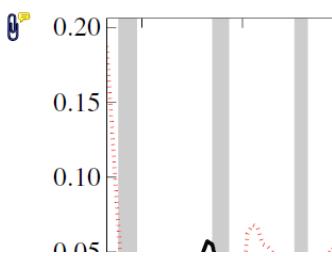
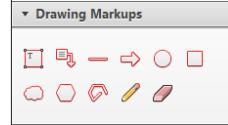


5. **Attach File Tool** – for inserting large amounts of text or replacement figures.

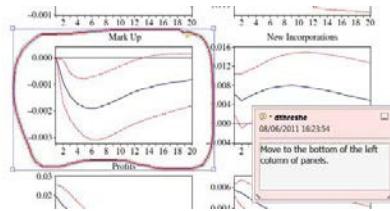


Inserts an icon linking to the attached file in the appropriate place in the text.


How to use it

- Click on the [Attach File](#) icon in the Annotations section.
- Click on the proof to where you'd like the attached file to be linked.
- Select the file to be attached from your computer or network.
- Select the colour and type of icon that will appear in the proof. Click OK.

END



6. **Drawing Markups Tools** – for drawing shapes, lines and freeform annotations on proofs and commenting on these marks. Allows shapes, lines and freeform annotations to be drawn on proofs and for comment to be made on these marks.

How to use it

- Click on one of the shapes in the Drawing Markups section.
- Click on the proof at the relevant point and draw the selected shape with the cursor.
- To add a comment to the drawn shape, move the cursor over the shape until an arrowhead appears.
- Double click on the shape and type any text in the red box that appears.

Tansley insight

Incorporating phosphorus cycling into global modeling efforts: a worthwhile, tractable endeavor

Author for correspondence:
 Sasha C. Reed
 Tel: +1 435 719 2334
 Email: screed@usgs.gov

Received: 4 December 2014
 Accepted: 13 April 2015

1 **Sasha C. Reed**¹, **Xiaojuan Yang**² and **Peter E. Thornton**²

¹US Geological Survey, Southwest Biological Science Center, Moab, UT 84532, USA; ²Oak Ridge National Laboratory, Climate Change Science Institute and Environmental Sciences Division, Oak Ridge, TN 37831-6335, USA

Contents

Summary	1	IV. Opportunities for moving forward	4
I. Introduction	1	Acknowledgements	5
II. A need for phosphorus in global models	2	References	5
III. Considerations for including phosphorus	3		

Summary

Myriad field, laboratory, and modeling studies show that nutrient availability plays a fundamental role in regulating CO₂ exchange between the Earth's biosphere and atmosphere, and in determining how carbon pools and fluxes respond to climatic change. Accordingly, global models that incorporate coupled climate–carbon cycle feedbacks made a significant advance with the introduction of a prognostic nitrogen cycle. Here we propose that incorporating phosphorus cycling represents an important next step in coupled climate–carbon cycling model development, particularly for lowland tropical forests where phosphorus availability is often presumed to limit primary production. We highlight challenges to including phosphorus in modeling efforts and provide suggestions for how to move forward.

New Phytologist (2015)
 doi: 10.1111/nph.13521

Key words: biogeochemistry, carbon cycling, climate change, Earth system models (ESMs), nutrient limitation, phosphorus (P).

I. Introduction

Earth system models (ESMs) represent the scientific community's best attempt at distilling the complexity of ecosystems into tractable, mathematical relationships that combine the physical, chemical, and biological components of the Earth system. These models provide the opportunity to test contemporary ideas of how climate and biogeochemistry interact, and offer a platform for predicting how ecosystems will respond to a range of global changes, such as rising atmospheric [CO₂] and increasing temperature. However, the utility and credibility of these models depend not only on their capacity to distill complexity, but also on how well they select for and capture the

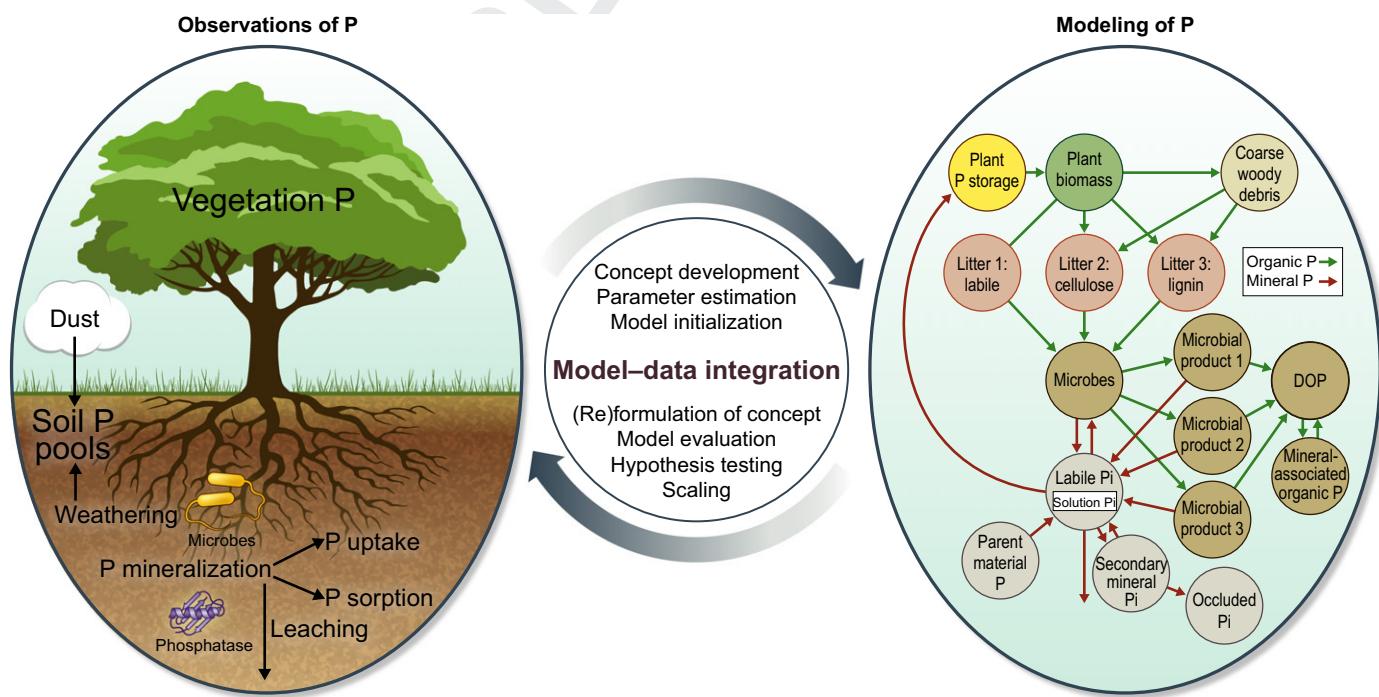
key drivers, processes, and relationships that regulate ecosystem function.

Here we propose that the inclusion of phosphorus (P) cycling into ESMs would significantly improve our capacity to test hypotheses and forecast interactions between biogeochemical cycles and a changing climate. It is well established that nutrient availability helps to regulate the terrestrial exchange of CO₂ with the atmosphere and imposes strong controls on carbon (C) cycling responses to global change (e.g. De Graaf *et al.*, 2006; van Groenigen *et al.*, 2006; Elser *et al.*, 2007; Norby *et al.*, 2010; Fernández-Martínez *et al.*, 2014). For example, the lack of a nitrogen (N) cycle in first-generation climate–C models led to serious concerns about the models' capacity to accurately predict

N P H	13521 / 2014-18865	WILEY	Dispatch: 12.6.15	CE: Raja
Journal Code	Manuscript No.		No. of pages: 6	PE: Vigneswari

Color:

future climate (Hungate *et al.*, 2003) and, over the past decade, an increasing number of ESMs have incorporated prognostic N cycles and C–N interactions (Thornton *et al.*, 2007; Sokolov *et al.*, 2008; Zaehle *et al.*, 2010b). But N is not the only nutrient with the potential to greatly affect C cycling rates and response to change (e.g. Elser *et al.*, 2007). Thus, while we recognize that the power of models comes from minimizing the number of parameters included, we argue that P controls over C cycling are important enough to warrant incorporation into ESMs.


II. A need for phosphorus in global models

Compared with models that don't include a prognostic N cycle, terrestrial biosphere models that explicitly consider C–N interactions show that future land C sequestration could be reduced by 50% or more as a result of N cycle controls over C cycle responses (Sokolov *et al.*, 2008; Thornton *et al.*, 2009; Zaehle *et al.*, 2010b). Estimates of the size of this N effect vary among model projections as a result of variability in the representation of the processes that determine N controls over C storage (Zaehle *et al.*, 2014). Phosphorus is also an essential nutrient that commonly limits key C cycling processes, including plant productivity and microbial metabolism (e.g. Cleveland & Townsend, 2006; Elser *et al.*, 2007; Vitousek *et al.*, 2010; Reed *et al.*, 2011b). Unlike N, for which new N is principally supplied by biological N₂ fixation and anthropogenic deposition, the primary source of new P for terrestrial ecosystems is bedrock weathering and, sometimes, dust deposition (Fig. 1). These P inputs are uniformly low relative to plant uptake (Cleveland *et al.*, 2013). Accordingly, the P cycle may be less able to respond rapidly to increased biological demand from, for example, elevated atmospheric [CO₂]. If true, P regulation of C cycling

responses to global change could become increasingly pronounced, and ignoring P's regulatory power over the global C cycle will become increasingly problematic.

Further, because of the different biogeochemical controls over N vs P cycling (e.g. McGill & Cole, 1981; Vitousek *et al.*, 2010), the two cycles may not respond in the same way to environmental change. From a modeling perspective, this means P cycle responses would not be captured by modeling the N cycle, or vice versa. Phosphorus also has notable potential to affect C cycling indirectly via interactions with N. Multiple lines of evidence suggest that increased P availability can result in increased N inputs via biological N₂ fixation (Reed *et al.*, 2011a; Batterman *et al.*, 2013) and, in turn, that changes to N could affect P availability via effects on phosphatase activity (Marklein & Houlton, 2012). Taken together, data suggest P could play a significant role in regulating C cycling responses to global change, and that improving coupled climate–C cycling models may require including P-specific drivers and mechanisms (Fig. 1).

Suggestions of P controls over global-scale C cycling stem, in part, from perceptions of P limitation of tropical lowland rain forest function. Tropical rainforests store and exchange enormous amounts of CO₂ with the atmosphere (e.g. Pan *et al.*, 2013), and our limited capacity to model tropical responses to global change may be the largest hurdle in accurately predicting Earth's future climate (Bonan & Levis, 2010; Piao *et al.*, 2013). Lowland tropical forests are common on highly weathered Ultisol and Oxisol soils (Palm *et al.*, 2007), which maintain low available and total P pools (Yang & Post, 2011). A variety of tropical C cycling processes respond to changes in P availability, and given its relative scarcity, P will almost certainly constrain the response of tropical forests to increases in atmospheric CO₂ and N deposition. Thus, improving

Fig. 1 Conceptual model depicting how field and laboratory research can work in concert with model development to improve our understanding of phosphorus (P) cycling in the environment and its responses to global change. Pi, ???; DOP, ???.

our ability to model the trajectory of these C-rich ecosystems may mandate the inclusion of P cycling.

III. Considerations for including phosphorus

Based on an understanding of P cycling and past modeling, there are four aspects of P cycling we suggest as being particularly important for inclusion in ESMs: P mineralization, P sorption, P limitation, and the stoichiometric relationships of P with C and N (Box 1; Table 1). One of the most influential components of the P cycle is P mineralization: the breakdown of organic P into mineral forms that, unless sorbed or lost via leaching, are available for plant and microbial uptake. On an annual basis, the recycling of P out of organic matter (via litter leaching or organic matter decomposition) represents the largest source of P to biota in most ecosystems (Cleveland *et al.*, 2013) and P mineralization will be central to effective modeling of P (Table 1; Yang *et al.*, 2014). In some modeling studies that examined the influence of C–N coupling on C–climate interactions, altered N mineralization as driven by warming and changing soil moisture under climate change were the factors most responsible for differences in spatial and temporal patterns of C–climate feedbacks (Thornton *et al.*, 2007, 2009; Sokolov *et al.*, 2008). Other modeling suggests that climate-driven changes in N mineralization could be offset by changes in vegetation C : N ratios, generating a smaller influence on net C flux (Zaehle *et al.*, 2010a). In either case, N mineralization is a critical underlying driver of modeled ecosystem response. Variation in C : N : P stoichiometry notwithstanding (see later), we expect that P mineralization will likewise form the process foundation for any modulation of the C–climate feedbacks driven by P cycle processes.

Differences between N and P mineralization offer important considerations for models. While C and N are stabilized together and mineralized through biological mineralization, organic P is located independently of the main organic moiety and can thus be mineralized through ‘biochemical mineralization’. Biochemical mineralization is the release of inorganic P through enzymatic catalysis external to the cell membrane, and the process can be independent of organic C and N breakdown and controlled by the demand for P rather than the need for energy (McGill & Cole, 1981). Although current model representations capture the major factors controlling biochemical mineralization, the parameterization is based on a limited number of observations (Yang *et al.*,

Box 1 XXXXXXXXXXXXX

Effectively incorporating phosphorus into modeling efforts will rely upon important decisions about how to represent and parameterize the phosphorus cycle and its interactions with the cycles of carbon and nitrogen. We suggest that empirical and modeling efforts could make large advances by focusing on improving our understanding of phosphorus mineralization, sorption, limitation, and stoichiometry (Table 1; Fig. 1).

Table 1 Phosphorus (P) cycle processes and parameters for consideration when including P in models

Process/parameter	Issues to consider
P mineralization (<i>Biological vs biochemical</i>)	<ul style="list-style-type: none"> Multifaceted enzyme controls, particularly for phosphatase Fate of mineralized P C : N : P stoichiometry of microbes vs soil organic matter Soil mineralogy and texture Competition with biotic demand Redox–Fe–P interactions pH Where does P limit ecosystem processes, and what processes? Relationships between limitation and P acquisition strategies Multi-element limitation Plasticity of C : N : P stoichiometry in plants, microbes, and soil organic matter and links with P-use efficiency N effects on P enzyme activity What is ‘available P’? Choice of soil P assay P pools ranging in biological availability Chemistry of different P pools Mechanisms used to access P Competition among biota Rhizosphere biogeochemistry Root architecture Drivers and consequences of P-use efficiency Rock P content Role of parent material inputs across time Relationship between bedrock P and soil P pools Role of atmospheric P inputs in sustaining fertility Global variation in P inputs Loss of P through leaching Inorganic vs organic P loss Variation in loss of P with variation in biological demand Topographic variability in soil pedogenesis, P pools, and P limitation Variation in P limitation, P cycling, and coupled biogeochemical cycles with ecosystem successional stage Species-specific P acquisition Species-specific P pools Soil P structuring of community composition Symbioses – in particular, N₂ fixation and mycorrhizas P controls over symbiotic relationships Interactions among symbionts
P sorption	
P limitation to C cycle processes (e.g. plant and microbial growth and respiration)	
P cycle coupling with the cycles of C and N	
Soil P pools	
Plant/microbe P uptake	
P-use efficiency	
Bedrock P and weathering rates	
Atmospheric inputs (e.g. dust, ash)	
P leaching	
Topographic position	
Ecosystem development and successional stage	
Species-specific P acquisition, nutrient limitation, and effects on P pools	
Symbioses – in particular, N ₂ fixation and mycorrhizas	

We highlight the first four processes/parameters in bold italics as critical for consideration. An improved understanding of P cycling rates/pool sizes, as well as responses to global change, is needed for all parameters and thus the ‘issues to consider’ column provides parameter-specific topics additional to this need. We provide suggestions for further reading, with full citations given, in Supporting Information Table S1.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

2014). In general, more observational and experimental data are needed to quantify P mineralization rates and controls, and we encourage the scientific community to focus on improving our understanding of this fundamental process.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Phosphorus sorption – the removal of P from solution into less reactive, geochemical sinks – is an important consideration in modeling P, because in soils with strong sorption capacities (e.g. highly weathered soils) this geochemical sink effectively competes with biota for P (e.g. Sollins *et al.*, 1988). The strength, extent, and longevity of P sorption are determined in part by soil mineralogy, and traditional definitions of occluded P suggest that it is biologically unavailable, at least over decadal timescales. However, emerging evidence indicates that occluded P may enter biological pathways on shorter timescales (Richter *et al.*, 2006; Syers *et al.*, 2008; Huang *et al.*, 2014); for example, results from an aggrading forest on an Ultisol soil showed that 28 yr of Piedmont forest regrowth occurred via biological access to occluded P (Richter *et al.*, 2006). These and other data suggest that movement from geochemical to biotic pools over hourly to decadal time steps is strongly influenced by biological demand (Olander & Vitousek, 2004; Richter *et al.*, 2006), but our understanding of these competing pathways remains poor. From an ESM perspective, this means that for some soils we should account for the role of sorption in determining P availability, the potential for global change to affect sorption patterns (e.g. via O₂ controls; Table 1), and the likely necessity of measuring and considering multiple soil P pools.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Ultimately, interest in including nutrient cycles in ESMs is based on the desire to understand how nutrient availability and changes to nutrient cycles affect C cycling, and nutrient limitation is central to this consideration. While we know that increasing P availability can significantly affect rates of plant and soil C cycling, our understanding of P limitation is far from complete. For example, a variety of research suggests P limitation to fundamental aspects of tropical forest structure and function, including plant growth, soil respiration, microbial biomass growth, and plant community composition (Vitousek & Farrington, 1997; Wardle *et al.*, 2004; Cleveland & Townsend, 2006; Elser *et al.*, 2007; Reed *et al.*, 2011b; Quesada *et al.*, 2012; Condit *et al.*, 2013). That said, direct tests of tropical P limitation are rare and there is enough variability among the results to suggest we require significantly more information about how P (and other nutrients) constrains tropical forest function. For instance, data from fertilization studies suggest a role for P, but also show that the nutrient(s) limiting plant productivity in tropical rainforests can vary among ecosystems and tree species, and that different ecosystem components can be limited by different nutrients (Wright *et al.*, 2011; Alvarez-Clare *et al.*, 2013; Turner & Wright, 2014). Further, while fertilization experiments help to decipher what nutrients are limiting, from a global change perspective our questions are really centered upon what happens when P availability declines relative to demand (e.g. with increased plant uptake in the face of CO₂ fertilization; Cernusak *et al.*, 2013). Exploring this question requires a different set of field experiments.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

A second challenge for including nutrient limitation centers on how limitation is represented within ESMs. Nitrogen limitation is

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

represented either through direct down-regulation of gross primary productivity using the supply–demand approach or through the control of foliar N on photosynthesis (Thornton *et al.*, 2007; Zaehle *et al.*, 2010b). A similar approach has been adopted for representing P limitation (Wang *et al.*, 2007; Goll *et al.*, 2012; Yang *et al.*, 2014); however, unique challenges for P include foliar concentrations that are much more variable than N, and our poor understanding of how leaf P concentrations control photosynthesis. As a result, a mechanistic representation of leaf P concentration on photosynthesis has not been implemented in models. Encouragingly, with increasing interest in P limitation and effect on photosynthesis, new research is addressing this need (e.g. Ellsworth *et al.*, 2015). There is also a role for stoichiometry in modeling P effects; for example, a recent effort synthesizing C–N model and field experimental results of two free-air CO₂ enrichment (FACE) studies suggests that better constraints on plant stoichiometry are pivotal in reducing model uncertainty. It follows that C : P stoichiometry would be equally important in many ecosystems.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Beyond an improved general understanding of P cycling, a central challenge to modeling P derives from a paucity of data for addressing questions of P cycling responses to global change. Because more global change experiments have been carried out in temperate and high-latitude systems, which are thought to be more strongly regulated by N availability, less research has focused on P (with important exceptions – such as Niklaus & Körner, 2004; Huang *et al.*, 2014). Thus, we have relatively few data with which to predict how elevated [CO₂] and altered climate will affect P, even in lowland tropical forests where understanding the response of P may be critical to understanding ecosystem responses as a whole. However, new global change experiments with a P focus are beginning (see the following section), and provide substantial opportunities for increased understanding.

IV. Opportunities for moving forward

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

Each topic discussed in the previous sections can be addressed with data synthesis, the collection of new data (particularly in a global change context), evaluation of different P models (conceptual and numerical), and increased collaboration between modelers and empiricists. Global meta-analysis efforts are providing biogeochemical data relevant to P cycling and its stoichiometric relationships with C and N (e.g. Reich & Oleksyn, 2004; Cleveland & Liptzin, 2007; Reed *et al.*, 2012; Cleveland *et al.*, 2013; Table 1). These datasets advance our general understanding of P cycling, as well as our capacity to populate models, and can be used for creating products that benefit multiple P models. For example, Yang *et al.* (2013) employed a data synthesis effort to provide global maps of various P pools that can be used for multiple aspects of modeling P, including the initialization of models to include P cycling that spans millions of years.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

A number of global change experiments that consider P are beginning and these offer a substantial opportunity to gain an insight into how P cycling and its interactions with other biogeochemical cycles will respond to global change. For example, a FACE experiment is under construction in a Brazilian Amazon forest (<http://face.ornl.gov/AmazonFACE.html>), as is a soil and

understory forest warming experiment in Puerto Rico (<http://www.forestwarming.org>). These projects will measure numerous aspects of P cycling and its coupling to the cycles of C and N. There is also a large-scale project focused on improving our understanding of P limitation and the risks associated with a growing stoichiometric imbalance at the global scale (<http://imbalancep-erc.creaf.cat/>). Comparisons between field experimental and modeling results underscore the power of evaluating modeled and empirical data together, and the importance of considering both approaches before the experiment begins (e.g. Zaehle *et al.*, 2014). We urge leaders of new experiments to include a modeling perspective before finalizing the experimental design, metrics to measure, and pretreatment data collection.

Incorporation of P into global models is taking place (Wang *et al.*, 2007; Goll *et al.*, 2012; Yang *et al.*, 2014) and these models, as well as models including C–N interactions (Zaehle *et al.*, 2014), are paving the way for increased inclusion of P cycling into ESMs. The examples allow for the evaluation of different P modeling approaches and the exploration of new ways to model P in the context of global change (Table 1). A cross-model analysis could be a powerful next step in assessing how to model P at the global scale. Another opportunity for modeling P stems from the fact that ESMs are becoming increasingly modularized. While testing isolated components of models is not new, subcomponents of full models that run independently of ESMs and functional test platforms are increasingly powerful, and allow for the rapid testing of new model structure, algorithms, and parameters, as well as direct model–data comparisons (e.g. Hu *et al.*, 2014).

Increased collaboration between modelers and empiricists is a critical mechanism for improving our understanding of, and ability to model, P cycling in the context of global change. Observational, experimental, and modeling approaches have different strengths and weaknesses, and using them together offers the most powerful way forward for finding answers to longstanding P questions. Modelers can help empiricists develop and test P hypotheses, accessing spatial and temporal scales that are impossible to address in the field. In turn, empiricists can help modelers select the most relevant aspects of P cycling, and construct process representations with the greatest potential to lend insight into future C cycling and climate (Fig. 1). We encourage empiricists, particularly those in the early stages of their research careers, to seek out collaborations with modelers, and vice versa, and we applaud programs that facilitate this interaction (e.g. INTERFACE; www.bio.purdue.edu/INTERFACE). This is an exciting time to study P and its role in global change, and taking advantage of the varied tools available offers the best chance of solving the substantial puzzles presented by P cycling.

Acknowledgements

We are extremely grateful for insights and manuscript suggestions from Stephen Porder, Cory Cleveland, and three anonymous reviewers, all of which significantly improved the manuscript. We thank Leslie Allred and Erika Geiger for help with manuscript preparation and Brett Hopwood for creation of the figure. This work is supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research,

Terrestrial Ecosystem Sciences (Awards DE-SC-0011806 and DE-SC-0008168), Earth System Modeling Programs (the Accelerated Climate Modeling for Energy (ACME) project), and Regional & Global Climate Modeling (RGCM) Program (the Biogeochemistry Feedbacks Scientific Focus Area (SFA)), and also by Oak Ridge National Laboratory (ORNL), the US Geological Survey John Wesley Powell Center for Analysis and Synthesis, and the US Geological Survey Ecosystems Mission Area. ORNL is managed by UT-Battelle, LLC, for the US Department of Energy under contract no. DE-AC05-00OR22725. Any use of trade names is for descriptive purposes only and does not imply endorsement by the US Government.

References

Alvarez-Clare S, Mac M, Brooks M. 2013. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. *Ecology* 94: 1540–1551.

Batterman SA, Wurzburger N, Hedin LO. 2013. Nitrogen and phosphorus interact to control tropical symbiotic N₂ fixation: a test in *Inga punctata*. *Journal of Ecology* 101: 1400–1408.

Bonan GB, Levis S. 2010. Quantifying carbon-nitrogen feedbacks in the Community Land Model (CLM4). *Geophysical Research Letters* 37: L07401.

Cernusak LA, Winter K, Dalling JW, Holtum JAM, Jaramillo C, Körner C, Leakey ADB, Norby RJ, Poulter B, Turner BL *et al.* 2013. Tropical forest responses to increasing atmospheric CO₂: current knowledge and opportunities for future research. *Functional Plant Biology* 40: 531–551.

Cleveland C, Liptzin D. 2007. C: N: P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass. *Biogeochemistry* 85: 235–252.

Cleveland C, Townsend A. 2006. Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. *Proceedings of the National Academy of Sciences, USA* 103: 10316–10321.

Cleveland CC, Houlton BZ, Smith WK, Marklein AR, Reed SC, Parton W, Del Grosso SJ, Running SW. 2013. Patterns of new versus recycled primary production in the terrestrial biosphere. *Proceedings of the National Academy of Sciences, USA* 110: 12733–12737.

Condit R, Engelbrecht BMJ, Pino D, Pérez R, Turner BL. 2013. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. *Proceedings of the National Academy of Sciences, USA* 110: 5064–5068.

De Graaff M, Van Groenigen K, Six J, Hungate B, Van Kessel C. 2006. Interactions between plant growth and soil nutrient cycling under elevated CO₂: a meta-analysis. *Glob Chang Biol* 12: 2077–2091.

Ellsworth D, Crous K, Lambers H, Cooke J. 2015. Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. *Plant, Cell & Environment*. doi:10.1111/pce.12468.

Elser J, Bracken M, Cleland E, Gruner D, Harpole W, Hillebrand H, Ngai J, Seabloom E, Shurin J, Smith J. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. *Ecology Letters* 10: 1135–1142.

Fernández-Martínez M, Vicca S, Janssens IA, Sardans J, Luyssaert S, Campioli M, Chapin FS III, Ciais P, Malhi Y, Obersteiner M *et al.* 2014. Nutrient availability as the key regulator of global forest carbon balance. *Nature Clim. Change* 4: 471–476.

Goll D, Brovkin V, Parida B, Reick C, Kattge J, Reich P, van Bodegom P, Niinemets U. 2012. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen, and phosphorus cycling. *Biogeosciences* 9: 3547–3569.

van Groenigen K, Six J, Hungate B, de Graaff M, van Breemen N, van Kessel C. 2006. Element interactions limit soil carbon storage. *Proceedings of the National Academy of Sciences, USA* 103: 6571–6574.

Hu R, Wang X, Pan Y, Zhang Y, Zhang H. 2014. The response mechanisms of soil N mineralization under biological soil crusts to temperature and moisture in temperate desert regions. *European Journal of Soil Biology* 62: 66–73.

Huang W, Zhou G, Liu J, Duan H, Liu X, Fang X, Zhang D. 2014. Shifts in soil phosphorus fractions under elevated CO₂ and N addition in model forest ecosystems in subtropical China. *Plant Ecology* 215: 1373–1384.

Hungate B, Dukes J, Shaw M, Luo Y, Field C. 2003. Nitrogen and climate change. *Science* 302: 1512–1513.

Marklein AR, Houlton BZ. 2012. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. *New Phytologist* 193: 696–704.

McGill W, Cole C. 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. *Geoderma* 26: 267–286.

Niklaus PA, Körner C. 2004. Synthesis of a six-year study of calcareous grassland responses to *in situ* CO₂ enrichment. *Ecological Monographs* 74: 491–511.

Norby R, Warren J, Iversen C, Medlyn B, McMurtie R. 2010. CO₂ enhancement of forest productivity constrained by limited nitrogen availability. *Proceedings of the National Academy of Sciences, USA* 107: 19368–19373.

Olander L, Vitousek PM. 2004. Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. *Ecosystems* 7: 404–419.

Palm C, Sanchez P, Ahamed S, Awiti A. 2007. Soils: a contemporary perspective. *Annual Review of Environment and Resources* 32: 99–129.

Pan Y, Birdsey R, Phillips O, Jackson R. 2013. The structure, distribution, and biomass of the world's forests. *Annual Review of Ecology, Evolution, and Systematics* 44: 593–622.

Piao SL, Sitch S, Ciais P, Friedlingstein P, Peylin P, Wang XH, Ahlstrom A, Anav A, Canadell JG, Cong N *et al.* 2013. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO₂ trends. *Global Change Biology* 19: 2117–2132.

Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patiño S, Fyllas NM, Hodnett MG, Herrera R, Almeida S *et al.* 2012. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. *Biogeosciences* 9: 2203–2246.

Reed S, Cleveland C, Townsend A. 2011a. Functional ecology of free-living nitrogen fixation: a contemporary perspective. *Annual Review of Ecology, Evolution and Systematics* 42: 489–512.

Reed S, Townsend A, Davidson E, Cleveland C. 2012. Stoichiometric patterns in foliar nutrient resorption across multiple scales. *New Phytologist* 196: 173–180.

Reed S, Vitousek P, Cleveland C. 2011b. Are patterns in nutrient limitation belowground consistent with those aboveground: results from a 4 million year chronosequence. *Biogeochemistry* 106: 323–336.

Reich P, Oleksyn J. 2004. Global patterns in plant leaf N and P in relation to temperature and latitude. *Proceedings of the National Academy of Sciences, USA* 101: 11001–11006.

Richter DD, Allen HL, Li J, Markewitz D, Raikes J. 2006. Bioavailability of slowly cycling soil phosphorus: major restructuring of soil P fractions over four decades in an aggrading forest. *Oecologia* 150: 259–271.

Sokolov A, Kicklighter D, Melillo J, Felzer B, Schlosser C, Cronin T. 2008. Consequences of considering carbon–nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. *Journal of Climate* 21: 3776–3796.

Sollins P, Robertson G, Uehara G. 1988. Nutrient mobility in variable- and permanent-charge soils. *Biogeochemistry* 6: 181–199.

Syers J, Johnston A, Curtin D. 2008. *Efficiency of soil and fertilizer phosphorus use: reconciling changing concepts of soil phosphorus behaviour with agronomic information. FAO Fertilizer and Plant Nutrition Bulletin 18*. Rome, Italy: Food and Agriculture Organization of the United Nations.

Thornton P, Doney S, Lindsay K, Moore J, Mahowald N, Randerson J, Fung I, Lamarque J, Feddema J, Lee Y. 2009. Carbon–nitrogen interactions regulate climate–carbon cycle feedbacks: results from an atmosphere–ocean general circulation model. *Biogeosciences* 6: 2099–2120.

Thornton PE, Lamarque J-F, Rosenbloom NA, Mahowald NM. 2007. Influence of carbon–nitrogen cycle coupling on land model response to CO₂ fertilization and climate variability. *Global Biogeochemical Cycles* 21: GB4018.

Turner B, Wright S. 2014. The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest. *Biogeochemistry* 117: 115–130.

Vitousek P, Farrington H. 1997. Nutrient limitation and soil development: experimental test of a biogeochemical theory. *Biogeochemistry* 37: 63–75.

Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. *Ecological Applications* 20: 5–15.

Wang Y, Houlton B, Field C. 2007. A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. *Global Biogeochemical Cycles* 21: GB1018.

Wardle D, Walker L, Bardgett R. 2004. Ecosystem properties and forest decline in contrasting long-term chronosequences. *Science* 305: 509.

Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE *et al.* 2011. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. *Ecology* 92: 1616–1625.

Yang X, Post WM. 2011. Phosphorus transformations as a function of pedogenesis: a synthesis of soil phosphorus data using Hedley fractionation method. *Biogeosciences* 8: 2907–2916.

Yang X, Post WM, Thornton P, Jain A. 2013. The distribution of soil phosphorus for global biogeochemical modeling. *Biogeosciences* 10: 2525–2537.

Yang X, Thornton P, Ricciuto D, Post W. 2014. The role of phosphorus dynamics in tropical forests – a modeling study using CLM-CNP. *Biogeosciences* 11: 1667–1681.

Zaehle S, Friedlingstein P, Friend A. 2010a. Terrestrial nitrogen feedbacks may accelerate future climate change. *Geophysical Research Letters* 37: 1–5.

Zaehle S, Friend A, Friedlingstein P, Dentener F, Peylin P, Schulz M. 2010b. Carbon and nitrogen cycle dynamics in the O–CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance. *Global Biogeochemical Cycles* 24: GB003522.

Zaehle S, Medlyn BE, De Kauwe MG, Walker AP, Dietze MC, Hickler T, Luo Y, Wang Y-P, El-Masri B, Thornton P *et al.* 2014. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate Free-Air CO₂ Enrichment studies. *New Phytologist* 202: 803–822.

Supporting Information

Additional supporting information may be found in the online version of this article.

Table S1 An extended version of Table 1, with a handful of suggestions for further reading and the full citations included

Please note: Wiley Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.

Author Query Form

Journal: NPH

Article: 13521/2014-18865

Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers on the query sheet if there is insufficient space on the page proofs. Please write clearly and follow the conventions shown on the attached corrections sheet. If returning the proof by fax do not write too close to the paper's edge. Please remember that illegible mark-ups may delay publication.

Many thanks for your assistance.

Query reference	Query	Remarks
1	AUTHOR: Please confirm that given names (red) and surnames/family names (green) have been identified correctly.	
2	AUTHOR: “first-generation climate–C models” – should this be “first-generation climate–C cycle models”?	
3	AUTHOR: Please defined Pi and DOP.	
4	AUTHOR: “however, unique challenges for P include foliar concentrations that are much more variable than N, and our poor understanding of how leaf P concentrations control photosynthesis” – changes okay for sense?	
5	AUTHOR: If possible, please update doi with the volume and page numbers for reference Ellsworth et al. (2015).	
6	AUTHOR: Please provide a brief heading for Box 1.	