^{Prior}}{C}$$

Talk Overview

Part I: Forward Propagation

- How uncertainty in a set of model parameters affects selected predictions.

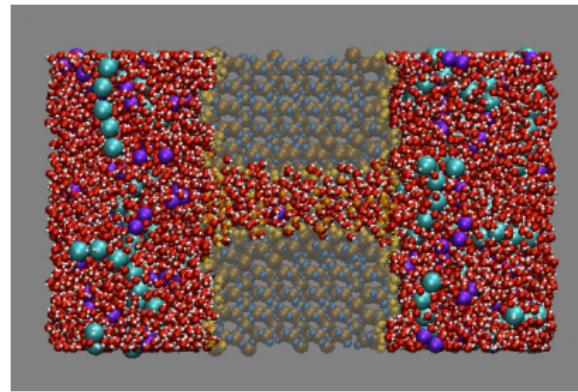
- Focus on MD simulations of concentration driven ionic flow in a silica nanopore.
- System's heterogeneity is a key complexity of this study.

Part II: Inverse Problem

- Estimating target model parameters based on a set of observations.

- Focus on MD simulations of bulk water.
- Estimation of potential parameters based on noisy observations of water observables.

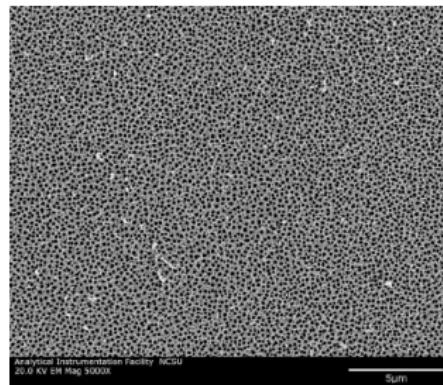
Forward Propagation: Nanopore Flow



- ★ F. Rizzi, R.E. Jones, B.J. Debusschere and O.M. Knio - Part I – *J. Chem. Phys.*, 138:194104, 2013.
- ★ F. Rizzi, R.E. Jones, B.J. Debusschere and O.M. Knio - Part II – *J. Chem. Phys.*, 138:194105, 2013.
- ★ F. Rizzi, Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 2012.

Why Nanopores?

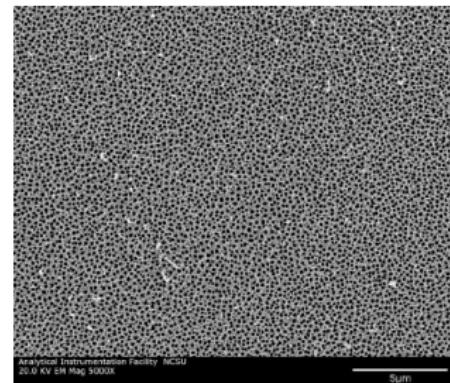
- Synthetic nanopores are widely used in the industry: desalination or other separation tasks.
- Selective control of transport: identify & manipulate physical properties or the interaction between the transported ions (or molecules) and the pore walls.
- Inspired by their biological counterparts: e.g. transmembrane protein channels.
- Complex and highly heterogeneous.
- MD simulations of nanopores are not new.
- **UQ** applied to nanopore simulations is **novel**.
 - Characterize uncertainties in the system.
 - Important for improving design capabilities.



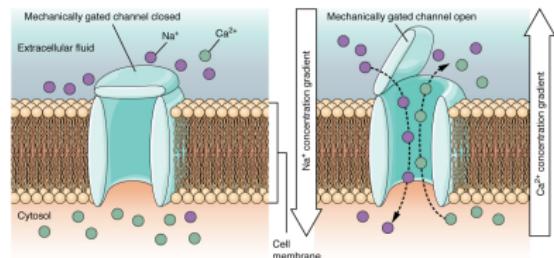
Example of nanoporous membrane:
pore size $\sim 20\text{nm}$, (R.Narayan, NC State).

Why Nanopores?

- Synthetic nanopores are widely used in the industry: desalination or other separation tasks.
- Selective control of transport: identify & manipulate physical properties or the interaction between the transported ions (or molecules) and the pore walls.
- Inspired by their biological counterparts: e.g. transmembrane protein channels.
- Complex and highly heterogeneous.
- MD simulations of nanopores are not new.
- UQ applied to nanopore simulations is novel.
 - Characterize uncertainties in the system.
 - Important for improving design capabilities.



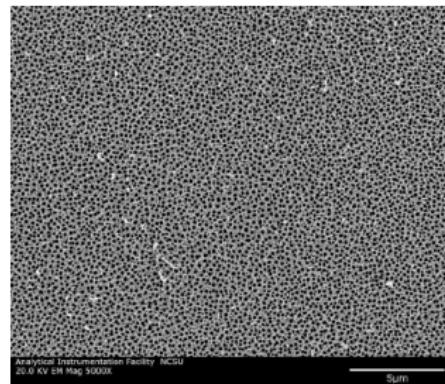
Example of nanoporous membrane:
pore size $\sim 20\text{nm}$, (R.Narayan, NC State).



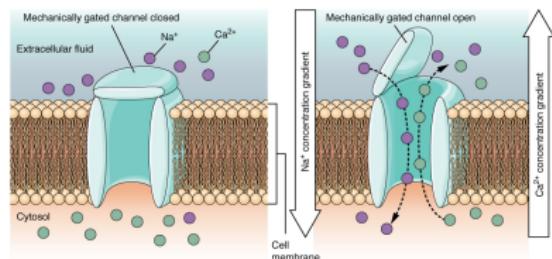
Protein channel schematic (web).

Why Nanopores?

- Synthetic nanopores are widely used in the industry: desalination or other separation tasks.
- Selective control of transport: identify & manipulate physical properties or the interaction between the transported ions (or molecules) and the pore walls.
- Inspired by their biological counterparts: e.g. transmembrane protein channels.
- Complex and highly heterogeneous.
- MD simulations of nanopores are not new.
- **UQ** applied to nanopore simulations is **novel**.
 - Characterize uncertainties in the system.
 - Important for improving design capabilities.



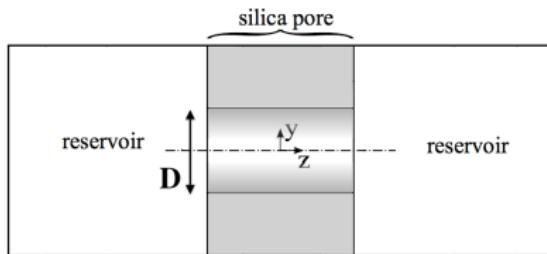
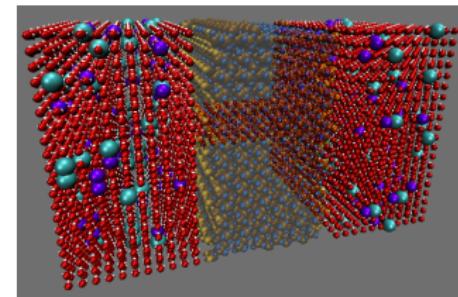
Example of nanoporous membrane:
pore size $\sim 20\text{nm}$, (R.Narayan, NC State).



Protein channel schematic (web).

Atomistic System and Geometry

- Silica pore model connecting two reservoirs containing a 1.5 mol/l solution of sodium (Na^+) and chloride (Cl^-) ions in H_2O (white-red).
- Reservoirs communicate only through the pore, PBC are imposed along x and y .

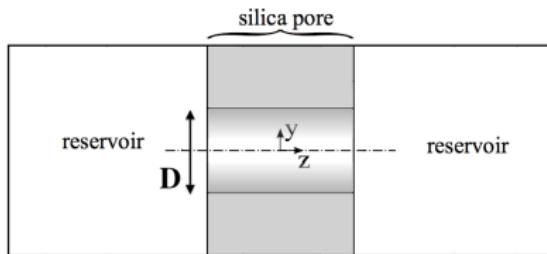
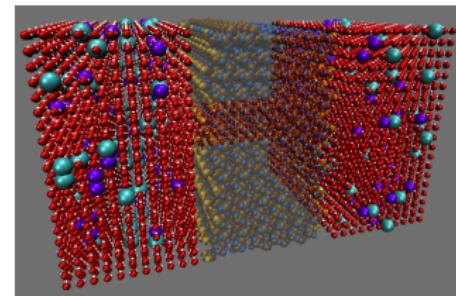


- 1 α -quartz crystal structure for the silica.
- 2 Cylindrical region of nominal diameter D .
- 3 Saturate dangling bonds with hydroxide groups (OH^-), to mimic real hydroxylation processes.

- Domain (xyz) $5.4 \times 6 \times 10.5 \text{ nm}^3$.
- LAMMPS, simulation time $\sim 8 \text{ ns}$.

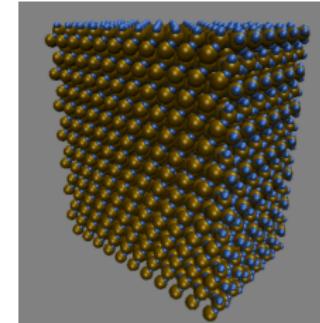
Atomistic System and Geometry

- Silica pore model connecting two reservoirs containing a 1.5 mol/l solution of sodium (Na^+) and chloride (Cl^-) ions in H_2O (white-red).
- Reservoirs communicate only through the pore, PBC are imposed along x and y .



- 1 α -quartz crystal structure for the silica.
- 2 Cylindrical region of nominal diameter D .
- 3 Saturate dangling bonds with hydroxide groups (OH^-), to mimic real hydroxylation processes.

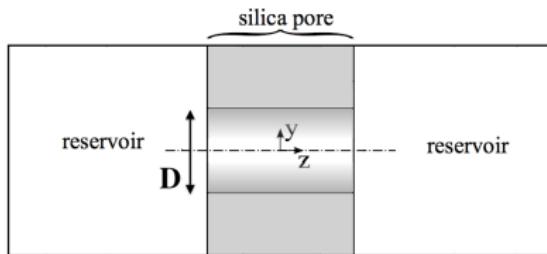
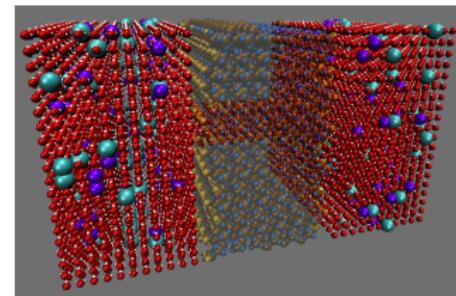
- Domain (xyz) $5.4 \times 6 \times 10.5 \text{ nm}^3$.
- LAMMPS, simulation time $\sim 8 \text{ ns}$.



$\text{O}_{\text{bulk}}, \text{Si}$

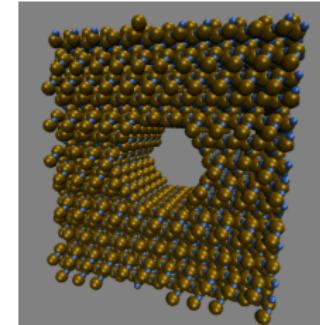
Atomistic System and Geometry

- Silica pore model connecting two reservoirs containing a 1.5 mol/l solution of sodium (Na^+) and chloride (Cl^-) ions in H_2O (white-red).
- Reservoirs communicate only through the pore, PBC are imposed along x and y .



- 1 α -quartz crystal structure for the silica.
- 2 Cylindrical region of nominal diameter D .
- 3 Saturate dangling bonds with hydroxide groups (OH^-), to mimic real hydroxylation processes.

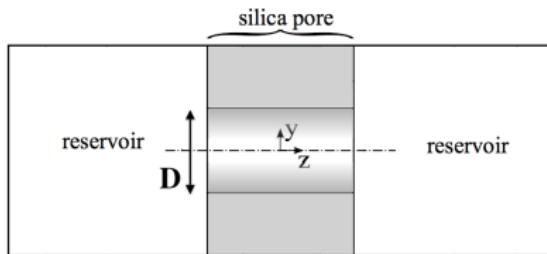
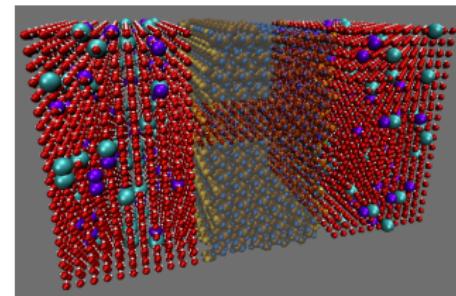
- Domain (xyz) $5.4 \times 6 \times 10.5 \text{ nm}^3$.
- LAMMPS, simulation time $\sim 8 \text{ ns}$.



$\text{O}_{\text{bulk}}, \text{Si}$

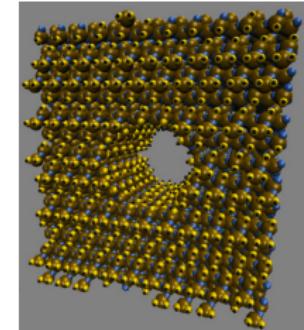
Atomistic System and Geometry

- Silica pore model connecting two reservoirs containing a 1.5 mol/l solution of sodium (Na^+) and chloride (Cl^-) ions in H_2O (white-red).
- Reservoirs communicate only through the pore, PBC are imposed along x and y .



- 1 α -quartz crystal structure for the silica.
- 2 Cylindrical region of nominal diameter D .
- 3 Saturate dangling bonds with hydroxide groups (OH^-), to mimic real hydroxylation processes.

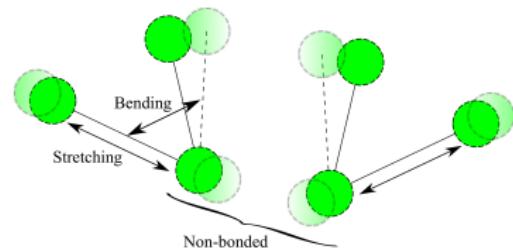
- Domain (xyz) $5.4 \times 6 \times 10.5 \text{ nm}^3$.
- LAMMPS, simulation time $\sim 8 \text{ ns}$.



$\text{O}_{\text{bulk}}, \text{Si}, \text{OH}$

MD Potential

- $\Phi_{total} = \Phi_{bonded} + \underbrace{\Phi_{LJ} + \Phi_{Coulomb}}_{non-bonded}$
- Φ_{bonded} (bond stretching and bending) is modeled using harmonic potential.
- Non-bonded interactions (Van der Waals + Electrostatic) are modeled as:



$$\Phi_{non-bonded} = \sum_{i=1, j>i}^{n_{atoms}} \left[\underbrace{4\epsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right]}_{\Phi_{LJ}(r_{ij})} + \underbrace{\frac{q_i q_j}{4\pi\epsilon_0 r_{ij}}}_{\Phi_{Coulomb}(r_{ij})} \right]$$

- LJ parameters $\{\epsilon_{\alpha\beta}, \sigma_{\alpha\beta}\}$ between atoms types α and β is defined for each homoatomic pair present in the system, i.e. $\alpha = \beta$. E.g. $O \sim O, H \sim H$, etc.
- Cross-interactions $\{\epsilon_{\alpha\beta}, \sigma_{\alpha\beta}\}$, $\alpha \neq \beta$, based on Lorentz-Berthelot (LB) rules:

$$\sigma_{\alpha\beta} = (\sigma_\alpha + \sigma_\beta) / 2, \quad \text{and} \quad \epsilon_{\alpha\beta} = \sqrt{\epsilon_\alpha \epsilon_\beta}.$$

- Parameters: silica (Lopes,2006), water (Jorgensen,1984), ions (Patra,2002).

MD Potential

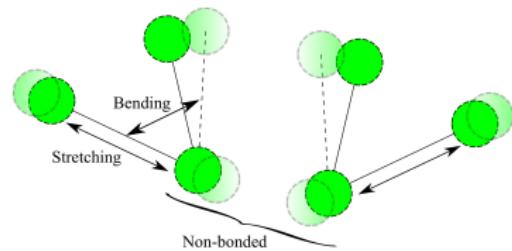
- $\Phi_{total} = \Phi_{bonded} + \underbrace{\Phi_{LJ} + \Phi_{Coulomb}}_{non-bonded}$
- Φ_{bonded} (bond stretching and bending) is modeled using harmonic potential.
- Non-bonded interactions (Van der Waals + Electrostatic) are modeled as:

$$\Phi_{non-bonded} = \sum_{i=1, j>i}^{n_{atoms}} \left[\underbrace{4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right]}_{\Phi_{LJ}(r_{ij})} + \underbrace{\frac{q_i q_j}{4\pi\epsilon_0 r_{ij}}}_{\Phi_{Coulomb}(r_{ij})} \right]$$

- LJ parameters $\{\varepsilon_{\alpha\beta}, \sigma_{\alpha\beta}\}$ between atoms types α and β is defined for each homoatomic pair present in the system, i.e. $\alpha = \beta$. E.g. $O \sim O, H \sim H$, etc.
- Cross-interactions $\{\varepsilon_{\alpha\beta}, \sigma_{\alpha\beta}\}$, $\alpha \neq \beta$, based on Lorentz-Berthelot (LB) rules:

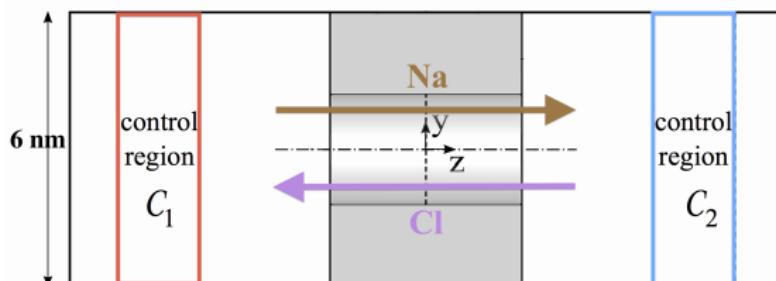
$$\sigma_{\alpha\beta} = (\sigma_\alpha + \sigma_\beta) / 2, \quad \text{and} \quad \varepsilon_{\alpha\beta} = \sqrt{\varepsilon_\alpha \varepsilon_\beta}.$$

- Parameters: silica (Lopes,2006), water (Jorgensen,1984), ions (Patra,2002).



Concentration Control Algorithm

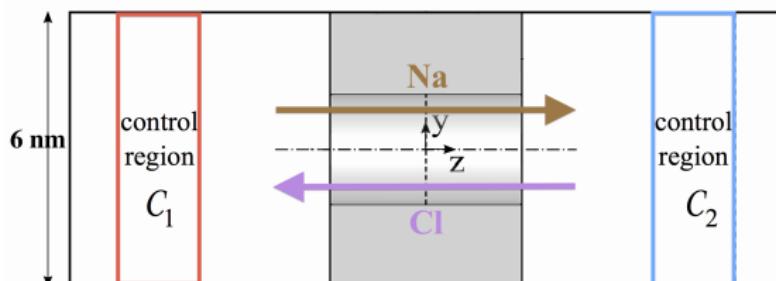
- Monitor concentration difference $\Delta c(t) = c_2(t) - c_1(t)$:
 $c_i(t)$ = (molar) concentration at t of a target ionic species in i -th reservoir.
- Inject/remove ions in \mathcal{C}_1 and \mathcal{C}_2 .
- No ion deletion, only swapping:
 $\Rightarrow N_{atoms}$ is constant.
- $-\overline{\Delta c}_{Na^+} = 60/V_{fluid} = \overline{\Delta c}_{Cl^-}$
Flow Na^+ : left \rightarrow right
Flow Cl^- : left \leftarrow right



- Ionic flux (magnitude): $J(t) = \frac{N_{exchanges}(t)}{tA}$ and conductance: $G(t) = \frac{J(t)}{|\Delta c|}$
 - $N_{exchanges}$ is the number of ion exchanges between \mathcal{C}_1 and \mathcal{C}_2 over the time t .
 - A is the nominal cross-sectional area of the pore.
 - Validated against a steady flux measured via integration of the velocity profiles of the ions over the cross-section of the pore.

Concentration Control Algorithm

- Monitor concentration difference $\Delta c(t) = c_2(t) - c_1(t)$:
 $c_i(t)$ = (molar) concentration at t of a target ionic species in i -th reservoir.
- Inject/remove ions in \mathcal{C}_1 and \mathcal{C}_2 .
- No ion deletion, only swapping:
 $\Rightarrow N_{atoms}$ is constant.
- $-\overline{\Delta c}_{Na^+} = 60/V_{fluid} = \overline{\Delta c}_{Cl^-}$
Flow Na^+ : left \rightarrow right
Flow Cl^- : left \leftarrow right



- Ionic flux (magnitude): $J(t) = \frac{N_{exchanges}(t)}{tA}$ and conductance: $G(t) = \frac{J(t)}{|\Delta c|}$
 - $N_{exchanges}$ is the number of ion exchanges between \mathcal{C}_1 and \mathcal{C}_2 over the time t .
 - A is the nominal cross-sectional area of the pore.
 - Validated against a steady flux measured via integration of the velocity profiles of the ions over the cross-section of the pore.

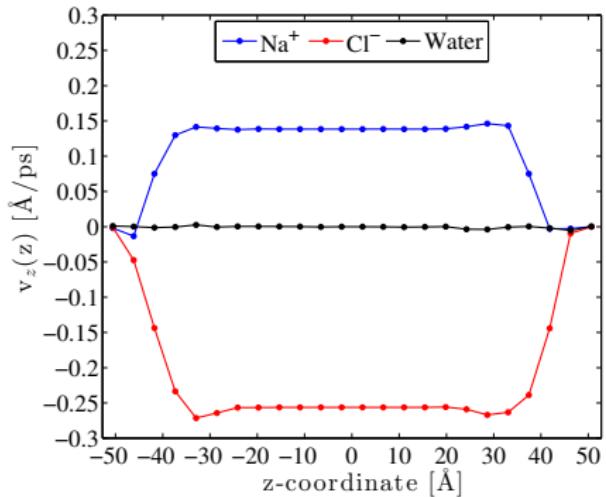
Dependence on the pore diameter

Animation & Velocity Profile

- $D = 12.5, 17, 21$ and 27 \AA .
- 5 replica simulations at each D to account for intrinsic (thermal) noise.
- Different initial velocities and random seed for CC algorithm.

- Time/spatial averaging of axial velocity over 24 slabs orthogonal to pore axis.
- Water is stationary.
- Ions tend to flow along the pore centerline with net mean velocity.

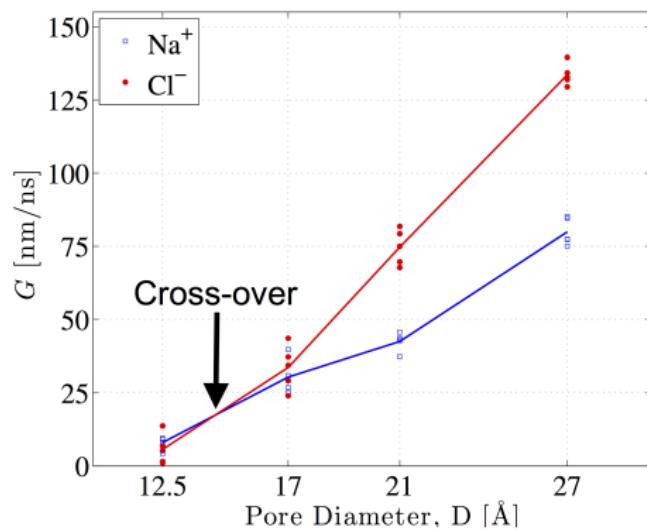
Na^+ , Cl^- , H_2O (white-red), O_{bulk} , Si , OH



Effect of the Pore Diameter: Conductance

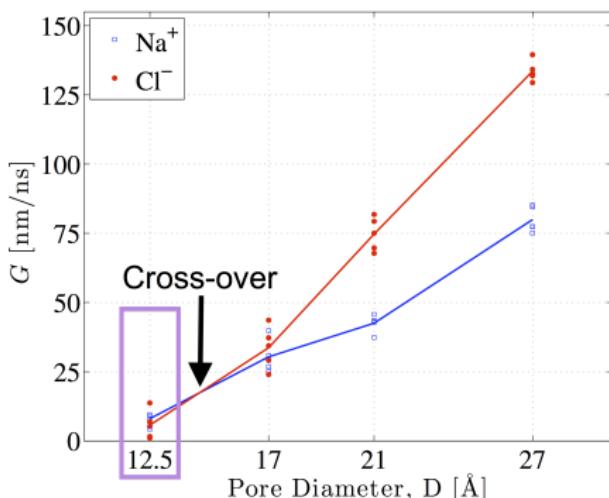
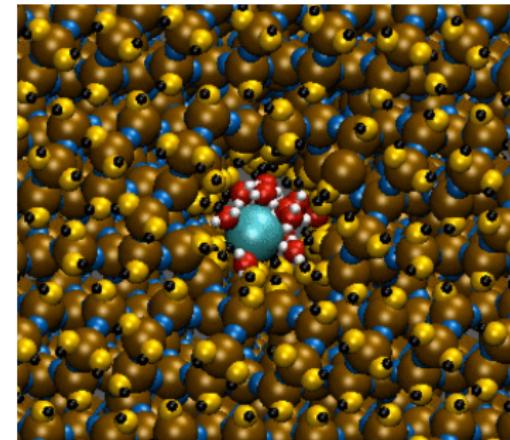
- Extract steady state value of conductance G for Na^+ and Cl^- .
- Steady state when the coefficient of variation based on 500 values is below 1%.
- Steady-state value of G_{Na^+} and G_{Cl^-} as a function of D for all 5 replicas showing the replica values (markers) and the mean trends (solid lines).

- Slope of G_{Cl^-} is sharper than G_{Na^+} .
- Overlapping of distributions for small D .
- For $D \geq 17$: $\bar{G}_{\text{Cl}^-} > \bar{G}_{\text{Na}^+}$.
- The trend reverses for $D = 12.5$.
- Physical explanation?



Physical Explanation

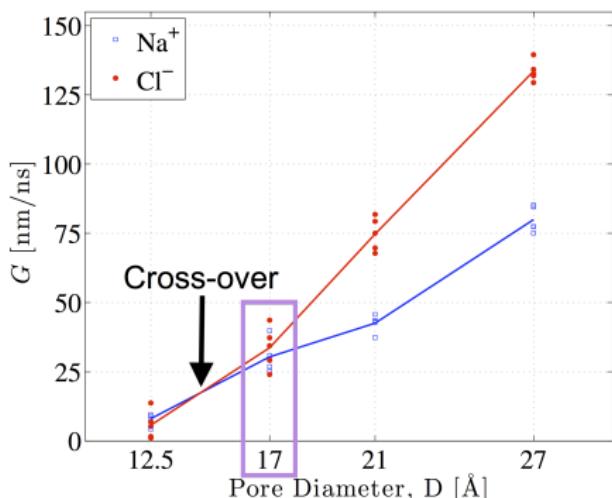
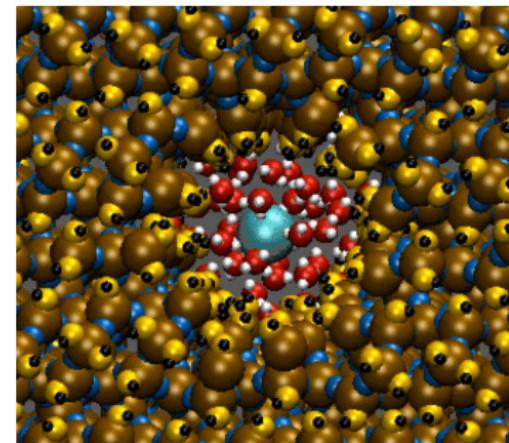
- Cross-over is the result of the **interplay** between **size effects** and **ionic mobility**.
- $D = 12.5 \text{ \AA}$: weak solvation shell \Rightarrow strong effects of pore walls and confinement favor ions with smaller ionic radius, i.e. Na^+ (as seen by Lyndenbell, 1996).
- $D \geq 17 \text{ \AA}$: complete solvation shell around the ions
 \Rightarrow ion's mobility dominates
 $\Rightarrow Flux_{\text{Cl}^-} > Flux_{\text{Na}^+}$ because the diffusivity of Cl^- is larger.



Na^+ , Cl^- , H_2O (white-red), OH , Si , O_{bulk}

Physical Explanation

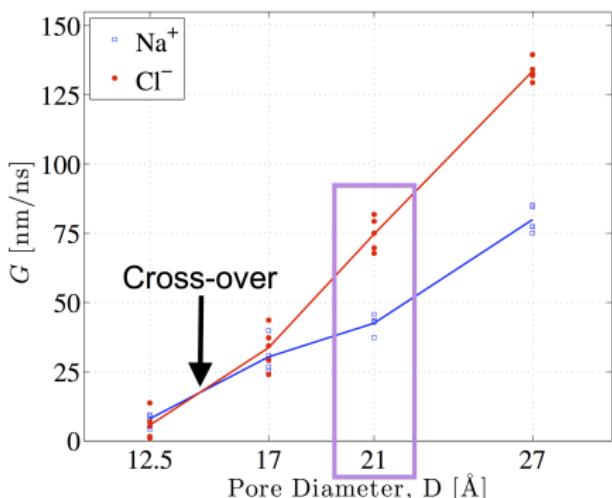
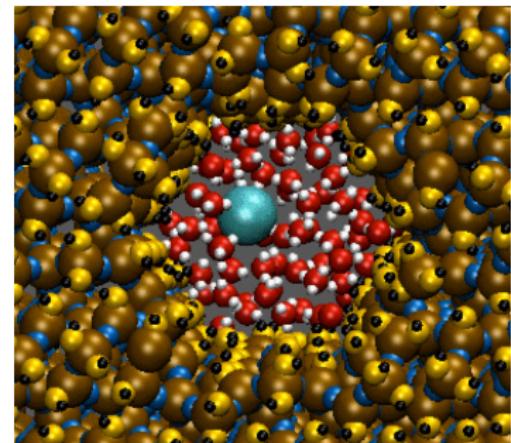
- Cross-over is the result of the **interplay** between **size effects** and **ionic mobility**.
- $D = 12.5 \text{ \AA}$: weak solvation shell \Rightarrow strong effects of pore walls and confinement favor ions with smaller ionic radius, i.e. Na^+ (as seen by Lyndenbell, 1996).
- $D \geq 17 \text{ \AA}$: complete solvation shell around the ions
 \Rightarrow ion's mobility dominates
 $\Rightarrow Flux_{\text{Cl}^-} > Flux_{\text{Na}^+}$ because the diffusivity of Cl^- is larger.



Na^+ , Cl^- , H_2O (white-red), OH , Si , O_{bulk}

Physical Explanation

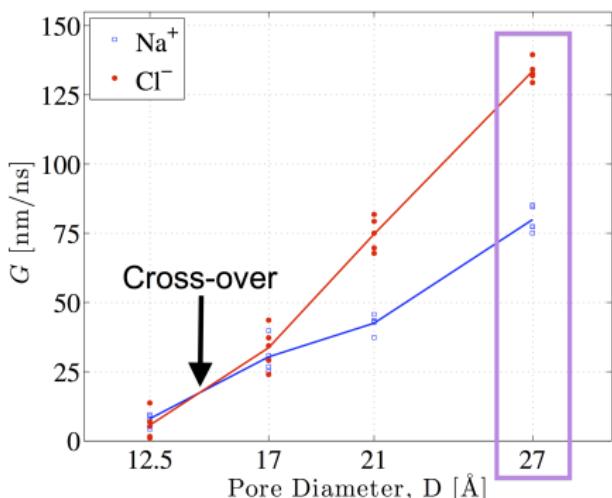
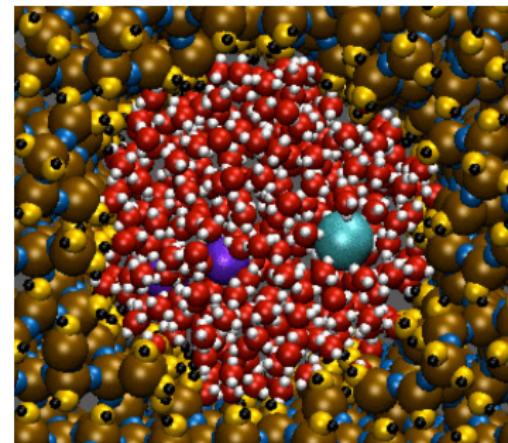
- Cross-over is the result of the **interplay** between **size effects** and **ionic mobility**.
- $D = 12.5 \text{ \AA}$: weak solvation shell \Rightarrow strong effects of pore walls and confinement favor ions with smaller ionic radius, i.e. Na^+ (as seen by Lyndenbell, 1996).
- $D \geq 17 \text{ \AA}$: complete solvation shell around the ions
 \Rightarrow ion's mobility dominates
 $\Rightarrow Flux_{\text{Cl}^-} > Flux_{\text{Na}^+}$ because the diffusivity of Cl^- is larger.



Na^+ , Cl^- , H_2O (white-red), OH , Si , O_{bulk}

Physical Explanation

- Cross-over is the result of the **interplay** between **size effects** and **ionic mobility**.
- $D = 12.5 \text{ \AA}$: weak solvation shell \Rightarrow strong effects of pore walls and confinement favor ions with smaller ionic radius, i.e. Na^+ (as seen by Lyndenbell, 1996).
- $D \geq 17 \text{ \AA}$: complete solvation shell around the ions
 \Rightarrow ion's mobility dominates
 $\Rightarrow Flux_{\text{Cl}^-} > Flux_{\text{Na}^+}$ because the diffusivity of Cl^- is larger.



Na^+ , Cl^- , H_2O (white-red), OH , Si , O_{bulk}

Sensitivity to LJ potential parameters

Problem Definition

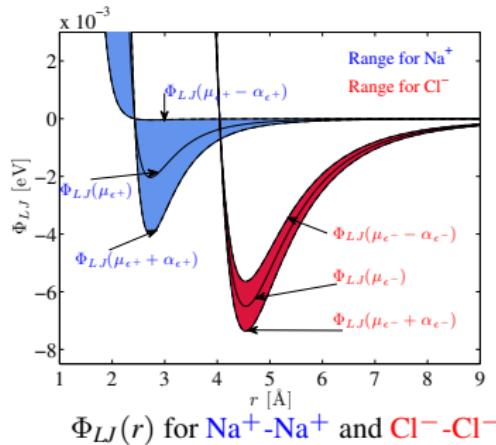
- Fix $D = 21 \text{ \AA}$; choose ε_{Na^+} and ε_{Cl^-} , depths of the LJ potential for Na^+ and Cl^- .

$$\varepsilon_{Na^+} = 0.002033777 + 0.001992370 \xi_1, \quad [\text{eV}],$$

$$\varepsilon_{Cl^-} = 0.006504600 + 0.000863055 \xi_2, \quad [\text{eV}],$$

where $\{\xi_1, \xi_2\}$ are *i.i.d.* uniform random variables $\mathcal{U}(-1, 1)$; values from literature.

- Directly affects the LJ potential for Na^+ - Na^+ and Cl^- - Cl^- interactions.
- Since $\varepsilon_{\alpha\beta} = \sqrt{\varepsilon_\alpha \varepsilon_\beta}$ for atom types $\alpha \neq \beta$, it affects *all* the cross-interactions.



Problem Definition

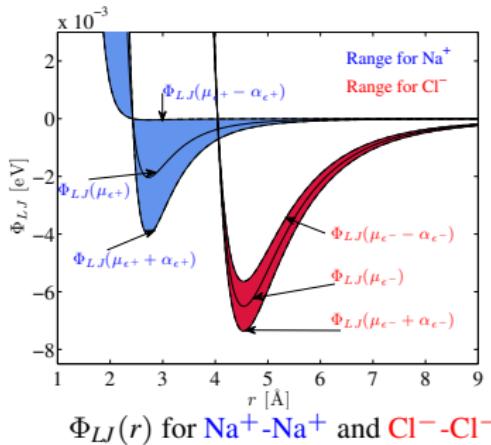
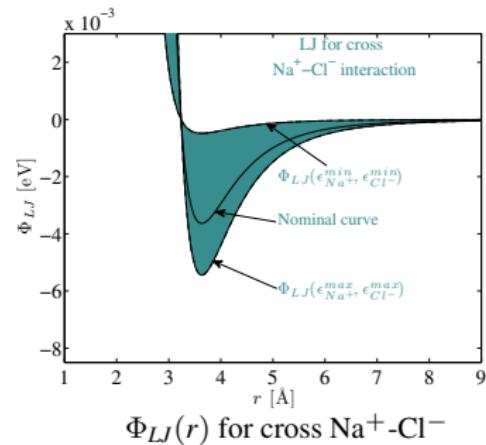
- Fix $D = 21 \text{ \AA}$; choose ε_{Na^+} and ε_{Cl^-} , depths of the LJ potential for Na^+ and Cl^- .

$$\varepsilon_{Na^+} = 0.002033777 + 0.001992370 \xi_1, \quad [\text{eV}],$$

$$\varepsilon_{Cl^-} = 0.006504600 + 0.000863055 \xi_2, \quad [\text{eV}],$$

where $\{\xi_1, \xi_2\}$ are *i.i.d.* uniform random variables $\mathcal{U}(-1, 1)$; values from literature.

- Directly affects the LJ potential for Na^+ - Na^+ and Cl^- - Cl^- interactions.
- Since $\varepsilon_{\alpha\beta} = \sqrt{\varepsilon_\alpha \varepsilon_\beta}$ for atom types $\alpha \neq \beta$, it affects *all* the cross-interactions.



Objective and Methods

- $\varepsilon_{Na^+} = f_1(\xi_1), \quad \varepsilon_{Cl^-} = f_2(\xi_2), \quad \text{with} \quad \xi_{1,2} \sim \mathcal{U}(-1, 1)$

⇒ nanopore observables (flux, conductance) can be considered as random variables.

- How to “map” the uncertainty from $\varepsilon_{Na^+}, \varepsilon_{Cl^-}$ to the observables?
- E.g. Monte Carlo: Sample ξ_1, ξ_2 to generate samples of ε_{Na^+} and ε_{Cl^-} ; run one full MD simulation for each sample; collect data and generate statistics.
- We rely on Polynomial Chaos expansions (PCe):

$$(\text{conductance}) \quad G \approx \sum_{i=0}^P g_i \Psi_i(\xi_1, \xi_2) \quad [\text{e.g. linear PCe: } G \approx g_0 + g_1 \xi_1 + g_2 \xi_2]$$

- $P + 1 = (\text{order} + 2)! / (\text{order}! 2!)$; $\Psi()$ = Legendre Polyn., and \mathbf{g} = PC coefficients.
- PCe is an orthogonal expansion: scalar product, then pseudo-spectral approach.
 - ★ Regularity of data; noisy might be problematic; constraints on sampling.
- For noisy systems, as MD due to thermal noise, Bayesian regression works best.

Objective and Methods

- $\varepsilon_{Na^+} = f_1(\xi_1), \quad \varepsilon_{Cl^-} = f_2(\xi_2), \quad \text{with} \quad \xi_{1,2} \sim \mathcal{U}(-1, 1)$

⇒ nanopore observables (flux, conductance) can be considered as random variables.

- How to “map” the uncertainty from $\varepsilon_{Na^+}, \varepsilon_{Cl^-}$ to the observables?
- E.g. Monte Carlo: Sample ξ_1, ξ_2 to generate samples of ε_{Na^+} and ε_{Cl^-} ; run one full MD simulation for each sample; collect data and generate statistics.
- We rely on Polynomial Chaos expansions (PCe):

$$(\text{conductance}) \quad G \approx \sum_{i=0}^P g_i \Psi_i(\xi_1, \xi_2) \quad [\text{e.g. linear PCe: } G \approx g_0 + g_1 \xi_1 + g_2 \xi_2]$$

- $P + 1 = (\text{order} + 2)! / (\text{order}! 2!)$; $\Psi()$ = Legendre Polyn., and \mathbf{g} = PC coefficients.
- PCe is an orthogonal expansion: scalar product, then pseudo-spectral approach.
 - ★ Regularity of data; noisy might be problematic; constraints on sampling.
- For noisy systems, as MD due to thermal noise, Bayesian regression works best.

Objective and Methods

- $\varepsilon_{Na^+} = f_1(\xi_1), \quad \varepsilon_{Cl^-} = f_2(\xi_2), \quad \text{with} \quad \xi_{1,2} \sim \mathcal{U}(-1, 1)$

⇒ nanopore observables (flux, conductance) can be considered as random variables.

- How to “map” the uncertainty from $\varepsilon_{Na^+}, \varepsilon_{Cl^-}$ to the observables?
- E.g. Monte Carlo: Sample ξ_1, ξ_2 to generate samples of ε_{Na^+} and ε_{Cl^-} ; run one full MD simulation for each sample; collect data and generate statistics.
- We rely on Polynomial Chaos expansions (PCe):

$$(\text{conductance}) \quad G \approx \sum_{i=0}^P g_i \Psi_i(\xi_1, \xi_2) \quad [\text{e.g. linear PCe: } G \approx g_0 + g_1 \xi_1 + g_2 \xi_2]$$

- $P + 1 = (\text{order} + 2)! / (\text{order}! 2!)$; $\Psi()$ = Legendre Polyn., and \mathbf{g} = PC coefficients.
- PCe is an orthogonal expansion: scalar product, then pseudo-spectral approach.
 - ★ Regularity of data; noisy might be problematic; constraints on sampling.
- For noisy systems, as MD due to thermal noise, Bayesian regression works best.

Objective and Methods

- $\varepsilon_{Na^+} = f_1(\xi_1), \quad \varepsilon_{Cl^-} = f_2(\xi_2), \quad \text{with} \quad \xi_{1,2} \sim \mathcal{U}(-1, 1)$

⇒ nanopore observables (flux, conductance) can be considered as random variables.

- How to “map” the uncertainty from $\varepsilon_{Na^+}, \varepsilon_{Cl^-}$ to the observables?
- E.g. Monte Carlo: Sample ξ_1, ξ_2 to generate samples of ε_{Na^+} and ε_{Cl^-} ; run one full MD simulation for each sample; collect data and generate statistics.
- We rely on Polynomial Chaos expansions (PCe):

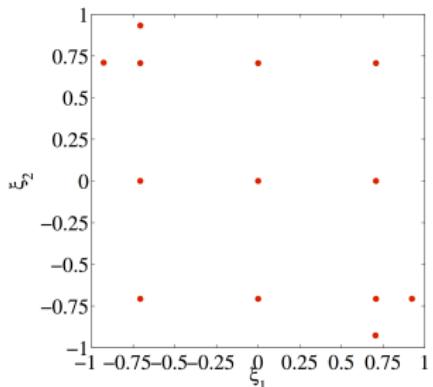
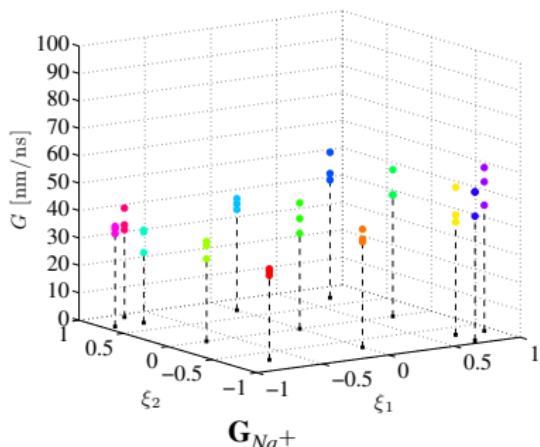
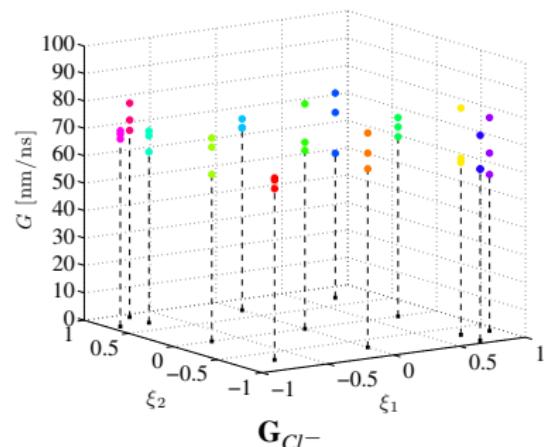
$$(\text{conductance}) \quad G \approx \sum_{i=0}^P g_i \Psi_i(\xi_1, \xi_2) \quad [\text{e.g. linear PCe: } G \approx g_0 + g_1 \xi_1 + g_2 \xi_2]$$

- $P + 1 = (\text{order} + 2)! / (\text{order}! 2!)$; $\Psi()$ = Legendre Polyn., and \mathbf{g} = PC coefficients.
- PCe is an orthogonal expansion: scalar product, then pseudo-spectral approach.
 - ★ Regularity of data; noisy might be problematic; constraints on sampling.
- For noisy systems, as MD due to thermal noise, Bayesian regression works best.

Bayesian Regression: Collecting Data

- $\varepsilon_{Na^+} = f_1(\xi_1)$ and $\varepsilon_{Cl^-} = f_2(\xi_2)$.
- Sampling grid of 13 nodes (3 replicas each).
- Data-set of steady-state conductance values:

$$\mathbf{G}_{Na^+, Cl^-} = \{G_{i,j}^{Na^+, Cl^-}\}_{i=1, \dots, 13}^{j=1, \dots, 3}$$



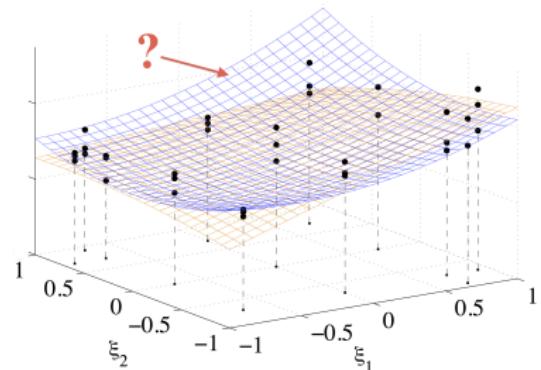
Bayesian Regression: Formulation

- Regression function is a PCe:

$$M(\xi_1, \xi_2) = \sum_{k=0}^P g_k \Psi_k(\xi_1, \xi_2),$$

- Regression model as

$$G_\ell = M(\xi_\ell) + \gamma_\ell, \quad \ell = 1, \dots, 39.$$



- ξ_ℓ is the coordinate of the ℓ -th data point G_ℓ
- γ_ℓ is a RV capturing the discrepancy between data and model prediction.
- Data points result from independent but statistically equivalent MD runs.
- Assume $\{\gamma_\ell\}_{\ell=1}^{39}$ to be independent and $\gamma_\ell \sim \mathcal{N}(0, \sigma_\ell)$, $\ell = 1, \dots, 39$.
 - ★ Gaussian model (verified): data extracted from MD using running averages.
- Consider a space-dependent noise $\sigma_\ell = \sigma(\xi)$ by parametrizing:

$$\sigma(\xi) = h_0 + h_1 \xi_1 + h_2 \xi_2.$$

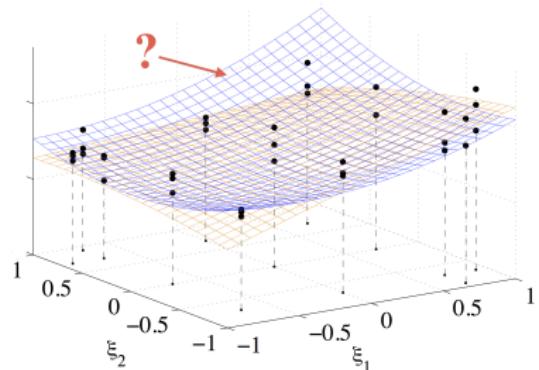
Bayesian Regression: Formulation

- Regression function is a PCe:

$$M(\xi_1, \xi_2) = \sum_{k=0}^P g_k \Psi_k(\xi_1, \xi_2),$$

- Regression model as

$$G_\ell = M(\xi_\ell) + \gamma_\ell, \quad \ell = 1, \dots, 39.$$



- ξ_ℓ is the coordinate of the ℓ -th data point G_ℓ
- γ_ℓ is a RV capturing the discrepancy between data and model prediction.
- Data points result from independent but statistically equivalent MD runs.
- Assume $\{\gamma_\ell\}_{\ell=1}^{39}$ to be independent and $\gamma_\ell \sim \mathcal{N}(0, \sigma_\ell)$, $\ell = 1, \dots, 39$.
 - ★ Gaussian model (verified): data extracted from MD using running averages.
- Consider a space-dependent noise $\sigma_\ell = \sigma(\xi)$ by parametrizing:

$$\sigma(\xi) = h_0 + h_1 \xi_1 + h_2 \xi_2.$$

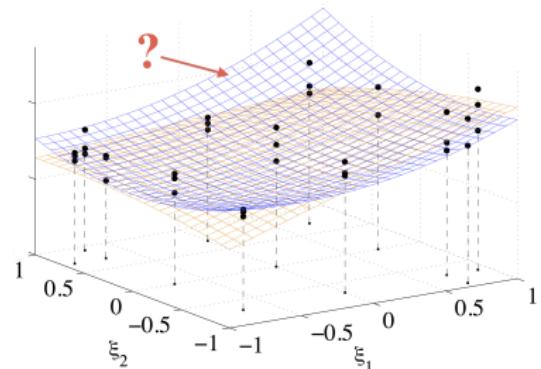
Bayesian Regression: Formulation

- Regression function is a PCe:

$$M(\xi_1, \xi_2) = \sum_{k=0}^P g_k \Psi_k(\xi_1, \xi_2),$$

- Regression model as

$$G_\ell = M(\xi_\ell) + \gamma_\ell, \quad \ell = 1, \dots, 39.$$



- ξ_ℓ is the coordinate of the ℓ -th data point G_ℓ
- γ_ℓ is a RV capturing the discrepancy between data and model prediction.
- Data points result from independent but statistically equivalent MD runs.
- Assume $\{\gamma_\ell\}_{\ell=1}^{39}$ to be independent and $\gamma_\ell \sim \mathcal{N}(0, \sigma_\ell)$, $\ell = 1, \dots, 39$.
 - ★ Gaussian model (verified): data extracted from MD using running averages.
- Consider a space-dependent noise $\sigma_\ell = \sigma(\xi)$ by parametrizing:

$$\sigma(\xi) = h_0 + h_1 \xi_1 + h_2 \xi_2.$$

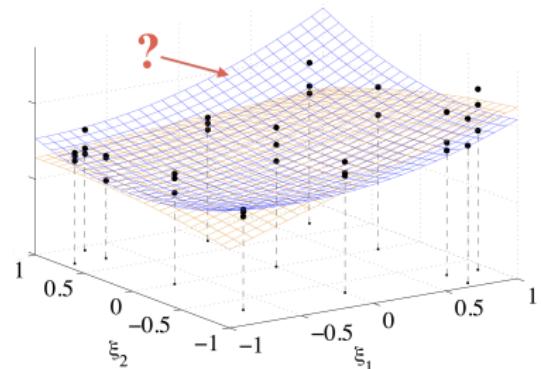
Bayesian Regression: Formulation

- Regression function is a PCe:

$$M(\xi_1, \xi_2) = \sum_{k=0}^P g_k \Psi_k(\xi_1, \xi_2),$$

- Regression model as

$$G_\ell = M(\xi_\ell) + \gamma_\ell, \quad \ell = 1, \dots, 39.$$



- ξ_ℓ is the coordinate of the ℓ -th data point G_ℓ
- γ_ℓ is a RV capturing the discrepancy between data and model prediction.
- Data points result from independent but statistically equivalent MD runs.
- Assume $\{\gamma_\ell\}_{\ell=1}^{39}$ to be independent and $\gamma_\ell \sim \mathcal{N}(0, \sigma_\ell)$, $\ell = 1, \dots, 39$.
 - ★ Gaussian model (verified): data extracted from MD using running averages.
- Consider a space-dependent noise $\sigma_\ell = \sigma(\xi)$ by parametrizing:

$$\sigma(\xi) = h_0 + h_1 \xi_1 + h_2 \xi_2.$$

Bayesian Regression: Formulation

- $\{h_k\}_{k=0}^2$ are hyperparameters, i.e. part of the unknowns: $\{g_0, \dots, g_P, h_0, h_1, h_2\}$.
- Likelihood becomes:

$$\mathcal{L} = \prod_{i=1}^{13} \prod_{j=1}^3 \frac{1}{\sqrt{2\pi[h_0 + h_1\xi_{1,i} + h_2\xi_{2,i}]^2}} \exp\left(-\frac{[G_{i,j} - \sum_{k=0}^P g_k \Psi_k(\xi_{1,i}, \xi_{2,i})]^2}{2[h_0 + h_1\xi_{1,i} + h_2\xi_{2,i}]^2}\right),$$

where $G_{i,j}$ is the j -th observation obtained at the i -th sampling point, ξ_i .

- Bayes' theorem yields the joint posterior

$$\pi\left(\{g_k\}_{k=0}^P, \{h_l\}_{l=0}^2 \mid \mathbf{G}\right) \propto \mathcal{L}\left(\mathbf{G} \mid \{g_k\}_{k=0}^P, \{h_l\}_{l=0}^2\right) \text{Prior}(\{g_k\}_{k=0}^P, \{h_l\}_{l=0}^2),$$

For the priors we use uniform distributions.

- Sample $\pi()$ with a Markov chain Monte Carlo (MCMC) method based on Adaptive Metropolis (AM): “walk” in the $\{g_0, \dots, g_P, h_0, h_1, h_2\}$ -space.

Bayesian Regression: Formulation

- $\{h_k\}_{k=0}^2$ are hyperparameters, i.e. part of the unknowns: $\{g_0, \dots, g_P, h_0, h_1, h_2\}$.
- Likelihood becomes:

$$\mathcal{L} = \prod_{i=1}^{13} \prod_{j=1}^3 \frac{1}{\sqrt{2\pi[h_0 + h_1\xi_{1,i} + h_2\xi_{2,i}]^2}} \exp\left(-\frac{[G_{i,j} - \sum_{k=0}^P g_k \Psi_k(\xi_{1,i}, \xi_{2,i})]^2}{2[h_0 + h_1\xi_{1,i} + h_2\xi_{2,i}]^2}\right),$$

where $G_{i,j}$ is the j -th observation obtained at the i -th sampling point, ξ_i .

- Bayes' theorem yields the joint posterior

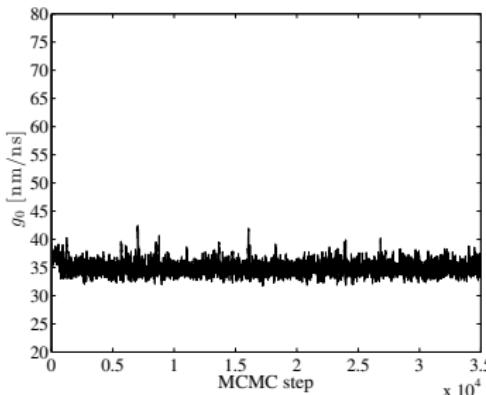
$$\pi\left(\{g_k\}_{k=0}^P, \{h_l\}_{l=0}^2 \mid \mathbf{G}\right) \propto \mathcal{L}\left(\mathbf{G} \mid \{g_k\}_{k=0}^P, \{h_l\}_{l=0}^2\right) \text{Prior}(\{g_k\}_{k=0}^P, \{h_l\}_{l=0}^2),$$

For the priors we use uniform distributions.

- Sample $\pi()$ with a Markov chain Monte Carlo (MCMC) method based on Adaptive Metropolis (AM): “walk” in the $\{g_0, \dots, g_P, h_0, h_1, h_2\}$ -space.

Bayesian Regression: Results

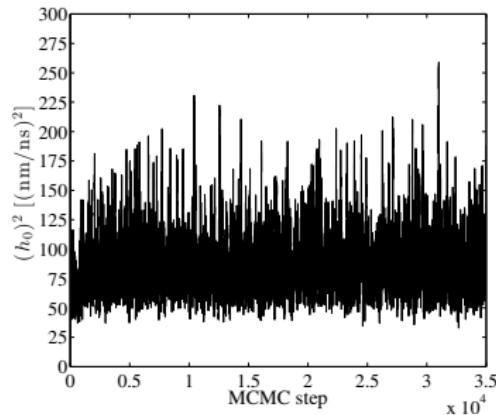
- Regression function order: e.g. $ord = 1$ (linear), $ord = 2$ (quadratic), etc.
- $P + 1 = (ord + 2)!/(ord! 2!)$.
- MCMC yields a “chain” in the $\{g_0, \dots, g_P, h_0, h_1, h_2\}$ -space:



MCMC for g_0 of the regression function

$$M(\boldsymbol{\xi}) = \sum_{k=0}^P g_k \Psi_k(\boldsymbol{\xi}) \text{ for Na}^+.$$

...



MCMC for $(h_0)^2$ of the noise variance

$$\sigma(\boldsymbol{\xi}) = h_0 + h_1 \xi_1 + h_2 \xi_2 \text{ for Na}^+.$$

...

- Samples are used to derive statistics of the posterior $\pi(g_0, \dots, g_P, h_0, h_1, h_2)$: mean, variance, joint distributions ...

Regression Function: Linear? Quadratic? ...

- Regression function $M(\xi_1, \xi_2)$: constant? linear? higher-order?
- Bayes factor: discriminate between two “models” describing the same set of data.
- $\boldsymbol{\theta}_p = \{g_0, \dots, g_P, h_0, h_1, h_2\}$: set of model parameters for a p -th order $M(\xi)$.
- Integrates over the full parameter space.
- The (\log_n) of Bayes factor, $B(\boldsymbol{\theta}_{p_1}, \boldsymbol{\theta}_{p_2})$, is given by:

$$\log_n(B(\boldsymbol{\theta}_{p_1}, \boldsymbol{\theta}_{p_2})) = \log_n \frac{\int \mathcal{L}(G|\boldsymbol{\theta}_{p_1}) \Pr(\boldsymbol{\theta}_{p_1}) d\boldsymbol{\theta}_{p_1}}{\int \mathcal{L}(G|\boldsymbol{\theta}_{p_2}) \Pr(\boldsymbol{\theta}_{p_2}) d\boldsymbol{\theta}_{p_2}}$$

- The more positive $\log_n(B(\boldsymbol{\theta}_{p_1}, \boldsymbol{\theta}_{p_2}))$, the stronger the support for $\boldsymbol{\theta}_{p_1}$ (Kass, 1995).

Regression Function: Linear? Quadratic? ...

- Regression function $M(\xi_1, \xi_2)$: constant? linear? higher-order?
- Bayes factor: discriminate between two “models” describing the same set of data.
- $\boldsymbol{\theta}_p = \{g_0, \dots, g_p, h_0, h_1, h_2\}$: set of model parameters for a p -th order $M(\xi)$.
- Integrates over the full parameter space.
- The (\log_n) of Bayes factor, $B(\boldsymbol{\theta}_{p_1}, \boldsymbol{\theta}_{p_2})$, is given by:

$$\log_n(B(\boldsymbol{\theta}_{p_1}, \boldsymbol{\theta}_{p_2})) = \log_n \frac{\int \mathcal{L}(G|\boldsymbol{\theta}_{p_1}) Pr(\boldsymbol{\theta}_{p_1}) d\boldsymbol{\theta}_{p_1}}{\int \mathcal{L}(G|\boldsymbol{\theta}_{p_2}) Pr(\boldsymbol{\theta}_{p_2}) d\boldsymbol{\theta}_{p_2}}$$

- The more positive $\log_n(B(\boldsymbol{\theta}_{p_1}, \boldsymbol{\theta}_{p_2}))$, the stronger the support for $\boldsymbol{\theta}_{p_1}$ (Kass, 1995).

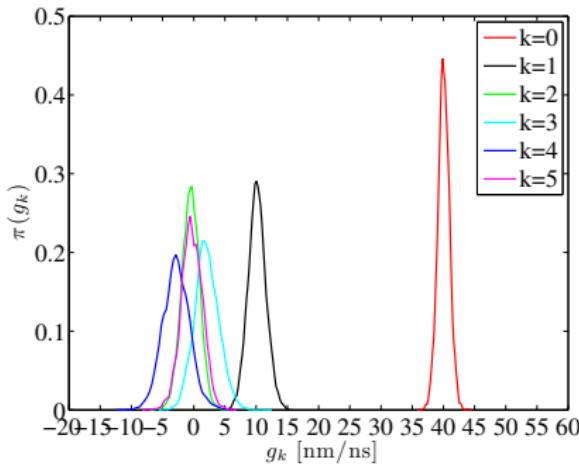
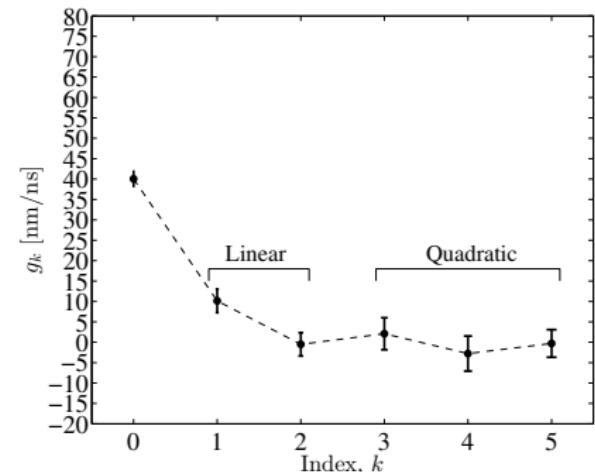
		Na^+				Cl^-			
		$p_2 = 0$	$p_2 = 1$	$p_2 = 2$	$p_2 = 3$	$p_2 = 0$	$p_2 = 1$	$p_2 = 2$	$p_2 = 3$
$p_1 = 0$	—	-19.341	-19.933	-16.285	—	2.484	2.737	6.499	
$p_1 = 1$	19.341	—	-0.593	3.055	-2.284	—	0.254	4.015	
$p_1 = 2$	19.933	0.593	—	3.648	-2.737	-0.254	—	3.761	
$p_1 = 3$	16.285	-3.055	-3.648	—	-6.499	-4.015	-3.761	—	

Posterior Uncertainty & Response Surface for Na^+

- Quadratic regression model for G_{Na^+} :

$$M_{G_{\text{Na}^+}}(\xi) = \textcolor{red}{g_0} + g_1\xi_1 + \textcolor{green}{g_2}\xi_2 + \textcolor{cyan}{g_3}(3\xi_1^2 - 1)/2 + \textcolor{blue}{g_4}\xi_1\xi_2 + \textcolor{magenta}{g_5}(3\xi_2^2 - 1)/2$$

- From Bayesian regression:
 \Rightarrow *uncertain* PCe.
- Generate sample spectra $\{\mathbf{g}_i\}_{i=1}^{500}$
by sampling $\pi(\mathbf{g}) = \pi(g_0, \dots, g_5)$
- $\textcolor{red}{g_0}, g_1$ dominant in magnitude,
higher-order modes play a minor role.
- Plot sample response surfaces:
clear trend present.

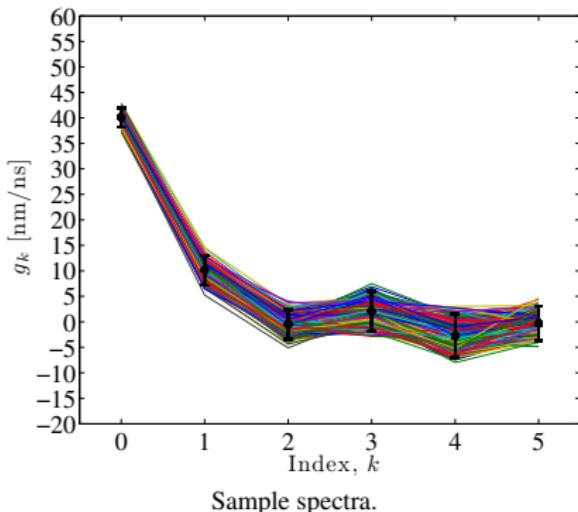
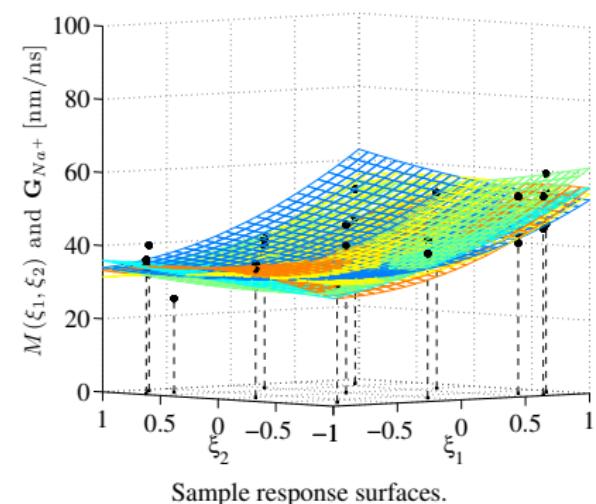


Posterior Uncertainty & Response Surface for Na^+

- Quadratic regression model for G_{Na^+} :

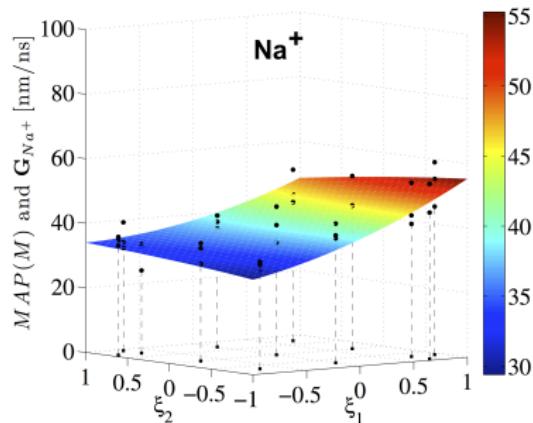
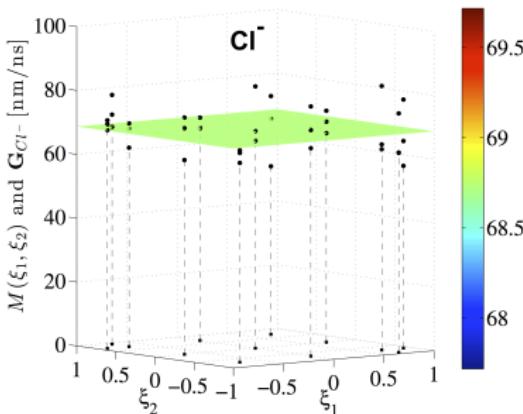
$$M_{G_{\text{Na}^+}}(\xi) = \textcolor{red}{g_0} + g_1\xi_1 + \textcolor{green}{g_2}\xi_2 + \textcolor{blue}{g_3}(3\xi_1^2 - 1)/2 + \textcolor{blue}{g_4}\xi_1\xi_2 + \textcolor{purple}{g_5}(3\xi_2^2 - 1)/2$$

- From Bayesian regression:
 \Rightarrow *uncertain* PCE.
- Generate sample spectra $\{\mathbf{g}_i\}_{i=1}^{500}$
 by sampling $\pi(\mathbf{g}) = \pi(g_0, \dots, g_5)$
- $\textcolor{red}{g_0}, g_1$ dominant in magnitude,
 higher-order modes play a minor role.
- Plot sample response surfaces:
 clear trend present.



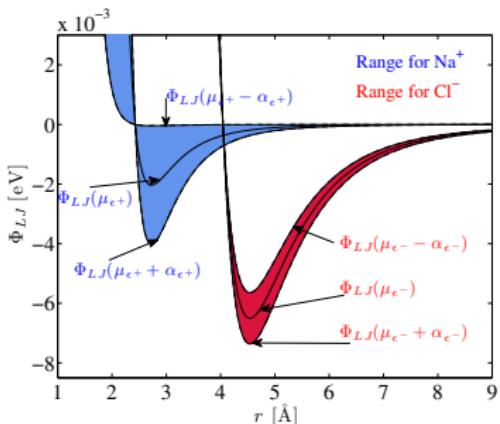
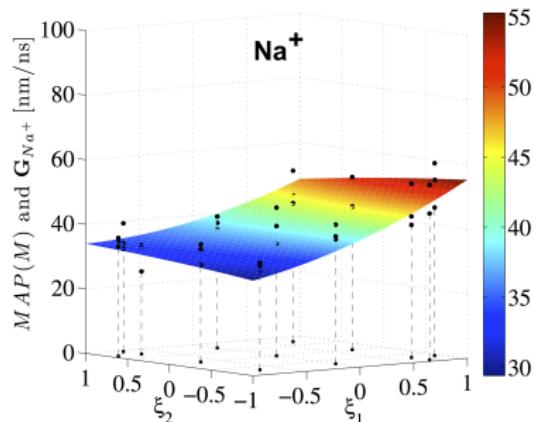
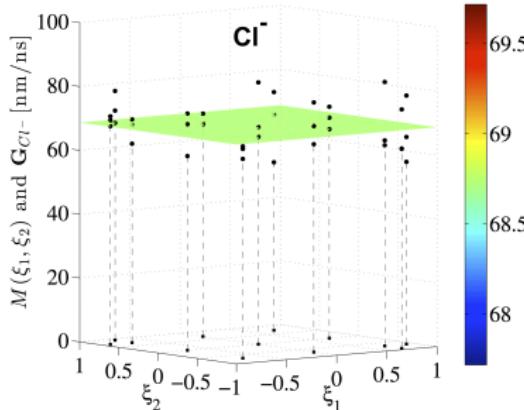
Posterior Uncertainty & Response Surface: Differences

- MAP estimate response surface for Na^+ : G_{Na^+} increases as $\varepsilon_{\text{Na}^+}$ (i.e. ξ_1) increases.
- For Cl^- Bayes factor supported the use of a *constant* M to represent G_{Cl^-} .
- Insight: $G_{\text{Cl}^-} \sim \varepsilon_{\text{Cl}^-}$ and $G_{\text{Na}^+} \sim \varepsilon_{\text{Na}^+}$ but...
 - a smaller uncertainty range for $\varepsilon_{\text{Cl}^-}$ yields a smaller absolute variation for G_{Cl^-}
 - a trend of G_{Cl^-} hidden by the noise level.



Posterior Uncertainty & Response Surface: Differences

- MAP estimate response surface for Na^+ : G_{Na^+} increases as $\varepsilon_{\text{Na}^+}$ (i.e. ξ_1) increases.
- For Cl^- Bayes factor supported the use of a *constant* M to represent G_{Cl^-} .
- Insight: $G_{\text{Cl}^-} \sim \varepsilon_{\text{Cl}^-}$ and $G_{\text{Na}^+} \sim \varepsilon_{\text{Na}^+}$ but...
 - smaller uncertainty range for $\varepsilon_{\text{Cl}^-}$ yields a smaller absolute variation for G_{Cl^-} .
 - trend of G_{Cl^-} hidden by the noise level.



Analysis of the Non-Deterministic PC Model

- The Bayesian regression yields a **non-deterministic** PC representation:

$$M(\xi_1, \xi_2) = g_0 \Psi_0(\xi_1, \xi_2) + \dots + g_P \Psi_P(\xi_1, \xi_2)$$

where $\{g_l\}_{l=0}^P$ is a random vector defined by a $(P + 1)$ -dim density.

- The PC regression model, $M(\xi_1, \xi_2)$, depends on:
 - the parametric uncertainty in the potential through the RVs ξ_1, ξ_2 .
 - thermal noise through the uncertainty in the PC coefficients.

Interpretation:

- Draw m samples of the parameters $\{\xi_1^{(j)}, \xi_2^{(j)}\}_{j=1}^m$
- For any given $\{\xi_1^{(j)}, \xi_2^{(j)}\}$, we can draw n different sample-spectra of PC coefficients $\{\mathbf{g}_i\}_{i=1}^n$, from their joint distribution $\pi(\mathbf{g})$.
- We thus obtain $n \times m$ predictions for the target observable $\{(M)_{i,j}\}_{i,j=1}^{n,m}$.
- Each realization of the parameters, due to the random coefficients can be associated with an arbitrary number of predictions of the observable M .

Analysis of the Non-Deterministic PC Model

- The Bayesian regression yields a **non-deterministic** PC representation:

$$M(\xi_1, \xi_2) = g_0 \Psi_0(\xi_1, \xi_2) + \dots + g_P \Psi_P(\xi_1, \xi_2)$$

where $\{g_l\}_{l=0}^P$ is a random vector defined by a $(P + 1)$ -dim density.

- The PC regression model, $M(\xi_1, \xi_2)$, depends on:
 - the parametric uncertainty in the potential through the RVs ξ_1, ξ_2 .
 - thermal noise through the uncertainty in the PC coefficients.

Interpretation:

- Draw m samples of the parameters $\{\xi_1^{(j)}, \xi_2^{(j)}\}_{j=1}^m$
- For any given $\{\xi_1^{(j)}, \xi_2^{(j)}\}$, we can draw n different sample-spectra of PC coefficients $\{\mathbf{g}_i\}_{i=1}^n$, from their joint distribution $\pi(\mathbf{g})$.
- We thus obtain $n \times m$ predictions for the target observable $\{(M)_{i,j}\}_{i,j=1}^{n,m}$.
- Each realization of the parameters, due to the random coefficients can be associated with an arbitrary number of predictions of the observable M .

Analysis of the Non-Deterministic PC Model

- The Bayesian regression yields a **non-deterministic** PC representation:

$$M(\xi_1, \xi_2) = g_0 \Psi_0(\xi_1, \xi_2) + \dots + g_P \Psi_P(\xi_1, \xi_2)$$

where $\{g_l\}_{l=0}^P$ is a random vector defined by a $(P + 1)$ -dim density.

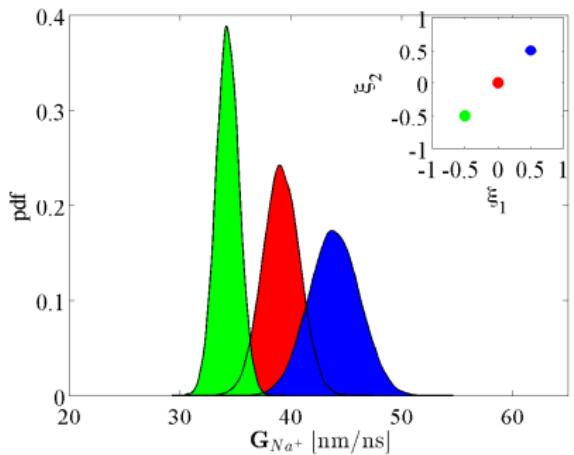
- The PC regression model, $M(\xi_1, \xi_2)$, depends on:
 - the parametric uncertainty in the potential through the RVs ξ_1, ξ_2 .
 - thermal noise through the uncertainty in the PC coefficients.

Interpretation:

- Draw m samples of the parameters $\{\xi_1^{(j)}, \xi_2^{(j)}\}_{j=1}^m$
- For any given $\{\xi_1^{(j)}, \xi_2^{(j)}\}$, we can draw n different sample-spectra of PC coefficients $\{\mathbf{g}_i\}_{i=1}^n$, from their joint distribution $\pi(\mathbf{g})$.
- We thus obtain $n \times m$ predictions for the target observable $\{(M)_{i,j}\}_{i,j=1}^{n,m}$.
- Each realization of the parameters, due to the random coefficients can be associated with an arbitrary number of predictions of the observable M .

PDF of Ionic Conductance

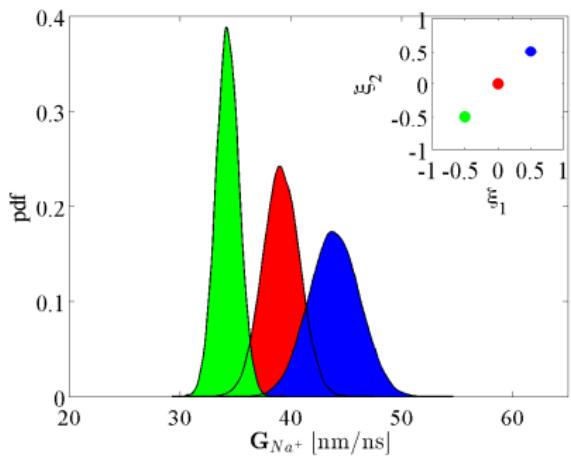
- The PC representation $M(\xi_1, \xi_2)$ is useful to derive statistics.
- Given a value of ξ_1, ξ_2 ($\varepsilon_{Na^+}, \varepsilon_{Cl^-}$), we can sample the PC spectrum and obtain the corresponding uncertainty.
- Estimate the full uncertainty in the observable by sampling both the germ ξ and the PC coefficients.



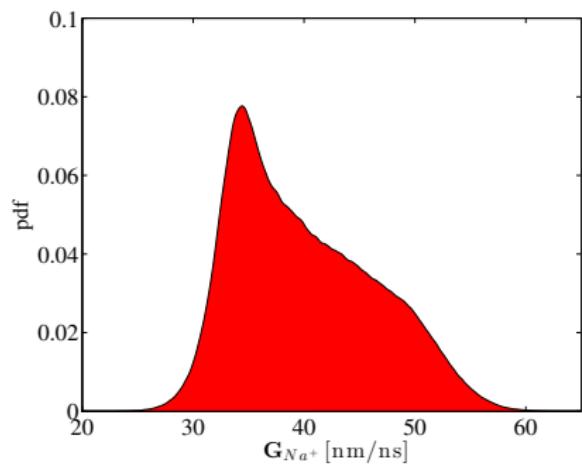
PDF of G_{Na^+} for three values of the potential parameters

PDF of Ionic Conductance

- The PC representation $M(\xi_1, \xi_2)$ is useful to derive statistics.
- Given a value of ξ_1, ξ_2 ($\varepsilon_{Na^+}, \varepsilon_{Cl^-}$), we can sample the PC spectrum and obtain the corresponding uncertainty.
- Estimate the full uncertainty in the observable by sampling both the germ ξ and the PC coefficients.



PDF of G_{Na^+} for three values of the potential parameters



Full PDF of G_{Na^+}

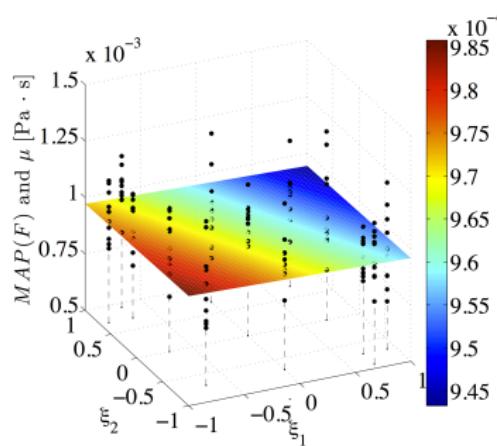
Transport Coefficients

- Separate MD study to compute fluid transport coefficients using Green-Kubo.
- For example, the Green-Kubo formula for dynamics viscosity, μ , is:

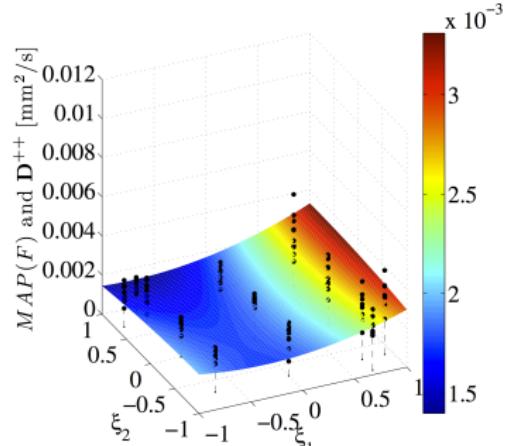
$$\mu = \frac{V}{3k_B T} \int_0^\infty \left\langle \boldsymbol{\zeta}(0) \cdot \boldsymbol{\zeta}(t) \right\rangle dt,$$

where $\boldsymbol{\zeta}(t)$ is the deviatoric stress, and k_B is the Boltzmann's constant.

- Construct PC expansion, $F(\varepsilon_{Na^+}(\xi_1), \varepsilon_{Cl^-}(\xi_2))$, for μ and Na^+ diffusivity D^{++}



MAP of PCe response for μ



MAP of PCe response for D^{++}

Correlations between the Ionic Conductance and Transport

- $F(\xi) = \mathbf{f} \Psi(\xi)$: PCe of one transport coefficient, μ or D^{++} .
- $M(\xi) = \mathbf{g} \Psi(\xi)$: PCe of the Na^+ conductance, G_{Na^+} .

$$\begin{aligned}\text{Cov}(M, F) &= \mathbb{E}[(M - \mathbb{E}[M])(F - \mathbb{E}[F])] \\ &= \sum_{k=1}^{\min(P, P_F)} \mathbf{f}_k \mathbf{g}_k \mathbb{E}[\Psi_k^2(\xi)]\end{aligned}$$

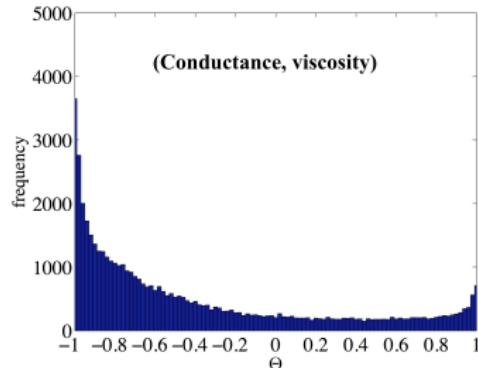
- Sample $\pi(\mathbf{g})$ and $\pi(\mathbf{f}) \Rightarrow \{\mathbf{g}_i\}_{i=1}^{50000}$ and $\{\mathbf{f}_i\}_{i=1}^{50000}$.
- Each $(\mathbf{g}_i, \mathbf{f}_i)$ gives one value of covariance.
- Plot histogram of correlation coefficient Θ .
- (G_{Na^+}, μ) correlation is mainly negative:
ionic flux decreases when viscosity increases.
- Strong correlation between G_{Na^+} and D^{++} :
we expect the flux of Na^+ to be mostly affected
by the diffusivity of Na^+ .

Correlations between the Ionic Conductance and Transport

- $F(\xi) = \mathbf{f} \Psi(\xi)$: PCe of one transport coefficient, μ or D^{++} .
- $M(\xi) = \mathbf{g} \Psi(\xi)$: PCe of the Na^+ conductance, G_{Na^+} .

$$\begin{aligned}\text{Cov}(M, F) &= \mathbb{E}[(M - \mathbb{E}[M])(F - \mathbb{E}[F])] \\ &= \sum_{k=1}^{\min(P, P_F)} \mathbf{f}_k \mathbf{g}_k \mathbb{E}[\Psi_k^2(\xi)]\end{aligned}$$

- Sample $\pi(\mathbf{g})$ and $\pi(\mathbf{f}) \Rightarrow \{\mathbf{g}_i\}_{i=1}^{50000}$ and $\{\mathbf{f}_i\}_{i=1}^{50000}$.
- Each $(\mathbf{g}_i, \mathbf{f}_i)$ gives one value of covariance.
- Plot histogram of correlation coefficient Θ .
- (G_{Na^+}, μ) correlation is mainly negative:
ionic flux decreases when viscosity increases.
- Strong correlation between G_{Na^+} and D^{++} :
we expect the flux of Na^+ to be mostly affected
by the diffusivity of Na^+ .

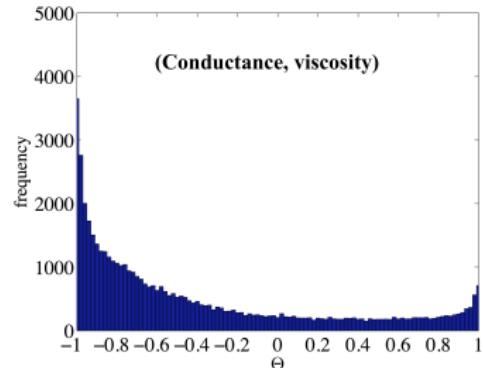
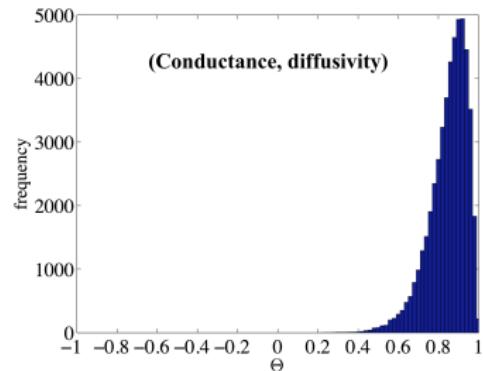


Correlations between the Ionic Conductance and Transport

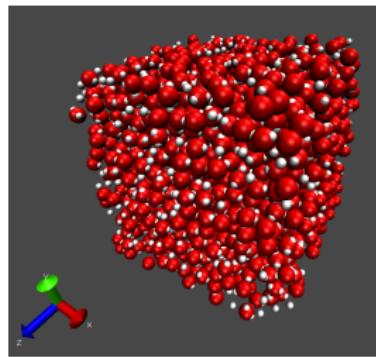
- $F(\xi) = \mathbf{f} \Psi(\xi)$: PCe of one transport coefficient, μ or D^{++} .
- $M(\xi) = \mathbf{g} \Psi(\xi)$: PCe of the Na^+ conductance, G_{Na^+} .

$$\begin{aligned}\text{Cov}(M, F) &= \mathbb{E}[(M - \mathbb{E}[M])(F - \mathbb{E}[F])] \\ &= \sum_{k=1}^{\min(P, P_F)} \mathbf{f}_k \mathbf{g}_k \mathbb{E}[\Psi_k^2(\xi)]\end{aligned}$$

- Sample $\pi(\mathbf{g})$ and $\pi(\mathbf{f}) \Rightarrow \{\mathbf{g}_i\}_{i=1}^{50000}$ and $\{\mathbf{f}_i\}_{i=1}^{50000}$.
- Each $(\mathbf{g}_i, \mathbf{f}_i)$ gives one value of covariance.
- Plot histogram of correlation coefficient Θ .
- (G_{Na^+}, μ) correlation is mainly negative:
ionic flux decreases when viscosity increases.
- Strong correlation between G_{Na^+} and D^{++} :
we expect the flux of Na^+ to be mostly affected
by the diffusivity of Na^+ .



Inverse problem for MD of bulk water



- ★ F. Rizzi, H. Najm, B. Debusschere, K. Sargsyan, M. Salloum, H. Adalsteinsson and O. Knio - Part I – *SIAM Multiscale Modeling & Simulation*, 10(4), 1428-1459, 2012.
- ★ F. Rizzi, H. Najm, B. Debusschere, K. Sargsyan, M. Salloum, H. Adalsteinsson and O. Knio - Part II – *SIAM Multiscale Modeling & Simulation*, 10(4), 1460-1492, 2012.
- ★ F. Rizzi, Ph.D. thesis, The Johns Hopkins University, Baltimore, MD, 2012.

Inverse Problem

- Consider a generic forward model: $\mathbf{G} = \phi(\mathbf{H})$.
- The associated inverse problem becomes:

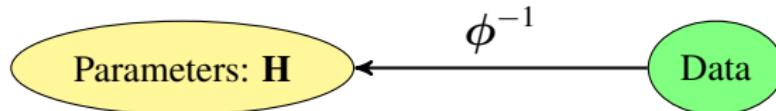
Given data, what can we say about \mathbf{H} ?

Which \mathbf{H} yields the best match between \mathbf{G} and data?

- If formulated as an optimization, it yields single value for \mathbf{H} .
- Bayesian approach yields a *joint* probability density function (PDF) on \mathbf{H} .
 - Joint PDFs contain correlations.
 - Ideal for risk assessment.

Inverse Problem

- Consider a generic forward model: $\mathbf{G} = \phi(\mathbf{H})$.
- The associated inverse problem becomes:



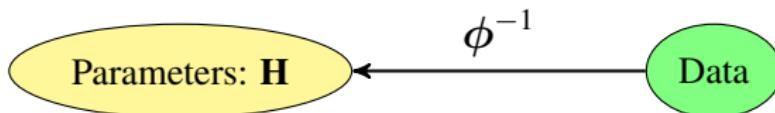
Given data, what can we say about \mathbf{H} ?

Which \mathbf{H} yields the best match between \mathbf{G} and data?

- If formulated as an optimization, it yields single value for \mathbf{H} .
- Bayesian approach yields a *joint* probability density function (PDF) on \mathbf{H} .
 - Joint PDFs contain correlations.
 - Ideal for risk assessment.

Inverse Problem

- Consider a generic forward model: $\mathbf{G} = \phi(\mathbf{H})$.
- The associated inverse problem becomes:



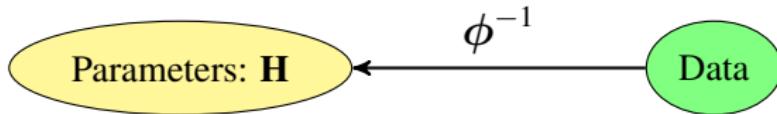
Given data, what can we say about \mathbf{H} ?

Which \mathbf{H} yields the best match between \mathbf{G} and data?

- If formulated as an optimization, it yields single value for \mathbf{H} .
- Bayesian approach yields a *joint* probability density function (PDF) on \mathbf{H} .
 - Joint PDFs contain correlations.
 - Ideal for risk assessment.

Inverse Problem

- Consider a generic forward model: $\mathbf{G} = \phi(\mathbf{H})$.
- The associated inverse problem becomes:



Given data, what can we say about \mathbf{H} ?

Which \mathbf{H} yields the best match between \mathbf{G} and data?

- If formulated as an optimization, it yields single value for \mathbf{H} .
- Bayesian approach yields a *joint* probability density function (PDF) on \mathbf{H} .
 - Joint PDFs contain correlations.
 - Ideal for risk assessment.

Example

- Consider $(x, y) = \phi(x, y, t; a, b)$:

$$\dot{x}(t) = a^2 - b^2$$

$$\dot{y}(t) = ab + 0.01 \sin(x)$$

- a, b are **model parameters**:

$$(a, b) \sim \mathcal{N}([2 \ 1], \text{Cov})$$

- Two cases:

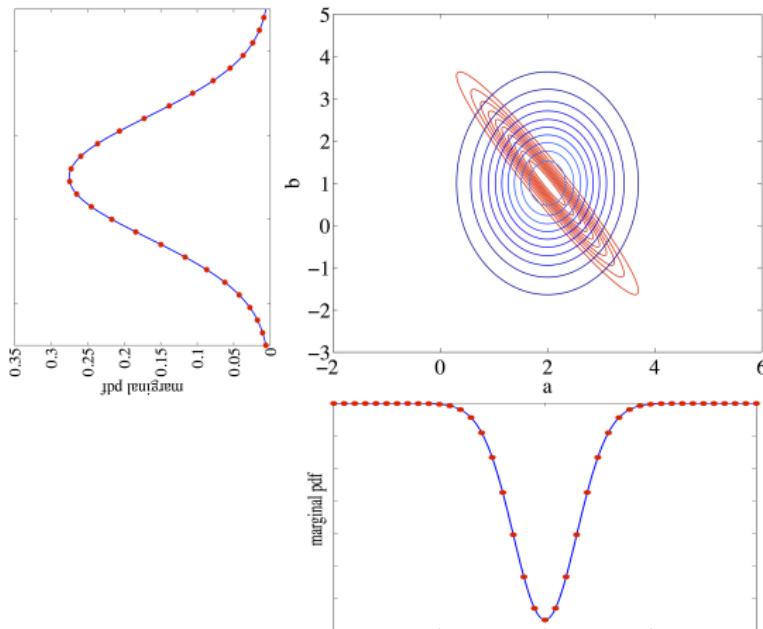
Uncorrelated parameters:

$$\text{Cov} = \begin{bmatrix} 0.6 & 0.0 \\ 0.0 & 1.45 \end{bmatrix}$$

Correlated parameters:

$$\text{Cov} = \begin{bmatrix} 0.6 & -0.9 \\ -0.9 & 1.45 \end{bmatrix}$$

- Same marginal densities.
- What is the impact of the correlation?



Example

- Consider $(x, y) = \phi(x, y, t; a, b)$:

$$\dot{x}(t) = a^2 - b^2$$

$$\dot{y}(t) = ab + 0.01 \sin(x)$$

- a, b are **model parameters**:

$$(a, b) \sim \mathcal{N}([2 \ 1], \text{Cov})$$

- Two cases:

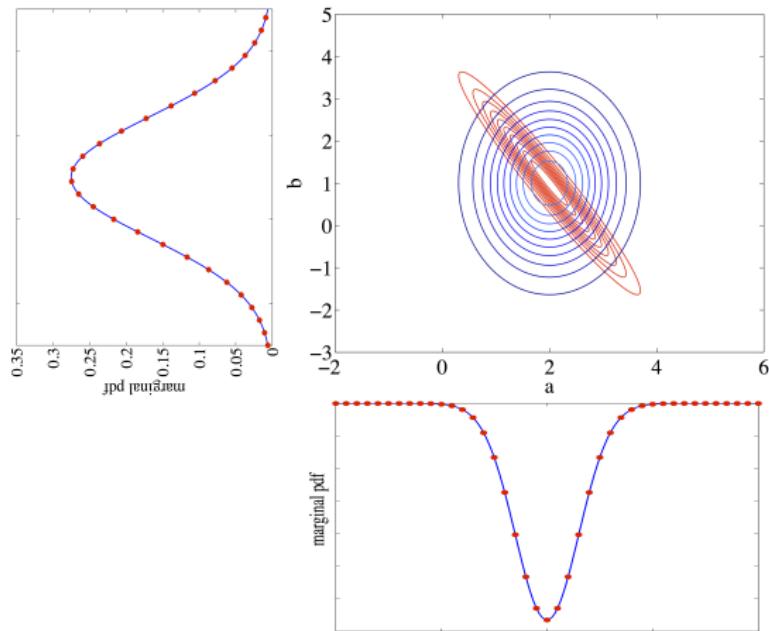
Uncorrelated parameters:

$$\text{Cov} = \begin{bmatrix} 0.6 & 0.0 \\ 0.0 & 1.45 \end{bmatrix}$$

Correlated parameters:

$$\text{Cov} = \begin{bmatrix} 0.6 & -0.9 \\ -0.9 & 1.45 \end{bmatrix}$$

- Same marginal densities.
- What is the impact of the correlation?



Example

- Consider $(x, y) = \phi(x, y, t; a, b)$:

$$\dot{x}(t) = a^2 - b^2$$

$$\dot{y}(t) = ab + 0.01 \sin(x)$$

- a, b are **model parameters**:

$$(a, b) \sim \mathcal{N}([2 \ 1], \text{Cov})$$

- Two cases:

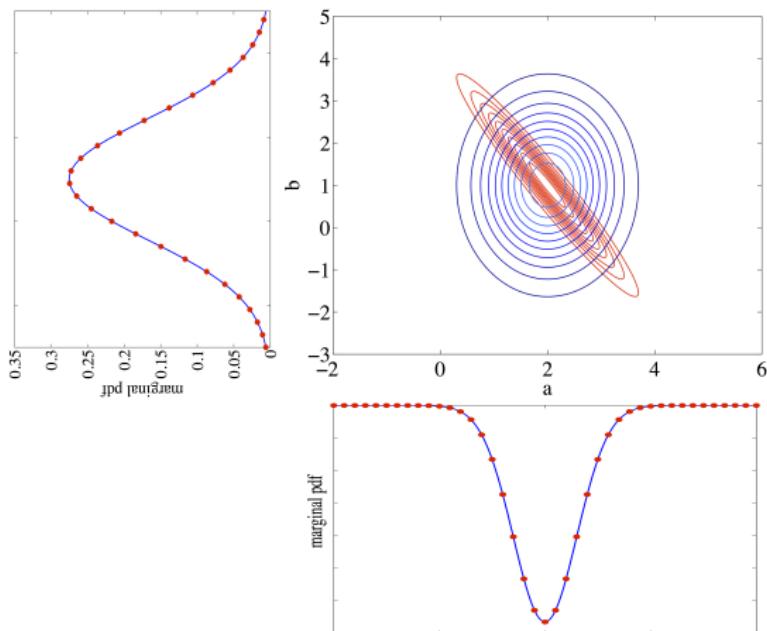
Uncorrelated parameters:

$$\text{Cov} = \begin{bmatrix} 0.6 & 0.0 \\ 0.0 & 1.45 \end{bmatrix}$$

Correlated parameters:

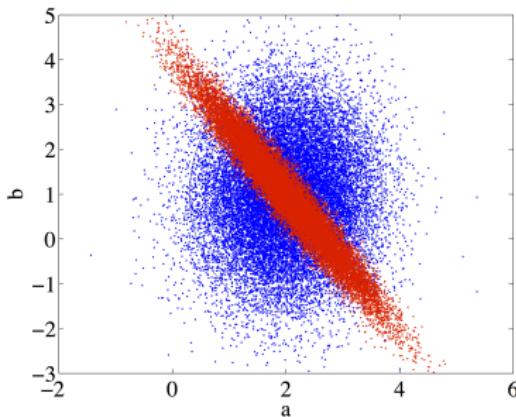
$$\text{Cov} = \begin{bmatrix} 0.6 & -0.9 \\ -0.9 & 1.45 \end{bmatrix}$$

- Same marginal densities.
- What is the impact of the correlation?



Example: results

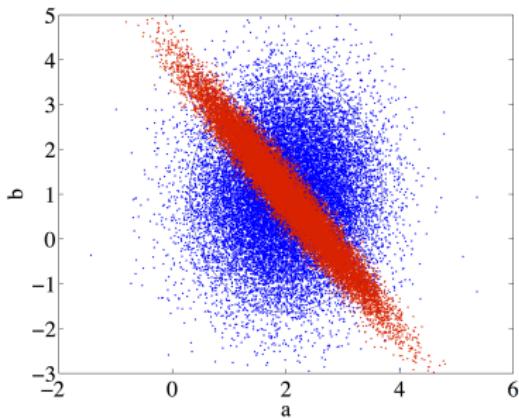
- Sample the joint PDFs: $\{(a_i, b_i)^{\textcolor{blue}{U}, \textcolor{red}{C}}\}_{i=1}^n$
- Compute trajectories from $(x_0 = 1, y_0 = 0.5)$.
- Two sets of predictions: $\{(x_j, y_j)^{\textcolor{blue}{U}, \textcolor{red}{C}}|_T\}_{j=1}^n$
- Estimate the joint PDFs.



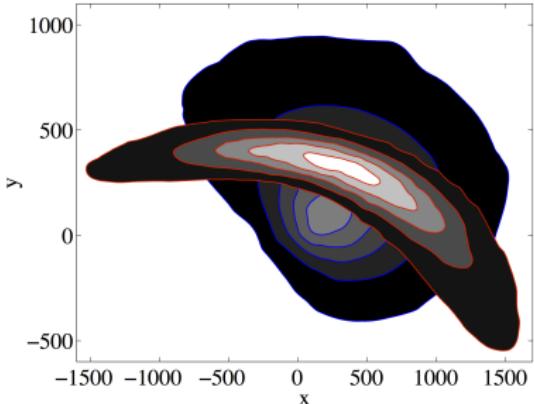
- Model predictions are substantially different.
- Correlation has large impact.
- Especially important for more complicated and non-linear systems.

Example: results

- Sample the joint PDFs: $\{(a_i, b_i)^{U,C}\}_{i=1}^n$
- Compute trajectories from $(x_0 = 1, y_0 = 0.5)$.
- Two sets of predictions: $\{(x_j, y_j)^{U,C}|_T\}_{j=1}^n$
- Estimate the joint PDFs.

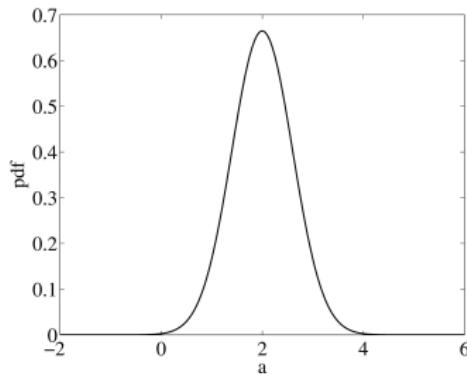
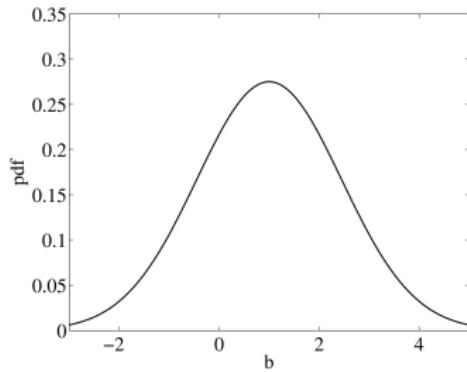


- Model predictions are substantially different.
- Correlation has large impact.
- Especially important for more complicated and non-linear systems.



Example: results

- **Joint** distribution of the model inputs is a key information.
- In practice, nominal values with associated confidence intervals and no details on the joint density (or correlation).
- The most **common approach** is to presume **independence** of model parameters, and to use a convenient distribution for each based on the known nominal values and bounds.
- Obtaining **joint distribution**? Probabilistic parameter estimation.
- Bayesian inference yields the joint distribution of the model parameters.



Problem Statement

- MD simulations of bulk water at $T = 298$ K, $P = 1$ atm; run with LAMMPS.
- Suppose person A selects three potential parameters $\{\alpha_1, \alpha_2, \alpha_3\}$, and runs the forward UQ to infer PCEs for some water observables: density, viscosity, etc.

$$M^{(\rho)}(\alpha_1, \alpha_2, \alpha_3) = c_0 \Psi_0(\alpha_1, \alpha_2, \alpha_3) + \dots + c_P \Psi_P(\alpha_1, \alpha_2, \alpha_3)$$

with $\{c_\ell\}_{\ell=0}^P$ described by a $(P + 1)$ -dim joint density.

• Person B secretly chooses three values of the parameters: $\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3$.

• Runs MD replicas and collects density observations $\rho = \{\rho_i\}_{i=1}^{N=10}$.

• Given: PCe as a surrogate model and $\{\rho_i\}_{i=1}^{N=10}$.

• Challenge: to recover the “true” parameters chosen by person B.

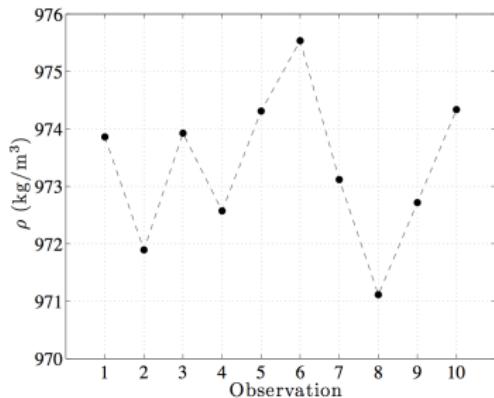
Problem Statement

- MD simulations of bulk water at $T = 298$ K, $P = 1$ atm; run with LAMMPS.
- Suppose person A selects three potential parameters $\{\alpha_1, \alpha_2, \alpha_3\}$, and runs the forward UQ to infer PCEs for some water observables: density, viscosity, etc.

$$M^{(\rho)}(\alpha_1, \alpha_2, \alpha_3) = c_0 \Psi_0(\alpha_1, \alpha_2, \alpha_3) + \dots + c_P \Psi_P(\alpha_1, \alpha_2, \alpha_3)$$

with $\{c_\ell\}_{\ell=0}^P$ described by a $(P + 1)$ -dim joint density.

- Person B secretly chooses three values of the parameters: $\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3$.
- Runs MD replicas and collects density observations $\rho = \{\rho_i\}_{i=1}^{N=10}$.
- Given: PCe as a surrogate model and $\{\rho_i\}_{i=1}^{N=10}$.
- Challenge: to recover the “true” parameters chosen by person B.



Data: $\{\rho_i\}_{i=1}^{10}$

Problem Statement

- MD simulations of bulk water at $T = 298$ K, $P = 1$ atm; run with LAMMPS.

- Suppose person A selects three potential parameters $\{\alpha_1, \alpha_2, \alpha_3\}$, and runs the forward UQ to infer PCEs for some water observables: density, viscosity, etc.

$$M^{(\rho)}(\alpha_1, \alpha_2, \alpha_3) = c_0 \Psi_0(\alpha_1, \alpha_2, \alpha_3) + \dots + c_P \Psi_P(\alpha_1, \alpha_2, \alpha_3)$$

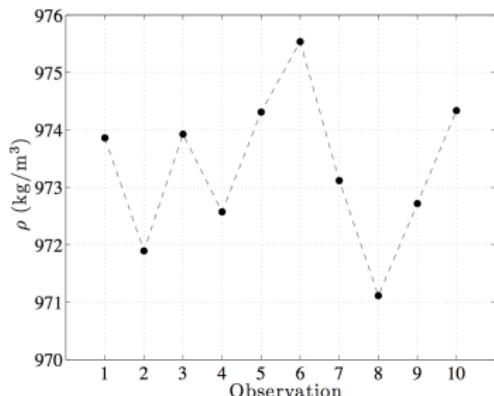
with $\{c_\ell\}_{\ell=0}^P$ described by a $(P + 1)$ -dim joint density.

- Person B secretly chooses three values of the parameters: $\hat{\alpha}_1, \hat{\alpha}_2, \hat{\alpha}_3$.

- Runs MD replicas and collects density observations $\rho = \{\rho_i\}_{i=1}^{N=10}$.

- Given: **PCE as a surrogate model** and $\{\rho_i\}_{i=1}^{N=10}$.

- Challenge: to recover the “true” parameters chosen by person B.



Data: $\{\rho_i\}_{i=1}^{10}$

Bayesian Inference Framework

- Bayesian theory suites inverse problems involving uncertainties and noisy data.
- Bayesian inference uses a set of observations $\rho = \{\rho_i\}_{i=1}^{N=10}$ (evidence) to calculate the probability that the hypothesis $\mathcal{H} = \{\alpha_1, \alpha_2, \alpha_3\}$ is true.

Bayes' theorem

$$\underbrace{\pi(\alpha_1, \alpha_2, \alpha_3 \mid \rho)}_{\text{Posterior}} \propto \underbrace{\mathcal{L}(\rho \mid \alpha_1, \alpha_2, \alpha_3)}_{\text{Likelihood}} \underbrace{\mathcal{P}(\alpha_1, \alpha_2, \alpha_3)}_{\text{Prior}}$$

- ◊ **PRIOR**: knowledge/information about \mathcal{H} before considering the data.
- ◊ **LIKELIHOOD**: probability of “seeing” the data given a realization of \mathcal{H} .
- ◊ **POSTERIOR**: probability of the hypothesis given the data.
- An “update” of the current state of knowledge in view of new observations.
- Likelihood formulation?

Inverse Problem Formulation

- Additive Gaussian error model accounting for the deviation between each observation, ρ_i , and the PCe surrogate prediction $M^{(\rho)}(\alpha_1, \alpha_2, \alpha_3)$

$$\rho_i = M^{(\rho)}(\alpha_1, \alpha_2, \alpha_3) + \gamma_i, \quad i = 1, \dots, N,$$

where $\{\gamma_i\}_{i=1}^N$ are *i.i.d.* Gaussian RVs with density $p_\gamma = \mathcal{N}(0, \tilde{\sigma}^2)$.

- Recall that the surrogate PC model is *uncertain*

$$M^{(\rho)}(\alpha_1, \alpha_2, \alpha_3) = c_0 \Psi_0(\alpha_1, \alpha_2, \alpha_3) + \dots + c_P \Psi_P(\alpha_1, \alpha_2, \alpha_3)$$

because $\{c_\ell\}_{\ell=0}^P$ are described by a $(P + 1)$ -dim joint density.

- The PC coefficients thus have an associated variance.
- How do we account for the *uncertainty* in the PC model?

Inverse Problem Formulation

- Additive Gaussian error model accounting for the deviation between each observation, ρ_i , and the PCe surrogate prediction $M^{(\rho)}(\alpha_1, \alpha_2, \alpha_3)$

$$\rho_i = M^{(\rho)}(\alpha_1, \alpha_2, \alpha_3) + \gamma_i, \quad i = 1, \dots, N,$$

where $\{\gamma_i\}_{i=1}^N$ are *i.i.d.* Gaussian RVs with density $p_\gamma = \mathcal{N}(0, \tilde{\sigma}^2)$.

- Recall that the surrogate PC model is *uncertain*

$$M^{(\rho)}(\alpha_1, \alpha_2, \alpha_3) = c_0 \Psi_0(\alpha_1, \alpha_2, \alpha_3) + \dots + c_P \Psi_P(\alpha_1, \alpha_2, \alpha_3)$$

because $\{c_\ell\}_{\ell=0}^P$ are described by a $(P + 1)$ -dim joint density.

- The PC coefficients thus have an associated variance.
- How do we account for the *uncertainty* in the PC model?

Inverse Problem Formulation

- For a given sample $\boldsymbol{\alpha}^{(j)} = \{\alpha_1^{(j)}, \alpha_2^{(j)}, \alpha_3^{(j)}\}$, construct the **constant** vector

$$\mathbf{y} = \{\Psi_0(\boldsymbol{\alpha}^{(j)}), \dots, \Psi_P(\boldsymbol{\alpha}^{(j)})\}^T$$

- This implies that the **non-deterministic** PC model

$$\begin{aligned} M(\boldsymbol{\alpha}^{(j)}) &= c_0 \Psi_0(\boldsymbol{\alpha}^{(j)}) + c_1 \Psi_1(\boldsymbol{\alpha}^{(j)}) + \dots + c_P \Psi_P(\boldsymbol{\alpha}^{(j)}) \\ &= \mathbf{y}^T \mathbf{c} \end{aligned}$$

represents a **linear combination** of the random vector $\mathbf{c} = \{c_0, \dots, c_P\}^T$.

- If the random vector $\mathbf{c} \sim \mathcal{MVN}(\boldsymbol{\mu}, \mathbf{Z})$ (verified) then, by definition, we have

$$\mathbf{y}^T \mathbf{c} \sim \mathcal{N}(\mathbf{y}^T \boldsymbol{\mu}, \mathbf{y}^T \mathbf{Z} \mathbf{y})$$

i.e. a *univariate* Gaussian with mean $(\mathbf{y}^T \boldsymbol{\mu})$ and variance $(\mathbf{y}^T \mathbf{Z} \mathbf{y})$.

Inverse Problem Formulation

- For a given sample $\boldsymbol{\alpha}^{(j)} = \{\alpha_1^{(j)}, \alpha_2^{(j)}, \alpha_3^{(j)}\}$, construct the **constant** vector

$$\mathbf{y} = \{\Psi_0(\boldsymbol{\alpha}^{(j)}), \dots, \Psi_P(\boldsymbol{\alpha}^{(j)})\}^T$$

- This implies that the **non-deterministic** PC model

$$\begin{aligned} M(\boldsymbol{\alpha}^{(j)}) &= c_0 \Psi_0(\boldsymbol{\alpha}^{(j)}) + c_1 \Psi_1(\boldsymbol{\alpha}^{(j)}) + \dots + c_P \Psi_P(\boldsymbol{\alpha}^{(j)}) \\ &= \mathbf{y}^T \mathbf{c} \end{aligned}$$

represents a **linear combination** of the random vector $\mathbf{c} = \{c_0, \dots, c_P\}^T$.

- If the random vector $\mathbf{c} \sim \mathcal{MVN}(\boldsymbol{\mu}, \mathbf{Z})$ (verified) then, by definition, we have

$$\mathbf{y}^T \mathbf{c} \sim \mathcal{N}(\mathbf{y}^T \boldsymbol{\mu}, \mathbf{y}^T \mathbf{Z} \mathbf{y})$$

i.e. a *univariate* Gaussian with mean $(\mathbf{y}^T \boldsymbol{\mu})$ and variance $(\mathbf{y}^T \mathbf{Z} \mathbf{y})$.

Inverse Problem Formulation

- For a given sample $\boldsymbol{\alpha}^{(j)} = \{\alpha_1^{(j)}, \alpha_2^{(j)}, \alpha_3^{(j)}\}$, construct the **constant** vector

$$\mathbf{y} = \{\Psi_0(\boldsymbol{\alpha}^{(j)}), \dots, \Psi_P(\boldsymbol{\alpha}^{(j)})\}^T$$

- This implies that the **non-deterministic** PC model

$$\begin{aligned} M(\boldsymbol{\alpha}^{(j)}) &= c_0 \Psi_0(\boldsymbol{\alpha}^{(j)}) + c_1 \Psi_1(\boldsymbol{\alpha}^{(j)}) + \dots + c_P \Psi_P(\boldsymbol{\alpha}^{(j)}) \\ &= \mathbf{y}^T \mathbf{c} \end{aligned}$$

represents a **linear combination** of the random vector $\mathbf{c} = \{c_0, \dots, c_P\}^T$.

- If the random vector $\mathbf{c} \sim \mathcal{MVN}(\boldsymbol{\mu}, \mathbf{Z})$ (verified) then, by definition, we have

$$\mathbf{y}^T \mathbf{c} \sim \mathcal{N}(\mathbf{y}^T \boldsymbol{\mu}, \mathbf{y}^T \mathbf{Z} \mathbf{y})$$

i.e. a *univariate* Gaussian with mean $(\mathbf{y}^T \boldsymbol{\mu})$ and variance $(\mathbf{y}^T \mathbf{Z} \mathbf{y})$.

Inverse Problem Formulation

- Consequently, the error model becomes

$$\underbrace{\rho_i}_{\text{data}} = \underbrace{\mathbf{y}^T \mathbf{c}}_{\text{model prediction}} + \underbrace{\gamma_i}_{\text{additive noise}}, \quad i = 1, \dots, N,$$

$$\gamma_i \sim \mathcal{N}(0, \tilde{\sigma}^2), \text{ for } i = 1, \dots, N, \quad \text{and} \quad \mathbf{y}^T \mathbf{c} \sim \mathcal{N}(\mathbf{y}^T \boldsymbol{\mu}, \mathbf{y}^T \mathbf{Z} \mathbf{y}).$$

- Leading to the following likelihood:

$$\mathcal{L}(\{\rho_i\}_{i=1}^N \mid \alpha_1, \alpha_2, \alpha_3) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi} (\mathbf{y}^T \mathbf{Z} \mathbf{y} + \tilde{\sigma}^2)} \exp\left(-\frac{[\rho_i - \mathbf{y}^T \boldsymbol{\mu}]^2}{2(\mathbf{y}^T \mathbf{Z} \mathbf{y} + \tilde{\sigma}^2)}\right)$$

- Combines both **surrogate uncertainty** and **data noise** in a self-consistent manner.
- For each data, \mathcal{L} is maximum if the data and **surrogate mean** coincide. Deviations are weighted by the variances of the noise *and* uncertain surrogate.
- Regions of high data-noise or large surrogate-uncertainty are both penalized with lower weighting on discrepancies between the data and the mean-surrogate model.

Inverse Problem Formulation

- Consequently, the error model becomes

$$\underbrace{\rho_i}_{\text{data}} = \underbrace{\mathbf{y}^T \mathbf{c}}_{\text{model prediction}} + \underbrace{\gamma_i}_{\text{additive noise}}, \quad i = 1, \dots, N,$$

$$\gamma_i \sim \mathcal{N}(0, \tilde{\sigma}^2), \text{ for } i = 1, \dots, N, \quad \text{and} \quad \mathbf{y}^T \mathbf{c} \sim \mathcal{N}(\mathbf{y}^T \boldsymbol{\mu}, \mathbf{y}^T \mathbf{Z} \mathbf{y}).$$

- Leading to the following likelihood:

$$\mathcal{L}(\{\rho_i\}_{i=1}^N \mid \alpha_1, \alpha_2, \alpha_3) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi(\mathbf{y}^T \mathbf{Z} \mathbf{y} + \tilde{\sigma}^2)}} \exp\left(-\frac{[\rho_i - \mathbf{y}^T \boldsymbol{\mu}]^2}{2(\mathbf{y}^T \mathbf{Z} \mathbf{y} + \tilde{\sigma}^2)}\right)$$

- Combines both **surrogate uncertainty** and **data noise** in a self-consistent manner.
- For each data, \mathcal{L} is maximum if the data and **surrogate mean** coincide. Deviations are weighted by the variances of the noise *and* uncertain surrogate.
- Regions of high data-noise or large surrogate-uncertainty are both penalized with lower weighting on discrepancies between the data and the mean-surrogate model.

Inverse Problem Formulation

- Consequently, the error model becomes

$$\underbrace{\rho_i}_{\text{data}} = \underbrace{\mathbf{y}^T \mathbf{c}}_{\text{model prediction}} + \underbrace{\gamma_i}_{\text{additive noise}}, \quad i = 1, \dots, N,$$

$$\gamma_i \sim \mathcal{N}(0, \tilde{\sigma}^2), \text{ for } i = 1, \dots, N, \quad \text{and} \quad \mathbf{y}^T \mathbf{c} \sim \mathcal{N}(\mathbf{y}^T \boldsymbol{\mu}, \mathbf{y}^T \mathbf{Z} \mathbf{y}).$$

- Leading to the following likelihood:

$$\mathcal{L}(\{\rho_i\}_{i=1}^N \mid \alpha_1, \alpha_2, \alpha_3) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi(\mathbf{y}^T \mathbf{Z} \mathbf{y} + \tilde{\sigma}^2)}} \exp\left(-\frac{[\rho_i - \mathbf{y}^T \boldsymbol{\mu}]^2}{2(\mathbf{y}^T \mathbf{Z} \mathbf{y} + \tilde{\sigma}^2)}\right)$$

- Combines both **surrogate uncertainty** and **data noise** in a self-consistent manner.
- For each data, \mathcal{L} is maximum if the data and **surrogate mean** coincide. Deviations are weighted by the variances of the noise *and* uncertain surrogate.
- Regions of high data-noise or large surrogate-uncertainty are both penalized with lower weighting on discrepancies between the data and the mean-surrogate model.

Inverse Problem Formulation

- Consequently, the error model becomes

$$\underbrace{\rho_i}_{\text{data}} = \underbrace{\mathbf{y}^T \mathbf{c}}_{\text{model prediction}} + \underbrace{\gamma_i}_{\text{additive noise}}, \quad i = 1, \dots, N,$$

$$\gamma_i \sim \mathcal{N}(0, \tilde{\sigma}^2), \text{ for } i = 1, \dots, N, \quad \text{and} \quad \mathbf{y}^T \mathbf{c} \sim \mathcal{N}(\mathbf{y}^T \boldsymbol{\mu}, \mathbf{y}^T \mathbf{Z} \mathbf{y}).$$

- Leading to the following likelihood:

$$\mathcal{L}(\{\rho_i\}_{i=1}^N \mid \alpha_1, \alpha_2, \alpha_3) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi(\mathbf{y}^T \mathbf{Z} \mathbf{y} + \tilde{\sigma}^2)}} \exp\left(-\frac{[\rho_i - \mathbf{y}^T \boldsymbol{\mu}]^2}{2(\mathbf{y}^T \mathbf{Z} \mathbf{y} + \tilde{\sigma}^2)}\right)$$

- Combines both **surrogate uncertainty** and **data noise** in a self-consistent manner.
- For each data, \mathcal{L} is maximum if the data and **surrogate mean** coincide. Deviations are weighted by the variances of the noise *and* uncertain surrogate.
- Regions of high data-noise or large surrogate-uncertainty are both penalized with lower weighting on discrepancies between the data and the mean-surrogate model.

Inverse Problem: Two Possible Likelihoods

Uncertain PC model

$$\mathcal{L}(\{\rho_i\}_{i=1}^N \mid \alpha_1, \alpha_2, \alpha_3) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi (\mathbf{y}^T \mathbf{Z} \mathbf{y} + \tilde{\sigma}^2)}} \exp \left(-\frac{[\rho_i - \mathbf{y}^T \boldsymbol{\mu}]^2}{2(\mathbf{y}^T \mathbf{Z} \mathbf{y} + \tilde{\sigma}^2)} \right)$$

Deterministic PC model

- What if the uncertainty in the PC surrogate coefficients is zero or negligible?
- The random vector $\mathbf{c} = \{c_0, \dots, c_P\}^T$ has covariance zero $\mathbf{Z} \approx \mathbf{0}$
 \Rightarrow the PC surrogate model is now *deterministic*

$$\mathcal{L}(\{\rho_i\}_{i=1}^N \mid \alpha_1, \alpha_2, \alpha_3) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi \left(\mathbf{y}^T \mathbf{Z} \mathbf{y}^0 + \tilde{\sigma}^2 \right)}} \exp \left(-\frac{[\rho_i - \mathbf{y}^T \boldsymbol{\mu}]^2}{2(\mathbf{y}^T \mathbf{Z} \mathbf{y}^0 + \tilde{\sigma}^2)} \right)$$

- Surrogate uncertainty drops out.
- The likelihood now involves only the data noise.

Inverse Problem: Two Possible Likelihoods

Uncertain PC model

$$\mathcal{L}(\{\rho_i\}_{i=1}^N \mid \alpha_1, \alpha_2, \alpha_3) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi (\mathbf{y}^T \mathbf{Z} \mathbf{y} + \tilde{\sigma}^2)}} \exp \left(-\frac{[\rho_i - \mathbf{y}^T \boldsymbol{\mu}]^2}{2(\mathbf{y}^T \mathbf{Z} \mathbf{y} + \tilde{\sigma}^2)} \right)$$

Deterministic PC model

- What if the uncertainty in the PC surrogate coefficients is zero or negligible?
- The random vector $\mathbf{c} = \{c_0, \dots, c_P\}^T$ has covariance zero $\mathbf{Z} \approx \mathbf{0}$
 \Rightarrow the PC surrogate model is now *deterministic*

$$\mathcal{L}(\{\rho_i\}_{i=1}^N \mid \alpha_1, \alpha_2, \alpha_3) = \prod_{i=1}^N \frac{1}{\sqrt{2\pi \left(\mathbf{y}^T \mathbf{Z} \mathbf{y}^0 + \tilde{\sigma}^2 \right)}} \exp \left(-\frac{[\rho_i - \mathbf{y}^T \boldsymbol{\mu}]^2}{2 \left(\mathbf{y}^T \mathbf{Z} \mathbf{y}^0 + \tilde{\sigma}^2 \right)} \right)$$

- Surrogate uncertainty drops out.
- The likelihood now involves only the data noise.

Inverse Problem: Posterior Sampling

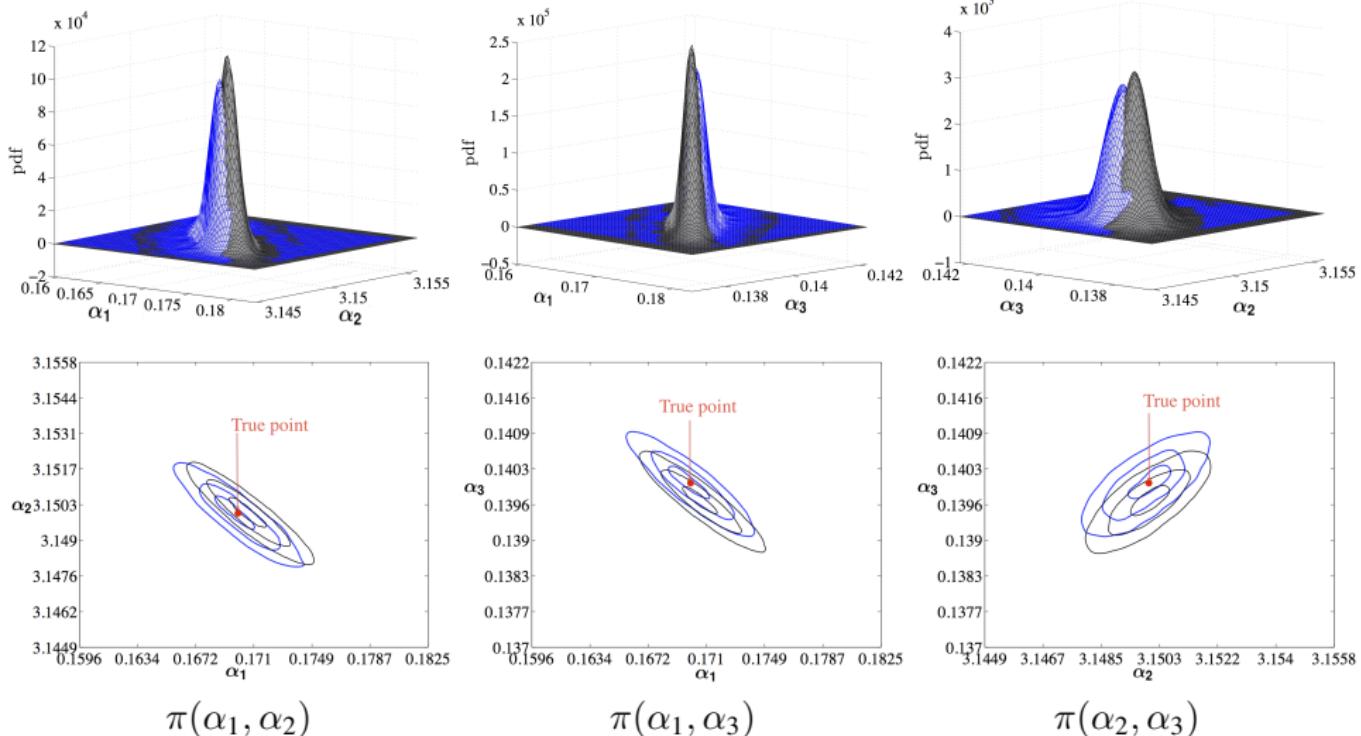
- Previous formulation was limited to density data $\{\rho_i\}_{i=1}^N$.
- In the real study the formulation is based on two additional sets of data, namely water enthalpy $\{h_i\}_{i=1}^N$ and self-diffusion $\{D_i\}_{i=1}^N$.
- The data set is thus: $data = \{\rho_i, h_i, D_i\}_{i=1}^N$.
- From Bayes' theorem, the joint posterior distribution is given by

$$\pi\left(\{\alpha_1, \alpha_2, \alpha_3\}, hyperp \mid data\right) \propto \mathcal{L}\left(data \mid \{\alpha_1, \alpha_2, \alpha_3\}, hyperp\right) Priors$$

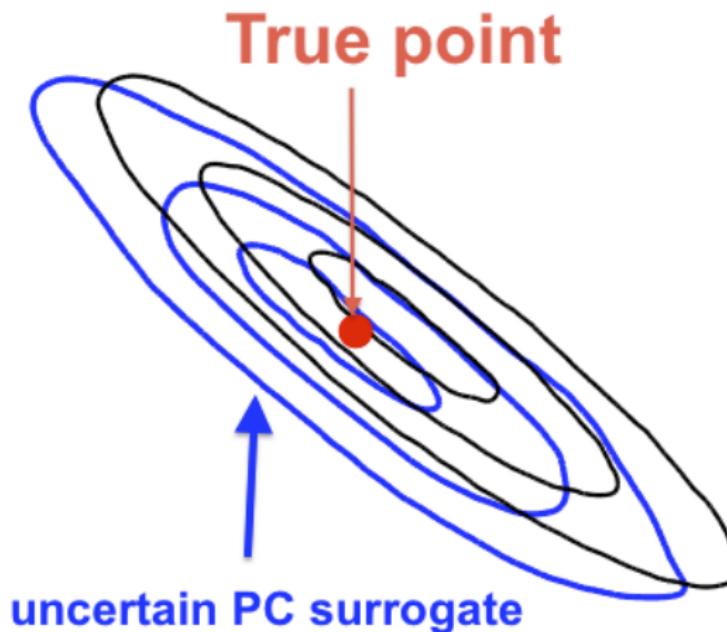
- Sample the posterior using MCMC based on adaptive Metropolis.
- MCMC samples are used to construct posterior statistics.

Inverse Problem: Results

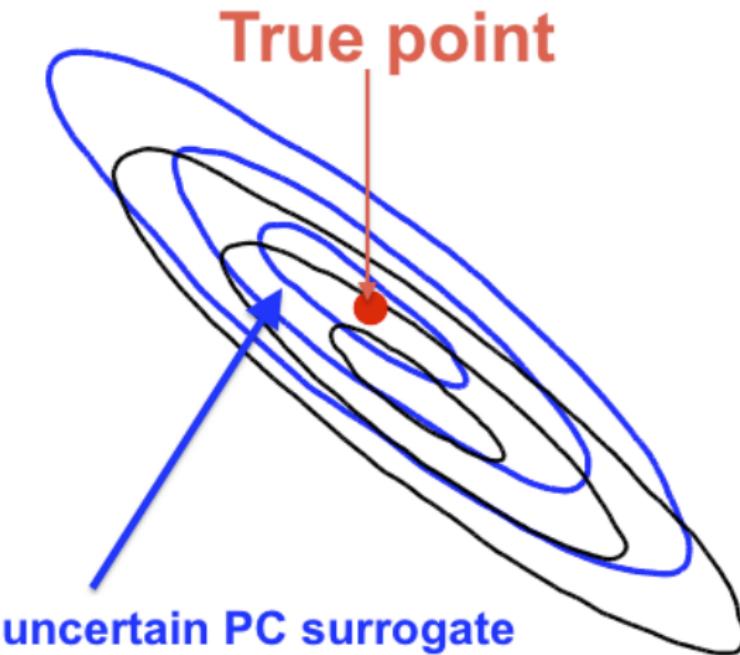
- Joint posteriors based on **Deterministic** and **Non-Deterministic** surrogates.
- Substantial correlations are captured by the inference.



Detailed View of Posterior Performance

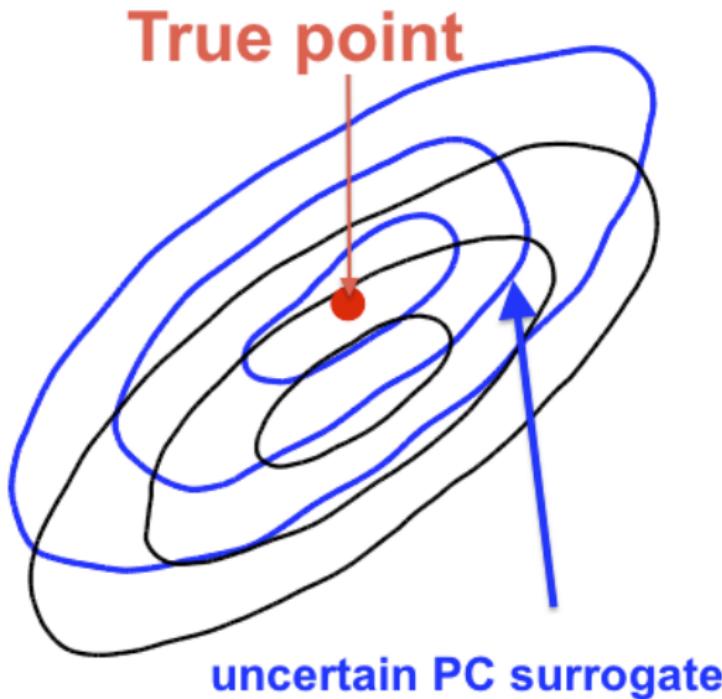


Detailed View of Posterior Performance



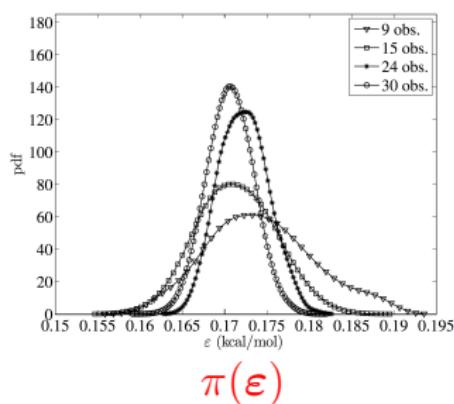
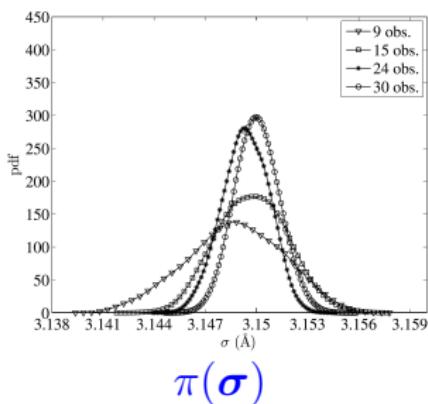
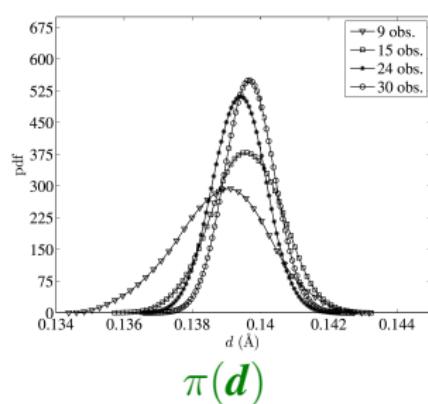
$$\pi(\alpha_1, \alpha_3)$$

Detailed View of Posterior Performance



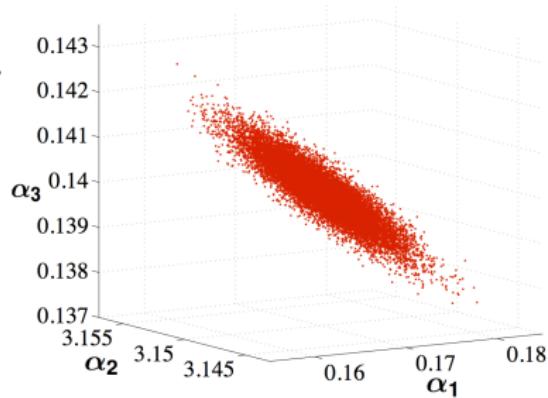
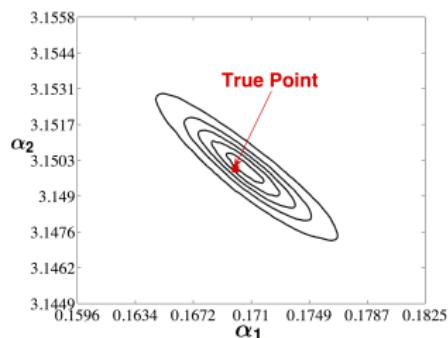
Three observables: density, self-diffusion and enthalpy

- Explore impact of number of data points.
- N data points for each observable, so $3N$ = total number of data points.
- More information available (larger N), less variance (uncertainty) in the posterior.
- Peak of PDF however varies slightly.

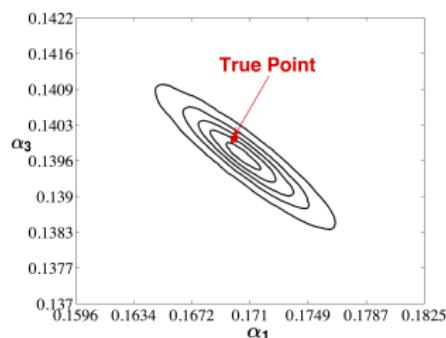


Posterior Correlations

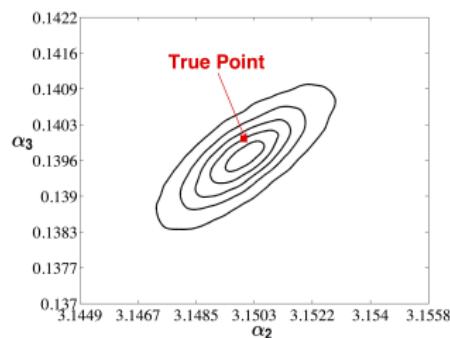
- 3D-joint posterior based on the MCMC samples.
- New information: substantial **correlation**.
(Parameters initially assumed independent.)
- Correlation stems from the “physics”/data and manifests during the inference.



$$\pi(\boldsymbol{\varepsilon}, \boldsymbol{\sigma})$$



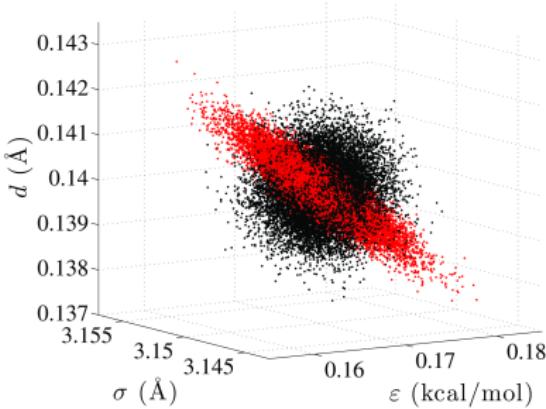
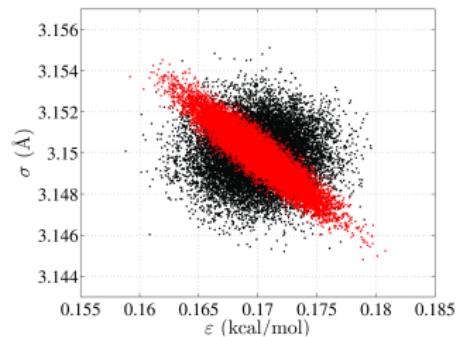
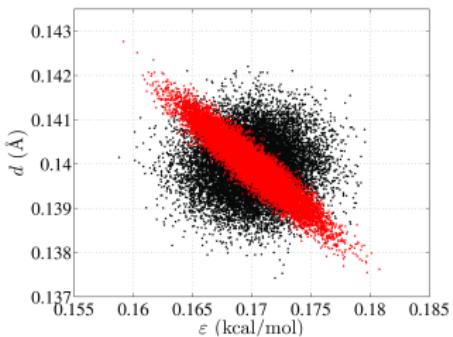
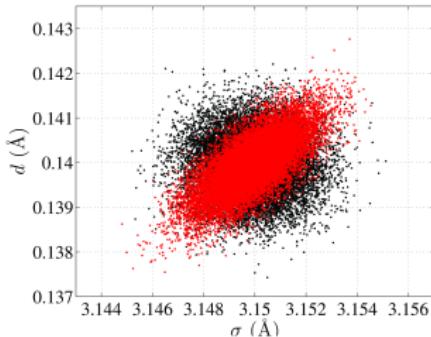
$$\pi(\boldsymbol{\varepsilon}, \mathbf{d})$$



$$\pi(\boldsymbol{\sigma}, \mathbf{d})$$

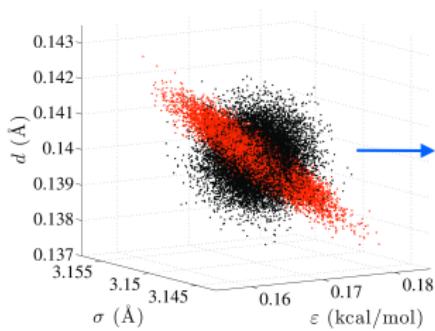
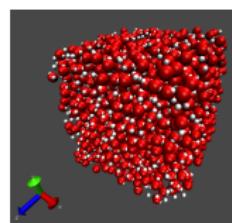
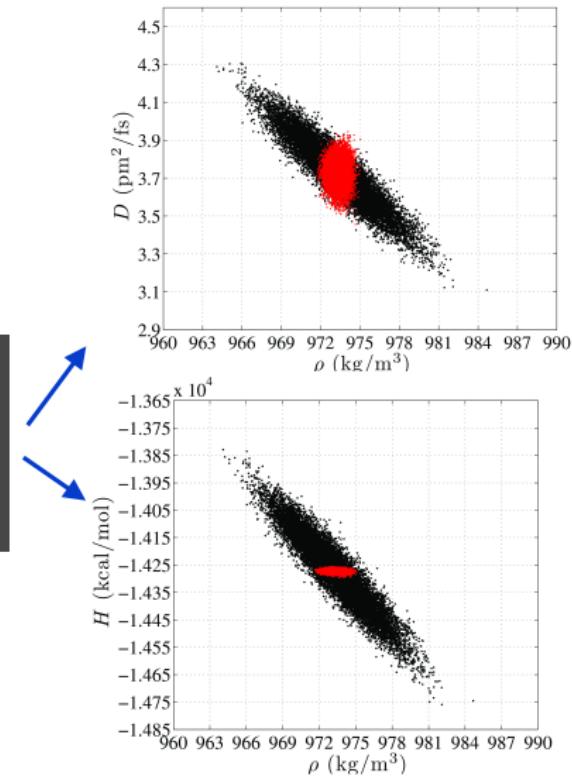
What is the role of correlation?

- Is the correlation important?
- Build PDF with same mean but zero off-diagonal elements = non-correlated.
- Same marginal densities.
- Goal: to analyze the effect of the **correlated** samples vs. **non-correlated** samples.


 (ε, σ)

 (ε, d)

 (σ, d)

What is the role of correlation?

- Push forward **correlated** and **uncorrelated** samples to compute predictions.
- Plot the predictions:
 - 1 Data used for the inference.
 - 2 Predictions from correlated PDF.
 - 3 Predictions from uncorrelated PDF.



Summary & Conclusions

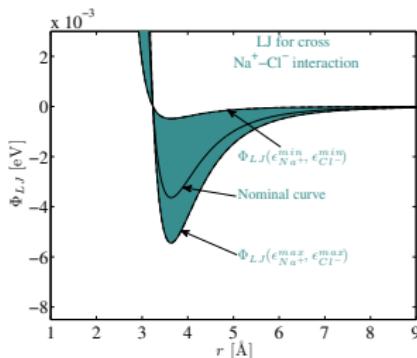
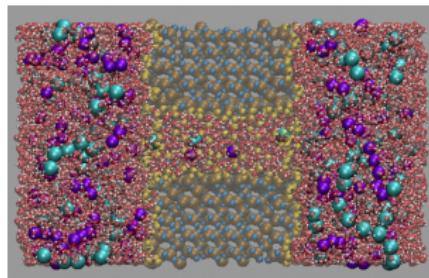
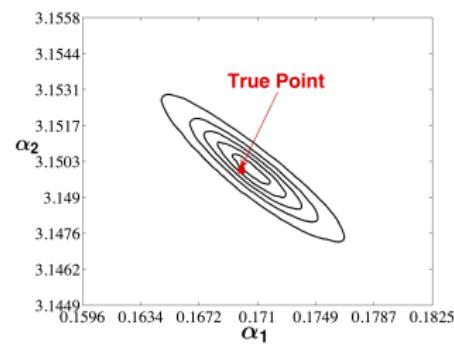
- ✓ UQ successfully applied to MD simulations.
- Two distinct sources of uncertainty:
 - ➊ parametric uncertainty in the potential
 - ➋ intrinsic (thermal) noise
- Part I focused on the impact of potential uncertainties on key observables of the nanopore, revealing how thermal noise can play a key role.
- Part II showed the importance of taking account the uncertainty in the PC coefficients when running the inverse problem in noisy systems.
- PC expansions and Bayesian inference allowed us to isolate the impact of parametric uncertainty and properly capture the effect of the intrinsic noise.
- Showed the suitability of using PCe in the MD context for both the forward propagation and inverse problem.
- Potential for application to experimental data.

Summary & Conclusions

- Our group currently working on resilience computing for PDEs.
- Approach/implementation targeting resilience to:
 - Silent / Soft errors such as bit-flips.
 - Missing data due to communication issues or node failures.
- Approach involves casting PDE into sampling problem, followed by resilient data manipulation to get solution update.
- How about resilience for MD?
 - Data loss.
 - Reconstruct missing parts and full physical structure.
 - etc...

U.S. DoE, Office of Science, ASCR, under Award Number 13-016717.

Thank you for your attention



Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.