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4. COMPARISON OF ACCOMPLISHMENTS AND GOALS/OBJECTIVES 

 From the synthesis of new materials to the fabrication of the most efficient single junction OPV, 
in over 120 peer-reviewed publications (see Appendix 8) with over 1,200 total citations (doubling each 
year), PHaSE researchers have made fundamental contributions with significant and sustained impact to 
the field of OPV.  Scientific highlights of the Center include: 

 Polymer Morphologies with High PCE. Russell with Wu (South China University of 
Technology) optimized the bulk heterojunction morphology of PTB7:PCBM solar cells, to 
achieve a PCE of 9.77% (9.61%, CPvT-certified), and with Chen (Nankai U), Russell 
developed a rhodium end-capped oligothiophene/PC71BM solar cell with PCE = 8.99% (CPvT-
certified), the highest for a single-junction device based on a molecular species.  

 Aqueous Co-Assembly of Polymer Nanoparticles (NPs):  Venkataraman, Lahti, and Russell 
developed a transformative, environmentally friendly, water-based co-assembly process of pre-
fabricated organic semiconductor NPs yielding devices with PCE = 2.1%, the highest PCE for 
any organic NP-based solar cell.  

 Zwitterionic Polymer Interlayers: Emrick and Russell made novel conjugated polymer 
zwitterions (CPZs) in a new approach for interfacial modification layers (interlayers) in OPVs, 
which increased PCE by 50-500% for different electrode/interlayer combinations.  

 P3HT Nanostructures with Tunable Electronic Properties: Emrick and Barnes generated 
mechanically robust P3HT nanofibers with tunable internal crystalline aggregation by chemical 
crosslinking; Venkataraman and Barnes showed tunability in the internal aggregate structure 
of P3HT NPs through advanced processing.  

 Polymer NP Superlattices. Venkataraman, Barnes, Dinsmore, and Sumpter introduced the 
concept of polymer NP superlattices for use in OPVs and demonstrated the influence of NP 
size and structure on their photophysical behavior.  

 Kinetically Trapped BHJ Mesoscale Morphologies. Emrick, Hayward, Russell, and Balazs 
demonstrated a general technique for achieving co-continuous nanocomposite morphologies by 
the jamming of NPs, with size scale controlled by segmental interactions.  

 Active-Layer Materials with Highly Tunable Electronic Properties. Thayumanavan,
 

Coughlin,
 
Lahti, and Briseno developed polymer and oligomer systems with near-panchromic 

absorption and planar geometries to enhance - interactions.  
 

 The goals outlined below are drawn primarily from the goals and work described in the May 2012 

scientific review of the PHaSE EFRC by the DOE BES, and in a 2013 intra-PHaSE review of research 

directions undertaken by PHaSE EFRC co-directors and its Internal Advisory Committee. Major PHaSE 

goals below arise from DOE BES grand challenges (science.energy.gov/bes/efrc/research/ grand-

challenges).  Also, a number of investigations on mesoscale properties are crucial to optimizing active 

layers in organic photovoltaic (OPV) devices. Brief summaries of accomplishments made toward meeting 

each goal are listed.  Selected accomplishments are described in more detail subsequently in Section 5. 

Brief summaries of accomplishments made toward meeting each goal are listed.  Selected 

accomplishments are described in more detail subsequently. 

 

**Goal – Synthesize conjugated chromophores that absorb throughout all (panchromic) or most of the 

visible solar spectrum for molecules/polymers/assemblies.  Computational prediction of absorption 

properties for synthetically achievable structures is an important companion goal. 

*Accomplishments 

 Multiple push-pull molecular and polymer chromophores with band onsets from 550-1000 nm and 

molar absorptivities to 260,000 L
-1

M
-1

 (Lahti-Thayumanavan, Coughlin-Lahti) have been made 

and characterized. Several of these have been incorporated into test OPV devices.  
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 Dithienylpyrrole-co-benzothiadiazole copolymers with varying substitution (alkyl, alkoxyaryl) on the 

pyrrole group have been made using direct 

arylation polymerization and have solid film band 

onsets to just over 700 nm.  Both electronic and 

(especially) processing properties depend strongly 

on the substituents.  These systems perform well 

in test OPV devices (see below) (Lahti). 

 Polymer HOMO energies and band gaps for 

experimentally known electron acceptor type 

polyarylene vinylenes (with strong acceptor 

arylene groups such as benzothiadiazole) and for 

push-pull polymers between dithienylpyrrole and 

strong acceptor arylenes are so well predicted by 

density functional theory (DFT) computational 

methodology that these computations are now 

being used to select experimentally related 

polymers for synthesis. (Lahti-Venkataraman-

Wong[Drexler]). 

 Thieno[3,4-b]thiophene monomers having varying alkyl, aryl, perfluoroalkyl, and perfluoroaryl 

substitution were copolymerized with dithienylbenzodithiophene units by direct arylation 

polymerization to give PTB copolymers (Fig. 1) with strong absorption out to 1.56 eV in films  

(Coughlin-Lahti).  These have HOMO/LUMO energy levels that are well aligned for use as electron 

donor materials in ITO/PCBM type OPV devices, and are being tested for such use (Coughlin). 

**Goal -- Identify and induce/control effects of molecular or polymer packing and self-assembly as a 

means of improving or simplifying OPV fabrication, and of testing and improving OPV charge mobility.  

This includes achieving balanced hole/electron charge transport in organic polymer thin films and 

nanoparticle assemblies, with high open-circuit voltages and large short-circuit currents in OPVs. This 

requires predictable tuning of organic HOMO and LUMO energies (EHOMO, ELUMO), and band gaps (Eg), 

plus matching EHOMO, ELUMO to cathode and anode materials.  

*Accomplishments –  

 A major, multi-group PHaSE effort to develop surfactant-stabilized, organic polymer and molecule 

nanoparticles (NPs) has reached important milestones in the past year:  

 Polymer and molecule-based NPs have been fabricated in films 

(Fig. 2) by a highly reproducible, straightforward, ecologically 

low-impact, water-based process.  At present regioregular (rr) 

P3HT NPs can be made with diameters down to 30 nm, and with 

low, 15% size dispersity.  PCBM nanoparticles of similar size 

and dispersity have also been made. A patent for this 

methodology has been granted (USSN 15/301,365, 
Venkataraman). 

 Removal of excess SDS surfactant from PHaSE-processed P3HT 

NPs improves charge transport significantly over NP films that 

retain excess surfactant. Spray-coated films of rr-P3HT NPs made 

by the PHaSE process exhibit time-of-flight hole transport charge 

mobilities equal to those of pristine rr-P3HT films made by 

conventional spin coating. The surfactant-minimized films show 

charge transport that is much less trap limited, much less 

dispersive, and therefore more appropriate for electronic use (Venkataraman-Lahti-Russell). 

 
Fig. 2: Spray painted film 
made with rr-P3HT NPs 
stripped of excess SDS 
surfactant.  

 
Fig. 1: Example, new low band gap systems: PTB 
series copolymers with hydrocarbon and 
fluorocarbon side chain substitution. 
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 Computational modeling is 

underway to determine ideal 

mixture ratios of hole and 

electron transporting NPs to 

maximize BHJ pathway 

connections in a randomly 

composed film, and yield 

optimum charge transport 

(Venkataraman-Dinsmore). 

 Deterministic charge transport 

computational modeling fits 

experimental photocurrent 

evolution behavior very well 

for both hole transporting rr-

P3HT thin films and for 

PHaSE type rr-P3HT NP 

assemblies (Fig. 3). The 

method is being extrapolated 

to make predictions for new conjugated materials being fabricated into NP films (Maroudas-

Venkataraman). 

 Fabrication procedures were identified to create highly networked, fibrillar morphologies for new 

generation hole transporting conjugated polymers:  

 Chloroform / polar secondary solvent mixtures 

optimize bulk heterojunction (BHJ) morphology in 

PDPPBT:PC71BM films (Fig. 4) giving a very wide 

range of morphologies with OPV power conversion 

efficiencies (PCE) ranging from 0.6% to 5%. This 

finding significantly broadens the scope of presently 

used good/bad solvent mixture techniques for tuning 

BHJ morphology, which usually focuses on the vapor 

pressure differences between nonpolar solvents 

(Russell).   

 Structural changes in 98.5% regioregular rr-P3HT in 

varying temperature influence hole transport. 

Temperature dependent WAXD of regiorandom rra-

P3HT indicates that intramolecular distance increases 

with thermal expansion. The constant interchain 

distance in rra-P3HT suggests that the charge hopping 

distance between chains in the amorphous phase of rr-

P3HT is also temperature independent.  The WAXD 

structural probe studies of temperature dependence for 

these morphologies are a guide for optimizing 

morphologies in other polymers having significant 

crystallinity (Russell-Duzhko),  

**Goal -- Develop and use polymer and organic molecular interlayer compounds and materials to 

improve electrode-organic interface transport, and to vary the "inherent" open circuit voltage (VOC) that is 

typically set by HOMO and LUMO energy levels of electron donor and electron acceptor materials used 

in a BHJ device. Strong dipole-based effects in the interlayer materials (e.g., from permanent dipoles 

arising from zwitterionic substituents) induced desired variations, and can significantly alter OPV 

behavior with use of interlayer thickness as low as 5 nm.  

 

 
Fig. 4: AFM showing height (H) and 
phase (P) profiles of highest PCE film for 
PDPPBT:PC71BM BHJ films; Rq = 
roughness.  

 
Fig. 3: (Left) Simulated evolution (with time as indicated by the 
arrows) of free and trapped (inset) hole density profiles in a P3HT 
sample consisting of a NP assembly with the excess surfactant 
molecules removed under a bias of 4 V. (Right) Least-squares fits 
of simulation predictions (red dot-dashed lines) to experimental 
data (black solid lines) for photocurrent evolution under various 
applied biases in P3HT films consisting of NP assemblies with the 
excess surfactant molecules removed.  The modeled contact area 
of the film with the electrodes is A = 6 mm

2
. 
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*Accomplishments --  

 PCEs of BHJ polymer OPV devices were 

increased by >500% (0.92% to 5.78%) when 

PHaSE-developed zwitterion-substituted 

conjugated polymer (cpz-polymer) interlayers 

were incorporated (Fig. 5).  The improvement 

arose from reducing the Ag cathode work 

function in the device, due to dipole alignment 

effects.  An analogous, though lesser, effect 

(68% improvement) was seen in OPV devices 

using Al cathodes.  Interlayer thickness was 

critical, with 5 nm thick films producing the 

most efficient devices.  CPZ polymers like 

PTBTSB have good solvent orthogonality 

with lower polymer layers, and are readily 

fabricated into interlayers that are as effective 

or better than vapor-deposited LiF (Emrick-Russell-Duzhko). 

 Two novel fulleropyrrolidines bearing tertiary amine (C60-N) or zwitterionic sulfobetaine (C60-

SB) moieties were tested as cathode buffer interlayers in OPV devices.  Charge mobility studies 

using bilayer OPV devices shows C60-N to have the higher electron transport mobility, and 

provides a truly Ohmic contact with superior device performance under those device conditions.  

These findings were used to produce a record PCE single junction OPVs (see below, Emrick-

Russell-Duzhko).  

 

**Goal -- Directly probe the electronic and 

structural nature of freely-solvated versus 

aggregating polymer chains, aggregation 

behavior as fabrication solvents are removed, 

and the formation of varying thin film 

morphologies when annealed or otherwise 

morphologically manipulated post-deposition. 

The influence of ordering and alignment on 

photovoltaic performance is considerable, 

therefore spectroscopic, computational, and 

structural (in situ x-ray diffraction and x-ray 

scattering [XRD, XRS], AFM, cAFM, etc.) 

probes of "as-fabricated" nanostructures and 

films are invaluable for understanding why 

successful fabrication strategies work. 

*Accomplishments   
 A new collaboration (Barnes-Briseno-

Spano[Temple]) to model -stacking 

with electronic behavior shows excellent 

correlation of experimental absorption 

spectral features for crystalline 

nanopillars of tetraazaterrylene 

derivatives with specific crystal packing 

motifs, when the spectra are modeled 

using DFT and semiempirical INDO/S 

computational modeling of dyad and 

 
Fig. 5: Scheme the design of a BHJ OPV device 
using Ag or Al cathode, donor = PTB7, acceptor = 
PC71BM, with a CPZ, permanent dipole 
substituted polymer as a thin interlayer. 

 

Fig. 6:  cAFM of a polymer/PCBM BHJ.   
 

 

Fig. 7: (Left) Scheme showing branched nanostructure 
made from crosslinked P3HT-P3MT diblock copolymers.  
(Right) Surface potential contrast image of 
nanostructures show spatially varying work function. 
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larger cluster models for the crystal lattice. A model that incorporates some degree of X—X  

X
+
—X

– 
charge transfer in a pi-stack gives superior agreement with experiment, compared to a 

model using Frenkel exitons alone.  

 cAFM measurements (including Kelvin probe force microscopy and electrostatic force 

microscopy) have been successfully deployed to show the variation in BHJ for films of active 

layer polymers, PCBMs, and molecules, which are assembled by the same methodology used to 

incorporate these components into OPV devices.  cAFM for spray-coated mixtures of single-

component organic NPs using PHaSE-developed methodology shows completely different, 

granular BHJ from the highly fibrillar, connective patterns seen (Fig. 6) in mixed-solvent 

fabricated BHJs using PCBM and conjugated electron donor copolymers (Venkataraman-

Lahti).   

 Surface potential contrast imaging of P3HT cross-linked with poly(3-methanol-2,5-

thiophenediyl))=P3MT shows nanoscale detail in a variety of nanostructures. Kelvin probe force 

microscopy (KPFM) reveals the nanostructures (Fig. 7) to have spatially varying work function 

with individually cross-linked nanoribbons and ‘brittle-stars’. The nanoribbons show highly 

crystalline central cores with disordered P3HT toward the ribbon ends, as evidenced by contact 

potential changes (Barnes-Emrick). 

**Goal -- Integrate the results of the various specific areas of progress described above, to improve OPV 

device performance. Particular targets are PCE increases by new fabrication strategies and increased 

device active area, using the most promising materials and morphological tuning strategies.  

*Accomplishments --  

 PTB7 and PCE10 (high performance, new generation electron donor material polymers for 

organic photovoltaics) were fabricated into single junction BHJ OPVs with PC71BM as an 

electron acceptor material.  The BHJ morphologies were optimized by a combination of high 

boiling additives plus thermal annealing, with various cathode metals used (Ca, Al, Ag, Cu, Au). 

Fabrication of OPV devices with addition of a 5-55 nm thick interlayer of fulleropyrrolidine with 

a tertiary amine (C60-N) or a zwitterionic sulfobetaine (C60-SB) gave single-junction PCE up to 

8.91% with a Ag electrode (NREL certified), and a record high 9.78% with a Ca electrode 

(Emrick-Russell-Duzhko).  

 Dithienylpyrrole-co-benzothiadiazole copolymers with varying substitution (alkyl, alkoxyaryl) on 

the pyrrole group have been made using fairly new direct arylation polymerization, characterized, 

and incorporated into test organic photovoltaic (OPV) devices (Lahti) having PCE up to 5.1% 

after initial morphological optimization work.  Polymer HOMO energies and band gaps for these 

are well predicted by computational methodology using 1-D repeat unit symmetry; this method is 

now being used to select new targets with desired electronic properties (Lahti-Wong[Sandia]). 

 A bis(hydroxyaryl)anilino-squaraine SQ-OH used as electron donor material with PC71BM gives 

PCE = 4.8% after morphological optimization. Grazing incident angle x-ray diffraction (GIXD) 

shows "as-fabricated" SQ-OH/PC71BM films to have varying amounts and sizes of SQ-OH 

crystallites, depending on the fabrication procedure used. OPV films form 48 nm SQ-OH 

crystallites (resonant soft x-ray scattering) in a largely PC71BM matrix for devices made by using 

a mixed solvent plus diiodooctane (DIO) slow-evaporating additive with thermal annealing. 

(Thayumanavan-Lahti-Russell). 

 Fluorine-substituted di(aryl)anilino-squaraines SQ-F and SQ-CF3 added to P3HT give increased 

PCE to 4.6% for "in-air" fabricated OPV devices using PC61BM; this performance is much higher 

than for in-air devices made with P3HT alone, and is comparable to PCE for highly optimized 

P3HT OPV devices without SQ additives (Thayumanavan-Kumar[UM-Lowell]-Lahti).   

 Small molecule, molecular additives (electron acceptor fluorenes or anthracene substituted by 

donor diarylamines) increase relative PCE by 33% in Grätzel type D709-based DSSCs when 

added in 1-3 mM concentrations to DSSC iodide/iodine dye-recharging solution, up to 4% 

absolute PCE for devices made in open air. The improvements do not arise from improved light 
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harvesting (low optical density), but apparently by improving the iodide/iodine electron shuttle 

efficacy -- the additives do not work without the iodide/iodine component (Lahti-Kumar[UM-

Lowell]).   

 Increasing device active area from 0.1 to 0.25 mm
2
 using a slot-die coating process (Fig. 8) for a 

PTB7-PC71BM OPV device gave only a slight decrease in PCE from 6.23% to 5.43%. The 0.25 

mm
2
 area device compares well to the 7.1% PCE of a device using a "classic" spin-coated BHJ 

film with only a 0.06 mm
2
 active area (Russell).  

 

  

 

Fig. 8: (a) Mini slot die instrument; (b) conjugated polymer donor and PC71BM 
acceptor;  (c) I-V curves of BHJ devices fabricated by slot die coating using different 
solvent compositions; (d) device performance statistics.  DCB = ortho-dichlorobenzene, 
CF = chloroform 
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5. MAJOR EFRC ACTIVITIES, RESULTS, FINDINGS, ACHIEVEMENTS 

 

 Interlayers for Improving Photovoltaic Performance  

Emrick and Russell, working with PHaSE Facility Director Duzhko, have shown that conjugated 

polymers bearing zwitterionic sulfobetaine side 

chains (CPZ polymers) can readily be processed 

into ESLs that give up to 5-fold increases in 

PCE relative to control OPV devices that do not 

use the ESL, depending on the cathode material.  

The magnitude of PCE improvement is 

comparable or better than that achieved in 

devices using LiF ESLs.  The CPZ polymers 

provide a low temperature methodology for 

adding ESLs, since they can be spin coated from 

polar solvents that are orthogonal to those that 

dissolve typical neutral organic conjugated 

active layer polymers. For tests using the hole 

transport layer PTB7 and the interlayer CPZ 

polymers the best device PCE was 7.74% for an 

ITO/PEDOT-PSS/PTB7:PC71BM/PTBTSB-

2/Ag device having a PTBTSB-2 interlayer of 5 

nm thickness. The PCE improvement (relative to 

devices without ESLs) arises largely from 

increases in VOC and FF.  The increase in VOC, in 

turn, is attributed to the largest interfacial dipole 

value (–0.96 eV) induced in this study, at the 

PTBTSB-2/Ag interface.  Carbon K-edge total 

electron yield (≈10 nm) and Auger electron yield 

(≈1 nm) NEXAFS spectra (obtained in 

collaboration with D. DeLongchamp at NIST) 

used to assess polymer chain orientation at 

different film thicknesses indicate that the CPZ 

polymers assume a face-on orientation with 

respect to the underlying active layer, and that 

the aliphatic portions of the chains are not 

oriented normal to the film surface.  The zwitterionic side chains of the CPZ polymers can be considered 

as dipoles fixed rigidly to the conjugated backbone, directing the negative charges towards the cathodic 

surface.  This orientation should and does reduce the cathode work function, but only for the first 

monolayer or so: the strong distance dependence of the dipole interface effect is consistent with a thin, 5 

nm film of CPZ polymer providing optimal effects. 

 Emrick and Russell, working with PHaSE Facility Director Duzhko, recently investigated 

fulleropyrrolidines bearing a tertiary amine (C60-N) or a zwitterionic sulfobetaine (C60-SB) as cathode 

ESLs in single junction polymer solar cells. Compared to ITO/PEDOT-PSS/PCE-10/(no ESL)/Ag OPV 

devices that gave PCE = 2.75%, spin coated devices using a C60-N ESL gave a single-junction record 

PCE = 9.78% (Fig. 9).  Overall, PCEs exceeding 8.5 % were obtained for OPVs made with Al, Ag, Cu or 

Au cathodes, with VOC ~0.75 V being obtained regardless of the cathodic metal used. PCE > 6 % was 

obtained over a wide range of interlayer thicknesses (~5–55 nm) using both C60-N and C60-SB. 

Ultraviolet photoelectron spectroscopy (UPS) indicates that an interfacial energy “pinning” effect causes 

the essentially cathode-independent device performances. A work function of 3.65 eV is obtained for Ag, 

Cu and Au when a thin layer of C60-N is placed in contact with each metal. UPS and charge mobility 

         
Fig. 9: Representative J–V characteristics for 

ITO/PEDOT:PSS/PCE-10:PC71BM/(fulleropyrrolidine)/ 
cathode OPVs with bare Ag cathodes and with ~15 nm-
thick C60-N or C60-SB ESLs. 
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studies indicate that C60-N provides a truly Ohmic contact under the tested device conditions.  The 

relative ease of making C60-N and C60-SB, combined with their ability to create highly efficient OPVs, 

makes these fulleropyrrolidines excellent models and candidates for further optoelectronic integration.  

 

 Targeting Nanoscale-Networked, Fibrillar Active Layer Morphologies  

Crystalline nanofibers (or nanowires) of poly (3-hexylthiophene) – one of the most studied polymers for 

OPV applications - have attracted a great deal of 

interest because of the potential for efficient 

exciton or charge migration along specific 

directions (transverse or parallel) with respect to 

the nanofiber axis, processes which strongly 

depend on structural order and molecular 

packing within the aggregate. Solution-based 

assembly of such crystalline structures opens 

new possibilities for controlled interfacing.  

However, the inherent fragility of nanowire 

assemblies is a key limitation, so preserving 

their pristine aggregate (π-π stacking) structure 

is seen as essential for efficient long-range 

charge-transport. Emrick group recently made 

cross-linked block-copolymer nanofibers from 

P3HT-b-P3MT and P3HT-b-P3ST (Fig. 10) that 

are mechanically robust, and can be coated onto 

surfaces, re-suspended, and/or mixed with a 

variety of dopants.   

Barnes and Emrick then probed the extent to 

which cross-linking perturbs the crystalline 

aggregate, and how different cross-linking 

strategies can tune electronic properties such as 

photoluminescence and charge separation efficiency. While the two nanofiber families have similar gross 

structure (and almost identical pre-cross-linked absorption spectra), they have completely different 

photophysics. P3ST di-block nanofibers show almost unchanged excitonic coupling after cross-linking. 

Cross-linked P3MT nanofibers show photoluminescence similar in electronic origin, vibronic structure, 

and lifetime, to un-aggregated P3HT molecules, suggesting almost complete extinction of excitonic 

coupling. Films of these materials were probed by bulk photoluminescence measurements and by 

nanoscopic AFM and cAFM (Kelvin Probe Force Microscopy), as shown in Fig. 10. Overall, for the 

P3ST system, the spatial extent of the cross-linking is approximately commensurate with the inter-

lamellar spacing, giving a minimally perturbed aggregate structure. For the P3MT system, the cross-

linking induces a high degree of strain on the P3HT aggregate block, disrupting both intra- and inter-

chain coupling.   

 

 Soft Matter Nanoparticles: A General Strategy for Bulk Heterojunction Fabrication? 

PHaSE has made major time and personnel investment in trying to devise a more generalizable 

methodology for fabricating donor-acceptor BHJ films from organic components, that the typically 

Edisonian variation of component concentrations, solvent mixtures, additives (such as DIO), and thermal 

annealing that can be quite different for every new component tested.  Venkataraman, Barnes, and 

Dinsmore summarized such a potential methodology in 2011, for binary mixtures of organic 

nanoparticles (NPs) to crease BHJ superlattices for photovoltaics.  The basic goal is to pre-assemble 

organic electron donor and acceptor components into separate nanoparticles, that are then hierarchically 

assembled in BHJ films: the main variables would be use of different ratios of particles with different 

 

Fig. 10: (Left) Structural schematic of the P3HT-

P3MT/P3ST diblock copolymers.  Purple bars indicate 
lamellar assembly of the P3HT blocks, while the blue 
P3MT (P3ST) blocks participate in the cross-linking 
(yellow). (Top right) AFM surface height image of P3MT-
crosslinked nanofibers showing different morphologies 
(wires, ribbons, and nanosheet “clover-leaf” structures). 
(Bottom right) Photoluminescence image of dilute P3HT-b-
P3MT cross-linked nanofibers cast on glass.  
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diameters to alter the number and types of charge flow 

pathways in the films.  This is shown schematically in Fig. 

11. 

Venkataraman's group now can prepare rr-P3HT NPs with 

diameters down to 30 nm having <15% size variability. 

Venkataraman and Dinsmore have formulated water-based 

methodologies for either spray-coating NP films or 

fabricating (larger) NP films at a water-oil interface for 

removal. Venkataraman, Lahti, and Russell showed that 

rr-P3HT NP films exhibited photogenerated hole carrier 

charge transport even in the presence of excess SDS 

surfactant (used to stabilize the NPs), with much improved 

charge motilities in films that were subjected to a simple 

procedure to remove free surfactant from NP suspensions 

before spray coating.  Venkataraman and Maroudas have 

found that the transport behaviors of the polymer NP films 

can be reproduced very well with deterministic 

computational models, allowing eventual extrapolation to 

behaviors of new materials using similar NP particle sizes. 

Venkataraman, Lahti, and Dinsmore showed that both 

binary mixtures of single component rr-P3HT and PC61BM 

NPs -- as well as binary component NPs using the same 

components -- show photoconversion behavior.  While 

others have recently demonstrated photoconversion using binary component NPs, this is the first evidence 

that the most general strategy of using binary mixtures of single component NPs would give 

photoconversion.  cAFM even shows regions having high and low hold transport mobility on the scale 

expected for a binary mixture of different NP components.  Most notably, OPV devices made using 

binary mixtures of rr-P3HT and PC61BM NPs with a spray coated fabrication method have already be 

made with PCE = 2.1%, the highest PCE reported for any organic NP based OPV to date.  This is 

comparable to PCEs obtained in unoptimized rr-P3HT:PC61BM spin coated BHJ OPV devices.   

 

 In situ, Real Time Characterization Under Commercially Relevant Conditions 

Tremendous efforts have been made wordwide to develop efficient light absorbing materials and devices. 

These advances have been achieved on laboratory scale devices and translation to large size scale devices 

has always been met with significant reductions in the PCE. Spin coating is routinely used to prepare 

laboratory-scale devices, while industrial processes have used blade or slot-die coating processes in a roll-

to-roll (R2R) setting. These coating processes are fundamentally different in terms of solvent removal 

rate, which is critical in defining the kinetically-trapped morphologies encountered in the generation of 

the active layers in OPVs that result from a delicate interplay between the ordering and assembly of the 

hole-conducting polymer and a phase separation between the electron and hole conductors into 

bicontinuous morphologies.  

The mismatch in device fabrication processes makes it difficult to translate quantitative results obtained 

from laboratory scale devices to commercially prepared large area devices, making optimization difficult. 

Using a mini-slot die coater (Fig. 8), Russell addressed this issue, where the commercial process was 

translated to the laboratory setting and real time, in situ to characterization of the active layer could be 

performed as films are cast from solution. The evolution of the morphology in the active layer was 

characterized under different drying conditions and a mechanism was proposed by which the morphology 

in the dried film is produced. This mini-slot die coater offers a simple, convenient, materials efficient 

route by which the morphology in the active layer can be optimized. 

Fig. 11: Conceptual scheme for 

hierarchical pre-assembly of organic 

polymer and/or material NPs,that are 

subsequently assembled into larger BHJ 

superlattices. 
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 Self- healing polymer sealant for encapsulating flexible solar cells  

Venkataraman used polyisobutylene (PIB)-based fully printable self-healing sealant for protecting 

organic photovoltaic (OPV) devices from degradation upon exposure to ambient environmental 

conditions. These sealants can be coated on flexible substrates using any roll-to-roll processing methods. 

PIB-based crosslinked sealants provide excellent device stability, especially the sealant made from the 

low molecular weight PIB. Additionally, this sealant provides healing of damage even under sunlight, 

albeit more slowly compared to that under UV light. Although various polymers such as polyvinyl 

alcohol, polyurethane, poly(methyl methacrylate) or poly(methyl methacrylate)-polyolefin have been 

used as a coating materials to protect organic active layers of OPVs from degradation. However, these 

polymers are also susceptible to degradation and crack formation upon prolonged exposure to unfavorable 

weather condition which ultimately allows moisture to pass through the coating and eventually damage 

the OPV systems. Furthermore, these coating materials are generally too permeable to moisture and 

oxygen. In this work, we demonstrated that PIB-based self-healing polymer sealants protect organic 

photovoltaics from damages caused by prolong exposure to hot and humid environmental conditions. The 

broad impact of this work is new materials for protecting the OPVs from environmental damages and 

providing enhanced life times of the OPVs which will benefit the society.  

 Self- Raising efficiency of organic solar cells with electrotropic additives 

Incorporation of electrotropic additives with large molecular dipole moments into the bulk heterojunction 

layer of organic photovoltaic devices followed by electric field poling led to an increase of power 

conversion efficiency up to 7.97% from 7.17% for devices that did not utilize the additives and from 

5.18% for devices with additives prior to poling. The improvement is due to more efficient extraction of 

photogenerated charge carriers, resulting in higher short circuit current density and fill factor. The 

observed effects are proposed to arise from a re-orientation of additive molecules in the external electric 

field, i.e., electrotropism, leading to a macroscopic alignment of their dipole moments. This leads to an 

increased built-in electrostatic potential difference in the device active layer post-poling. The dependence 

of device performance on the polarity of poling bias and reversibility of the effect are demonstrated, 

further supporting the proposed mechanism.  
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6. COST STATUS  

PHaSE EFRC Budget Report Year 5 

   Total                               Projected               Current  

            Spent/Enc. 

Budget                          $ 16,000,000                    $16,000,00              $16,000,000   

 

Equipment                          (all of the original equipment line item budget has been expended) 

Personnel      (all of the original personnel line item budget has been expended) 

* Five-year equipment budget $1,260,000.  Approval to purchase most equipment “up front” in the early 

years of the project was requested at the first EFRC Director’s meeting (June 2009) and OK’d at that 

meeting.  This was desired to allow a faster startup for the center, especially critical properties 

measurements needed to evaluate materials for possible utility in photovoltaic test devices. This 

procedure was discussed periodically during the ordering of major equipment in the first fiscal year of the 

project, including a site visit by Dr. Mark Pederson in early December 2009.  This was also presented as 

part of the management and operations review for PHaSE that took place in mid-May 2010, which was 

overseen by DOE program officers (including Dr. Pederson) and by external reviewers.  The management 

plan for PHaSE was approved following that review meeting.  Accordingly, we have continued with this 

procedure for equipment purchasing since that time. 

This summary does not include matching or additional funds from other sources that were used for capital 

equipment outlays. 

Additional External support to PHaSE from UMass Amherst: 

1. Support for Facility Director Extension Assistant Professor position: $45,225 salary and $823 

benefits, per 9-month appointment 

2. Space for Photovoltaic and Optical Spectroscopy Center: 1306 sq ft in two adjacent rooms 

3. A 10% reduction of indirect cost rate from the UMass rate that was standard at the time PHaSE 

began, allowing more of the total costs to be allocated to direct costs. 
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Cumulative PHaSE EFRC Budget Report Years 1-5 

Total                               Projected                            Current        Spent/Enc. 

Budget                        $16,000,000                     $16,000,000                   $16,000,000    Total Costs 

 

Equipment                      1,260,000*                             1,260,000                     $1,260,000*  Direct Costs 

Personnel                        6,000,000                          6,172,000                     $5,840,000    Direct Costs  

 

* Five-year equipment budget was $1,260,000.  Approval to purchase most equipment “up front” in the 

early years of the project was requested at the first EFRC Director’s meeting (June 2009) and approved at 

that meeting. This was desired to allow a faster startup for the center, especially critical properties 

measurements needed to evaluate materials for possible utility in photovoltaic test devices. This 

procedure was discussed periodically during the ordering of major equipment in the first fiscal year of the 

project, including a site visit by Dr. Mark Pederson in early December 2009.  This was also presented as 

part of the management and operations review for PHaSE that took place in mid-May 2010, which was 

overseen by DOE program officers (including Dr. Pederson) and by external reviewers.  The management 

plan for PHaSE was approved following that review meeting.  Accordingly, we continued with that 

procedure for equipment purchasing. 

Current budget = original budget numbers. 
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7. SCHEDULE STATUS 

(a) Management Timelines. The original PHaSE EFRC proposal did not set Gantt-type timelines.   

(b) Budget Schedule. The full 5-year PHaSE budget was front-loaded in August 2009 because PHaSE 

was funded through ARRA.  All funds have been expended.  

(c) Research and Organizational Milestones. PHaSE was created in 2009 as a new research center at 

UMass Amherst: it was not "spring-boarded" from a previously organized group of faculty or center.  

A number of milestones given below were specifically identified by the 2010 DOE BES Management 

Review, the 2012 Mid-term Scientific Review of PHaSE by DOE BES, and 2013 major internal 

review by the PHaSE Internal Advisory Board (Energy Research Group coordinators). 

 Expansion of the Center's External Advisory Committee to six people was finalized.  

 Expansion of the Center's internal leadership group was fully implemented.  

 A near-field scanning optical microscopy (NSOM) setup was successfully completed.  

 Generally strengthened linkage of computational and experimental work was done. 

 New high risk, high potential yield research foci targeted in Year 4 was accomplished  through: 

 (i) fabrication of polymer nanoparticles (NPs) into test photovoltaic devices (achieveing 2.1% 

PCE by mixing P3HT NPs with PC61BM NPs, highest value in the world for this promising new 

technology) (Venkataraman, Lahti, Dinsmore) 

  (ii) organic polymer zwitterion interlayers were fabricated as thin (5 nm) layers by an 

orthogonal solvent procedure to tune electrode properties (Emrick, Russell) 

  (iii) the polymer zwitterion interlayer technique was computationally modeled by collaboration 

between Russell (UMass) and Sumpter (Oak Ridge) 

  (iv) a new computational/experimental collaboration between Spano of Temple University and 

Barnes of PHaSE at UMass was established and continues for the study of exciton dynamics in 

aggregated, conjugated organic polymers and molecules.  

  (v) push-pull polymers incorporating benzothiadiazole and dithienylpyrrolo-pyrrole (DPP) that 

were targeted in 2012 and 2013 PHaSE reviews were synthesized and tested in single junction, 

bulk heterojunction devices (Lahti, Coughlin, Venkataraman) 

(vii) synthesis and photovoltaic testing is well advanced for a novel set of triarylamino-

substituted squaraine compound being used as electron donor phases, both alone and in mixtures 

with conjugated polymers or with solution-fabricated perovskites; the work comes from a team 

comprising Thayumanavan, Lahti, and Kumar (UMass Lowell) 

  (viii) fabrication of bulk heterojunction (BHJ) organic polymer, single-junction photovoltaic 

devices at or near the world's best PCE levels, e.g., a 8.91% NREL certified PCE with FF = 

71.7% for a PCE10/PC71BM photovoltaic device using an organic zwitterion interlayer (Russell, 

Emrick) 

 

8. CHANGES IN APPROACH OR AIMS 

There have been no major changes in the project aims or research strategy/approach.  Work increasedin 

focus to fabricate test solar cells using the most promising new materials and methods to make them into 

bulk heterojunctions and other electronic assemblies.   

9.  PROBLEMS OR DELAYS 

none 
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10. SABBATICALS, LEAVES OF ABSENCE, CHANGES OF KEY PERSONNEL OR TEAMING 

ARRANGEMENTS 

These have been described in previous annual reports. 

11. PRODUCTS AND TECHNOLOGY TRANSFER 

  (a) Journal and Book Publications 

All papers, articles, and book chapters are listed at www.energyfrontier.us per DOE BES instructions.  

From 1 August 2009 to 1 December 2016, 188 articles have appeared or are in press acknowledging 

PHaSE EFRC support (not counting basic meeting abstracts). The se are provided in Appendix 1. 

 

(b) Other Publications 

 (We chose not to list basic meeting abstracts or other non-refereed publications.) 

 The following articles acknowledging PHaSE-supported work were selected for special 

recognition in the relevant journals in which the articles were published.  These cover art recognitions 

(including cover and frontpiece art) publicize PHaSE and the EFRC program. 

 

o (Cover) “Using Light To Guide the Motion of Nanorods in Photoresponsive Binary Blends: 

Designing Hierarchically Structured Nanocomposites” by Ya Liu, Olga Kuksenok, and Anna 

C. Balazs (Balazs, UPitt) for pages 12785-12795 of Langmuir, October 15, 2013: Vol. 29, 

Issue 41.  

o (Frontpiece) “Efficient Charge Transport in Assemblies of Surfactant-Stabilized 

Semiconducting Nanoparticles” by Monojit Bag et al. (Venkataraman, Lahti, Russell) for 

pages 6411-6415 of Advanced Materials, November 26, 2013: Vol. 26, Issue 44.   

o (Frontpiece) “Photovoltaic Effect at the Schottky Interface with Organic Single Crystal 

Rubrene” by Supravat Karak et al. (Briseno) for pages 1039-1046 of Advanced Functional 

Materials, February 26, 2014: Volume 24, Issue 8.   

o (Frontpiece) “Highly Stretchable Nanoparticle Helices Through Geometric Asymmetry and 

Surface Forces” by Jonathan T. Pham et al. (Grason, Emrick, Crosby) for pages 6703–6708 

of Advanced Materials, December 10, 2013: Volume 25, Issue 46.   

o (Editor's Choice Article) “Highly Stretchable Nanoparticle Helices Through Geometric 

Asymmetry and Surface Forces” by Peng Liu et al. (Russell) has just appeared online at 

DOI:10.1021/cm500953e of Chemistry of Materials, April 14, 2014: 

dx.doi.org/10.1021/cm500953e.   

 

  (c) Selected websites that publicized, highlight, or use PHaSE work 

 "PHaSE Energy Frontier Research Center at UMass Amherst" (www.cns.umass.edu/efrc). 

  This site was significantly revamped this year in terms of content and format. 

  Public site with details of PHaSE personnel, facilities, news, publication listing, useful links. 

  Password protected secure intranet site includes PHaSE internal reporting site, 

presentation/discussion group archives, materials for use of External Advisory Committee members 

during virtual meetings. 

 " Solar PHaSE. Advancing the frontiers of polymer-based photovoltaic research" 

(www.umass.edu/researchnext/solar-phase). Featured in March-(present) research news webpage 

from UMass Amherst Research Next. 

 "Power Polymers -- Developing the next generation of solar cells" (www.umass.edu/ 

researchnext/power-polymers) and " Light Show: Next Generation of Solar Cells" 
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(www.umass.edu/researchnext/light-show-next-generation-solar-cells) still show PHaSE work from 

2012-2013 at the research news webpage from UMass Amherst Research Next. 

 "Science Works for U.S." (www.scienceworksforus.org/massachusetts/scientists-seek-better-

ways-to-harvest-sun-s-power-for-electricity).  Webpage for ScienceWorksForU.S., a project of the 

Association of American Universities.  The specific page gives a summary of PHaSE's research as an 

Energy Frontier Research Center.  

 "The Role of Molecular Architecture in Organic Photovoltaic Cells", (pubs.acs.org/page/jpclcd/ 

dv-video.html).  This is an American Chemical Society Office of Public Affairs video that describes 

findings supported (in part) by PHaSE.  It is linked from a perspectives article published in J. Phys. 

Chem. Lett. by UMass Amherst PHaSE members -- the text article acknowledges PHaSE support. 

 A Timeline of Photovoltaic Progress (www.tiki-toki.com/timeline/entry/62320/ 

Photovoltaics/#vars!date=1839-09-29_00:00:00!).  A "discovery" based website describing progress 

made in the area of photovoltaic cells, particularly in the area of organic-based solar cells (Plastic 

solar cells). The time line starts with Becquerel's observation of the photoelectric effect, and includes 

links to the DOE BES EFRC program at the DOE's description for the PHaSE center.  The page is 

pitched at a level to interest any science-minded person, young to old. 

 "Science Cinema" (www.osti.gov/sciencecinema/product.biblio.jsp?osti_id=1027996). From the 

DOE multimedia website, UMass Amherst video clip entry for EFRC program. 

 

  (d) Inventions, Patents, Disclosures 

 A table for patents field are in Appendix 2. 

(e) Other Products (invited presentations, symposia, infrastructure improvements) 

(i) Symposia 

A PHaSE mini-symposium will be featured at the 14 May 2014 UMass Amherst Spring Polymer 

Event attended by numerous companies and organizations interested in applying polymer and 

materials science. 

 (ii) Special Invited Presentations by PHaSE Leadership Members. 

PHaSE senior scientists made over 75 invited and contributed presentations at nationally meetings 

and venues, and over a dozen invited presentations internationally, describing work enabled by 

PHaSE support. 

Examples by PHaSE Leadership Senior Investigators: 

PHaSE co-director Lahti gave 4 international talks focusing on PHaSE work: Universidade de Minas 

Gerais, Belo Horizonte, Brazil (27 September 2013); Universidade Federal do Rio de Janeiro, 

Brazil (4 October 2013); Waseda University, Tokyo, Japan (9 October 2013); Keio University, 

Tokyo, Japan (9 October 2013).  He also spoke about organic based photovoltaics to the ACS 

Connecticut Valley Section overseen round of the 2014 U.S. National Chemistry Olympiad held at 

UMass Amherst on 18 Mar 2014). 

PHaSE co-director Russell gave invited international presentations at AIMR Tohoku University (18 

March 2014) and Waseda University (18 March 2014).  He also gave an invited talk at the 2014 

Triennial Review of the Advanced Light Source at LBNL. 

PHaSE ERG 1 coordinator Emrick spoke about “New functional hydrophilic polymers in materials 

applications,” at the ACS National Meeting (Dallas, 16 March 2014) and about “Directing 

assembly of polymer-functionalized nanoparticles in fluids and on substrates,” at the ACS National 

Meeting (Indianapolis, 8 September 2013). 

PHaSE ERG 2 coordinator Venkataraman spoke about "Geometry and Entropy as New Tools for 

Self-Assembly”, at the Indo-US Symposium on Molecular Materials, Indian Institute of Science 
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(Bangalore, 15 July 2013) and about “Polymer Nanoparticle Assemblies” at the ACS National 

Meeting (Indianapolis, 10 Sept 2013). 

PHaSE ERG 3 co-coordinator Barnes spoke about “Tuning Exciton Coupling in P3HT 

Nanostructures,” at the ACS National Meeting (Indianapolis, 7 Sept 2013). 

PHaSE ERG 3 co-coordinator Maroudas spoke about “Computational Analysis of Electronic and 

Mechanical Properties of Graphene/Diamond Superstructures,” at the VII Brazilian Congress on 

Applied Thermodynamics (Uberlandia, MG, Brazil, November 2013). 

 

(iii) Infrastructure Improvements 

 University of Massachusetts Amherst, PHaSE Photovoltaic & Optical Spectroscopy Facility was 

established and continues to operate under independent funding.  

 A near-field scanning optical microscopy (NSOM) setup was successfully completed and continues 

to operate under independent funding. 
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