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4. COMPARISON OF ACCOMPLISHMENTS AND GOALS/OBJECTIVES

From the synthesis of new materials to the fabrication of the most efficient single junction OPV,
in over 120 peer-reviewed publications (see Appendix 8) with over 1,200 total citations (doubling each
year), PHaSE researchers have made fundamental contributions with significant and sustained impact to
the field of OPV. Scientific highlights of the Center include:

e Polymer Morphologies with High PCE. Russell with Wu (South China University of
Technology) optimized the bulk heterojunction morphology of PTB7:PCBM solar cells, to
achieve a PCE of 9.77% (9.61%, CPvT-certified), and with Chen (Nankai U), Russell
developed a rhodium end-capped oligothiophene/PC;1BM solar cell with PCE = 8.99% (CPvT-
certified), the highest for a single-junction device based on a molecular species.

e Aqueous Co-Assembly of Polymer Nanoparticles (NPs): Venkataraman, Lahti, and Russell
developed a transformative, environmentally friendly, water-based co-assembly process of pre-
fabricated organic semiconductor NPs yielding devices with PCE = 2.1%, the highest PCE for
any organic NP-based solar cell.

e Zwitterionic Polymer Interlayers: Emrick and Russell made novel conjugated polymer
zwitterions (CPZs) in a new approach for interfacial modification layers (interlayers) in OPVs,
which increased PCE by 50-500% for different electrode/interlayer combinations.

e P3HT Nanostructures with Tunable Electronic Properties: Emrick and Barnes generated
mechanically robust P3HT nanofibers with tunable internal crystalline aggregation by chemical
crosslinking; Venkataraman and Barnes showed tunability in the internal aggregate structure
of P3HT NPs through advanced processing.

e Polymer NP Superlattices. Venkataraman, Barnes, Dinsmore, and Sumpter introduced the
concept of polymer NP superlattices for use in OPVs and demonstrated the influence of NP
size and structure on their photophysical behavior.

e Kinetically Trapped BHJ Mesoscale Morphologies. Emrick, Hayward, Russell, and Balazs
demonstrated a general technique for achieving co-continuous hanocomposite morphologies by
the jamming of NPs, with size scale controlled by segmental interactions.

e Active-Layer Materials with Highly Tunable Electronic Properties. Thayumanavan,
Coughlin, Lahti, and Briseno developed polymer and oligomer systems with near-panchromic
absorption and planar geometries to enhance n-rt interactions.

The goals outlined below are drawn primarily from the goals and work described in the May 2012
scientific review of the PHaSE EFRC by the DOE BES, and in a 2013 intra-PHaSE review of research
directions undertaken by PHaSE EFRC co-directors and its Internal Advisory Committee. Major PHaSE
goals below arise from DOE BES grand challenges (science.energy.gov/bes/efrc/research/ grand-
challenges). Also, a number of investigations on mesoscale properties are crucial to optimizing active
layers in organic photovoltaic (OPV) devices. Brief summaries of accomplishments made toward meeting
each goal are listed. Selected accomplishments are described in more detail subsequently in Section 5.
Brief summaries of accomplishments made toward meeting each goal are listed.  Selected
accomplishments are described in more detail subsequently.

**Goal — Synthesize conjugated chromophores that absorb throughout all (panchromic) or most of the
visible solar spectrum for molecules/polymers/assemblies. Computational prediction of absorption
properties for synthetically achievable structures is an important companion goal.

*Accomplishments

e Multiple push-pull molecular and polymer chromophores with band onsets from 550-1000 nm and
molar absorptivities to 260,000 L*M™ (Lahti-Thayumanavan, Coughlin-Lahti) have been made
and characterized. Several of these have been incorporated into test OPV devices.



¢ Dithienylpyrrole-co-benzothiadiazole copolymers with varying substitution (alkyl, alkoxyaryl) on the
pyrrole group have been made using direct
arylation polymerization and have solid film band
onsets to just over 700 nm. Both electronic and
(especially) processing properties depend strongly
on the substituents. These systems perform well
in test OPV devices (see below) (Lahti).

e Polymer HOMO energies and band gaps for
experimentally known electron acceptor type
polyarylene vinylenes (with strong acceptor
arylene groups such as benzothiadiazole) and for
push-pull polymers between dithienylpyrrole and
strong acceptor arylenes are so well predicted by
density functional theory (DFT) computational
methodology that these computations are now | Fig. 1: Example, new low band gap systems: PTB
being used to select experimentally related | £°T copolymers _ with hydrocarbon  and

. . uorocarbon side chain substitution.
polymers for synthesis. (Lahti-Venkataraman-
Wong[Drexler]).

e Thieno[3,4-b]thiophene monomers having varying alkyl, aryl, perfluoroalkyl, and perfluoroaryl
substitution were copolymerized with dithienylbenzodithiophene units by direct arylation
polymerization to give PTB copolymers (Fig. 1) with strong absorption out to 1.56 eV in films
(Coughlin-Lahti). These have HOMO/LUMO energy levels that are well aligned for use as electron
donor materials in ITO/PCBM type OPV devices, and are being tested for such use (Coughlin).

**Goal -- ldentify and induce/control effects of molecular or polymer packing and self-assembly as a
means of improving or simplifying OPV fabrication, and of testing and improving OPV charge mobility.
This includes achieving balanced hole/electron charge transport in organic polymer thin films and
nanoparticle assemblies, with high open-circuit voltages and large short-circuit currents in OPVs. This
requires predictable tuning of organic HOMO and LUMO energies (Enomo, ELumo), and band gaps (E,),
plus matching Exomo, ELumo to cathode and anode materials.

*Accomplishments —
e A major, multi-group PHaSE effort to develop surfactant-stabilized, organic polymer and molecule
nanoparticles (NPs) has reached important milestones in the past year:
+«+ Polymer and molecule-based NPs have been fabricated in films
(Fig. 2) by a highly reproducible, straightforward, ecologically
low-impact, water-based process. At present regioregular (rr)
P3HT NPs can be made with diameters down to 30 nm, and with
low, 15% size dispersity. PCBM nanoparticles of similar size
and dispersity have also been made. A patent for this
methodology has been granted (USSN  15/301,365,
Venkataraman).

+» Removal of excess SDS surfactant from PHaSE-processed P3HT
NPs improves charge transport significantly over NP films that
retain excess surfactant. Spray-coated films of rr-P3HT NPs made
by the PHaSE process exhibit time-of-flight hole transport charge | Fig. 2: Spray painted fim
mobilities equal to those of pristine rr-P3HT films made by | made with m-P3HT NPs
conventional spin coating. The surfactant-minimized films show 23;?;;gnt of excess SDS
charge transport that is much less trap limited, much less :
dispersive, and therefore more appropriate for electronic use (Venkataraman-Lahti-Russell).




«» Computational modeling is
underway to determine ideal
mixture ratios of hole and

Hole density field evolution S‘I’\r’ansient photocurrent

electron transporting NPs to Em_:
maximize ~BHJ  pathway | 4 z
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composed film, and yield 2 2 . results
= 15 2 25 £10 E

optimum charge transport ' Centrifuged NPs
(Venkataraman-Dinsmore). > ,
+«+ Deterministic charge transport - T 10° 10° 10°

computational modeling fits | Fig. 3: (Left) Simulated evolution (with time as indicated by the
experimental photocurrent arrowls) of free and tfrapped (inset) Elole d(?]ns;;[y profiles in afP3HT

: : sample consisting of a NP assembly with the excess surfactant
evolution_behavior very well molecules removed under a bias of 4 V. (Right) Least-squares fits
for both hole transporting Ir- | of simulation predictions (red dot-dashed lines) to experimental
P3HT thin films and for | data (black solid lines) for photocurrent evolution under various
PHaSE type rr-P3HT NP applied biases in P3HT films consisting of NP assemblies with the
assemblies (Fig. 3). The excess surfactant molecules removed. The modeled contact area

; \ of the film with the electrodes is A = 6 mmZ.
method is being extrapolated
to make predictions for new conjugated materials being fabricated into NP films (Maroudas-
Venkataraman).
e Fabrication procedures were identified to create highly networked, fibrillar morphologies for new
generation hole transporting conjugated polymers:

«» Chloroform / polar secondary solvent mixtures
optimize bulk heterojunction (BHJ) morphology in
PDPPBT:PC,:BM films (Fig. 4) giving a very wide
range of morphologies with OPV power conversion
efficiencies (PCE) ranging from 0.6% to 5%. This
finding significantly broadens the scope of presently
used good/bad solvent mixture techniques for tuning 3
BHJ morphology, which usually focuses on the vapor
pressure differences between nonpolar solvents
(Russell).

«» Structural changes in 98.5% regioregular rr-P3HT in | e
varying temperature influence hole transport. | [~ S,

Temperature dependent WAXD of regiorandom rra- M
P3HT indicates that intramolecular distance increases "
with thermal expansion. The constant interchain
distance in rra-P3HT suggests that the charge hopping
distance between chains in the amorphous phase of rr-
P3HT is also tempe_rature independent. The WAXD Fig. 4 AFM showing height (H) and
structural probe studies of temperature dependence for | 15ce (p) profiles of highest PCE film for
these morphologies are a guide for optimizing | PDPPBT:PC,BM BHJ films; Rq =
morphologies in other polymers having significant | roughness.

crystallinity (Russell-Duzhko),

(=]

time (s) |

PDPPBT PC71BM

**Goal -- Develop and use polymer and organic molecular interlayer compounds and materials to
improve electrode-organic interface transport, and to vary the “inherent" open circuit voltage (Voc) that is
typically set by HOMO and LUMO energy levels of electron donor and electron acceptor materials used
in a BHJ device. Strong dipole-based effects in the interlayer materials (e.g., from permanent dipoles
arising from zwitterionic substituents) induced desired variations, and can significantly alter OPV
behavior with use of interlayer thickness as low as 5 nm.



*Accomplishments --

v PCEs of BHJ polymer OPV devices were
increased by >500% (0.92% to 5.78%) when _
PHaSE-developed zwitterion-substituted EPZ = confuuatod aivrnes %

N - zwitterion interlayer g
conjugated polymer (cpz-polymer) interlayers
were_incorporated (Fig. 5). The improvement
arose from reducing the Ag cathode work
function in the device, due to dipole alignment
effects. An analogous, though lesser, effect
(68% improvement) was seen in OPV devices
using Al cathodes. Interlayer thickness was
critical, with 5 nm thick films producing the _ _ _
most efficient devices. CPZ polymers like | F9- 5: Scheme the design of a BHJ OPV device

] using Ag or Al cathode, donor = PTB7, acceptor =

PTBTSB have good solvent orthogonality | pc7igm, with a CPz, permanent dipole
with lower polymer layers, and are readily | substituted polymer as a thin interlayer.
fabricated into interlayers that are as effective
or better than vapor-deposited LiF (Emrick-Russell-Duzhko).

«» Two novel fulleropyrrolidines bearing tertiary amine (Cg-N) or zwitterionic sulfobetaine (Cego-
SB) moieties were tested as cathode buffer interlayers in OPV devices. Charge mobility studies
using bilayer OPV devices shows Cg-N to have the higher electron transport mobility, and
provides a truly Ohmic contact with superior device performance under those device conditions.
These findings were used to produce a record PCE single junction OPVs (see below, Emrick-
Russell-Duzhko).

Active Layer

**Goal -- Directly probe the electronic and
structural nature of freely-solvated versus
aggregating  polymer chains, aggregation
behavior as fabrication solvents are removed,
and the formation of varying thin film
morphologies when annealed or otherwise
morphologically manipulated post-deposition.
The influence of ordering and alignment on
photovoltaic  performance is considerable,
therefore spectroscopic, computational, and
structural (in situ x-ray diffraction and x-ray
scattering [XRD, XRS], AFM, cAFM, etc.)
probes of "as-fabricated" nanostructures and
films are invaluable for understanding why M P3HT Block
successful fabrication strategies work. ‘ ST Block

pm

Fig. 6: cAFM of a polymer/PCBM BHJ.

*Accomplishments
« A new collaboration (Barnes-Briseno- HMD
Spano[Temple]) to model [I-stacking x-linker

with electronic behavior shows excellent
correlation of experimental absorption
spectral  features  for  crystalline
nanopillars of tetraazaterrylene
derivatives with specific crystal packing | Fig. 7: (Left) Scheme showing branched nanostructure

motifs, when the spectra are modeled made from crosslinked P3HT-P3MT diblock copolymers.

- . - (Right)  Surface potential contrast image of
using DF_T and semu_emplrlcal INDO/S nanostructures show spatially varying work function.
computational modeling of dyad and
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larger cluster models for the crystal lattice. A model that incorporates some degree of X—X —
X*—X" charge transfer in a pi-stack gives superior agreement with experiment, compared to a
model using Frenkel exitons alone.

CAFM measurements (including Kelvin probe force microscopy and electrostatic force
microscopy) have been successfully deployed to show the variation in BHJ for films of active
layer polymers, PCBMs, and molecules, which are assembled by the same methodology used to
incorporate these components into OPV devices. cAFM for spray-coated mixtures of single-
component organic NPs using PHaSE-developed methodology shows completely different,
granular BHJ from the highly fibrillar, connective patterns seen (Fig. 6) in mixed-solvent
fabricated BHJs using PCBM and conjugated electron donor copolymers (Venkataraman-
Lahti).

Surface potential contrast imaging of P3HT cross-linked with poly(3-methanol-2,5-
thiophenediyl))=P3MT shows nanoscale detail in a variety of nanostructures. Kelvin probe force
microscopy (KPFM) reveals the nanostructures (Fig. 7) to have spatially varying work function
with individually cross-linked nanoribbons and ‘brittle-stars’. The nanoribbons show highly
crystalline central cores with disordered P3HT toward the ribbon ends, as evidenced by contact
potential changes (Barnes-Emrick).

**Goal -- Integrate the results of the various specific areas of progress described above, to improve OPV
device performance. Particular targets are PCE increases by new fabrication strategies and increased
device active area, using the most promising materials and morphological tuning strategies.

*Accomplishments --
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PTB7 and PCE10 (high performance, new generation electron donor material polymers for
organic photovoltaics) were fabricated into single junction BHJ OPVs with PC,;BM as an
electron acceptor material. The BHJ morphologies were optimized by a combination of high
boiling additives plus thermal annealing, with various cathode metals used (Ca, Al, Ag, Cu, Au).
Fabrication of OPV devices with addition of a 5-55 nm thick interlayer of fulleropyrrolidine with
a tertiary amine (Cgo-N) or a zwitterionic sulfobetaine (Cg-SB) gave single-junction PCE up to
8.91% with a Ag electrode (NREL certified), and a record high 9.78% with a Ca electrode
(Emrick-Russell-Duzhko).

Dithienylpyrrole-co-benzothiadiazole copolymers with varying substitution (alkyl, alkoxyaryl) on
the pyrrole group have been made using fairly new direct arylation polymerization, characterized,
and incorporated into test organic photovoltaic (OPV) devices (Lahti) having PCE up to 5.1%
after initial morphological optimization work. Polymer HOMO energies and band gaps for these
are well predicted by computational methodology using 1-D repeat unit symmetry; this method is
now being used to select new targets with desired electronic properties (Lahti-Wong[Sandia]).

A bis(hydroxyaryl)anilino-squaraine SQ-OH used as electron donor material with PC;;BM gives
PCE = 4.8% after morphological optimization. Grazing incident angle x-ray diffraction (GIXD)
shows "as-fabricated" SQ-OH/PC;;BM films to have varying amounts and sizes of SQ-OH
crystallites, depending on the fabrication procedure used. OPV films form 48 nm SQ-OH
crystallites (resonant soft x-ray scattering) in a largely PC,.BM matrix for devices made by using
a mixed solvent plus diiodooctane (DIO) slow-evaporating additive with thermal annealing.
(Thayumanavan-Lahti-Russell).

Fluorine-substituted di(aryl)anilino-squaraines SQ-F and SQ-CF3 added to P3HT give increased
PCE to 4.6% for "in-air" fabricated OPV devices using PC¢BM; this performance is much higher
than for in-air devices made with P3HT alone, and is comparable to PCE for highly optimized
P3HT OPV devices without SQ additives (Thayumanavan-Kumar[UM-Lowell]-Lahti).

Small molecule, molecular additives (electron acceptor fluorenes or anthracene substituted by
donor diarylamines) increase relative PCE by 33% in Gréatzel type D709-based DSSCs when
added in 1-3 mM concentrations to DSSC iodide/iodine dye-recharging solution, up to 4%
absolute PCE for devices made in open air. The improvements do not arise from improved light




harvesting (low optical density), but apparently by improving the iodide/iodine electron shuttle
efficacy -- the additives do not work without the iodide/iodine component (Lahti-Kumar[UM-
Lowell]).

% Increasing device active area from 0.1 to 0.25 mm? using a slot-die coating process (Fig. 8) for a
PTB7-PC,;:BM OPV device gave only a slight decrease in PCE from 6.23% to 5.43%. The 0.25
mm? area device compares well to the 7.1% PCE of a device using a "classic" spin-coated BHJ
film with only a 0.06 mm? active area (Russell).
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Fig. 8: (a) Mini slot die instrument; (b) conjugated polymer donor and PC71BM
acceptor; (c) I-V curves of BHJ devices fabricated by slot die coating using different
solvent compositions; (d) device performance statistics. DCB = ortho-dichlorobenzene,
CF = chloroform




5. MAJOR EFRC ACTIVITIES, RESULTS, FINDINGS, ACHIEVEMENTS

e Interlayers for Improving Photovoltaic Performance
Emrick and Russell, working with PHaSE Facility Director Duzhko, have shown that conjugated

polymers bearing zwitterionic sulfobetaine side
chains (CPZ polymers) can readily be processed
into ESLs that give up to 5-fold increases in
PCE relative to control OPV devices that do not
use the ESL, depending on the cathode material.
The magnitude of PCE improvement is
comparable or better than that achieved in
devices using LiF ESLs. The CPZ polymers
provide a low temperature methodology for
adding ESLs, since they can be spin coated from
polar solvents that are orthogonal to those that
dissolve typical neutral organic conjugated
active layer polymers. For tests using the hole
transport layer PTB7 and the interlayer CPZ
polymers the best device PCE was 7.74% for an
ITO/PEDOT-PSS/PTB7:PC,,.BM/PTBTSB-

2/Ag device having a PTBTSB-2 interlayer of 5
nm thickness. The PCE improvement (relative to
devices without ESLs) arises largely from
increases in Voc and FF. The increase in Vo, in
turn, is attributed to the largest interfacial dipole
value (—0.96 eV) induced in this study, at the
PTBTSB-2/Ag interface. Carbon K-edge total
electron yield (=10 nm) and Auger electron yield
()1 nm) NEXAFS spectra (obtained in
collaboration with D. DeLongchamp at NIST)
used to assess polymer chain orientation at
different film thicknesses indicate that the CPZ
polymers assume a face-on orientation with
respect to the underlying active layer, and that
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Fig. 9: Representative J-V characteristics for
ITO/PEDOT:PSS/PCE-10:PC71BM/(fulleropyrrolidine)/
cathode OPVs with bare Ag cathodes and with ~15 nm-
thick C60-N or C60-SB ESLs.

the aliphatic portions of the chains are not

oriented normal to the film surface. The zwitterionic side chains of the CPZ polymers can be considered
as dipoles fixed rigidly to the conjugated backbone, directing the negative charges towards the cathodic
surface. This orientation should and does reduce the cathode work function, but only for the first
monolayer or so: the strong distance dependence of the dipole interface effect is consistent with a thin, 5
nm film of CPZ polymer providing optimal effects.

Emrick and Russell, working with PHaSE Facility Director Duzhko, recently investigated
fulleropyrrolidines bearing a tertiary amine (C60-N) or a zwitterionic sulfobetaine (C60-SB) as cathode
ESLs in single junction polymer solar cells. Compared to ITO/PEDOT-PSS/PCE-10/(no ESL)/Ag OPV
devices that gave PCE = 2.75%, spin coated devices using a C60-N ESL gave a single-junction record
PCE =9.78% (Fig. 9). Overall, PCEs exceeding 8.5 % were obtained for OPVs made with Al, Ag, Cu or
Au cathodes, with Voc ~0.75 V being obtained regardless of the cathodic metal used. PCE > 6 % was
obtained over a wide range of interlayer thicknesses (~5-55 nm) using both C60-N and C60-SB.
Ultraviolet photoelectron spectroscopy (UPS) indicates that an interfacial energy “pinning” effect causes
the essentially cathode-independent device performances. A work function of 3.65 eV is obtained for Ag,
Cu and Au when a thin layer of C60-N is placed in contact with each metal. UPS and charge mobility



studies indicate that C60-N provides a truly Ohmic contact under the tested device conditions. The
relative ease of making C60-N and C60-SB, combined with their ability to create highly efficient OPVs,
makes these fulleropyrrolidines excellent models and candidates for further optoelectronic integration.

e Targeting Nanoscale-Networked, Fibrillar Active Layer Morphologies

Crystalline nanofibers (or nanowires) of poly (3-hexylthiophene) — one of the most studied polymers for
OPV applications - have attracted a great deal of
interest because of the potential for efficient
exciton or charge migration along specific | P3HT-b-P3MT  P3HT-b-P3ST
directions (transverse or parallel) with respect to i

I .
the nanofiber axis, processes which strongly | , </ & i »
depend on structural order and molecular e o f '
packing within the aggregate. Solution-based . )
assembly of such crystalline structures opens O, * \s/n/s‘mH
new possibilities for controlled interfacing. | 7 e, her

However, the inherent fragility of nanowire
assemblies is a key limitation, so preserving i — Bl
their pristine aggregate (n-m stacking) structure | """ sy

is seen as essential for efficient long-range e S
charge-transport. Emrick group recently made =&—‘.
cross-linked block-copolymer nanofibers from -
P3HT-b-P3MT and P3HT-b-P3ST (Fig. 10) that

are mechanically robust, and can be coated onto |Fig. 10: (Left) Structural schematic of the P3HT-

Surface& re_suspended, and/or mixed with a P3MT/P3ST diblock copolymers. Purple bars indicate
variety of dopants lamellar assembly of the P3HT blocks, while the blue

P3MT (P3ST) blocks participate in the cross-linking
Barnes and Emrick then probed the extent to |(yellow). (Top right) AFM surface height image of P3MT-
which arosslnking pertuths the anysaline I e T o)
aggreg_ate, and how dlﬁ_‘erent cr_oss-llnkmg gBot?z,m right) P’hotoluminescence image of dilute P3HT-b-
strategies can tune electronic properties such as |pamT cross-linked nanofibers cast on glass.
photoluminescence and charge separation efficiency—\While-the two-nanofiber families-have similar-gro
structure (and almost identical pre-cross-linked absorption spectra), they have completely different
photophysics. P3ST di-block nanofibers show almost unchanged excitonic coupling after cross-linking.
Cross-linked P3MT nanofibers show photoluminescence similar in electronic origin, vibronic structure,
and lifetime, to un-aggregated P3HT molecules, suggesting almost complete extinction of excitonic
coupling. Films of these materials were probed by bulk photoluminescence measurements and by
nanoscopic AFM and cAFM (Kelvin Probe Force Microscopy), as shown in Fig. 10. Overall, for the
P3ST system, the spatial extent of the cross-linking is approximately commensurate with the inter-
lamellar spacing, giving a minimally perturbed aggregate structure. For the P3MT system, the cross-
linking induces a high degree of strain on the P3HT aggregate block, disrupting both intra- and inter-
chain coupling.

e Soft Matter Nanoparticles: A General Strategy for Bulk Heterojunction Fabrication?

PHaSE has made major time and personnel investment in trying to devise a more generalizable
methodology for fabricating donor-acceptor BHJ films from organic components, that the typically
Edisonian variation of component concentrations, solvent mixtures, additives (such as DIO), and thermal
annealing that can be quite different for every new component tested. Venkataraman, Barnes, and
Dinsmore summarized such a potential methodology in 2011, for binary mixtures of organic
nanoparticles (NPs) to crease BHJ superlattices for photovoltaics. The basic goal is to pre-assemble
organic electron donor and acceptor components into separate nanoparticles, that are then hierarchically
assembled in BHJ films: the main variables would be use of different ratios of particles with different



diameters to alter the number and types of charge flow

pathways in the films. This is shown schematically in Fig.
n
Venkataraman's group now can prepare rr-P3HT NPs with
diameters down to 30 nm having <15% size variability. —M;lg;,f:;smle )HH‘H'H-LH-
Venkataraman and Dinsmore have formulated water-based
methodologies for either spray-coating NP films or lg’;}'_‘fiﬁ;bly
fabricating (larger) NP films at a water-oil interface for
removal. Venkataraman, Lahti, and Russell showed that +°
rr-P3HT NP films exhibited photogenerated hole carrier oo Q
charge transport even in the presence of excess SDS SR Geometric
surfactant (used to stabilize the NPs), with much improved Nanoscale Self-Assembly
charge motilities in films that were subjected to a simple
procedure to remove free surfactant from NP suspensions
before spray coating. Venkataraman and Maroudas have
found that the transport behaviors of the polymer NP films
can be reproduced very well with deterministic L ~102nm
computational models, allowing eventual extrapolation to Mesoscale  Nanoparticle Assembly
behaviors of new materials using similar NP particle sizes. _

. ] Fig. 11: Conceptual scheme for
Venkataraman, Lahti, and Dinsmore showed that both | ... chical pre-assembly of organic
binary mixtures of single component rr-P3HT and PCe:BM | (51vmer and/or material NPs, that are
NPs -- as well as binary component NPs using the same | sypsequently assembled into larger BHJ
components -- show photoconversion behavior.  While

others have recently demonstrated photoconversion using binary component NPs, this is the first evidence
that the most general strategy of using binary mixtures of single component NPs would give
photoconversion. cAFM even shows regions having high and low hold transport mobility on the scale
expected for a binary mixture of different NP components. Most notably, OPV devices made using
binary mixtures of rr-P3HT and PCs;BM NPs with a spray coated fabrication method have already be
made with PCE = 2.1%, the highest PCE reported for any organic NP based OPV to date. This is
comparable to PCEs obtained in unoptimized rr-P3HT:PC¢ BM spin coated BHJ OPV devices.

e Insitu, Real Time Characterization Under Commercially Relevant Conditions

Tremendous efforts have been made wordwide to develop efficient light absorbing materials and devices.
These advances have been achieved on laboratory scale devices and translation to large size scale devices
has always been met with significant reductions in the PCE. Spin coating is routinely used to prepare
laboratory-scale devices, while industrial processes have used blade or slot-die coating processes in a roll-
to-roll (R2R) setting. These coating processes are fundamentally different in terms of solvent removal
rate, which is critical in defining the kinetically-trapped morphologies encountered in the generation of
the active layers in OPVs that result from a delicate interplay between the ordering and assembly of the
hole-conducting polymer and a phase separation between the electron and hole conductors into
bicontinuous morphologies.

The mismatch in device fabrication processes makes it difficult to translate quantitative results obtained
from laboratory scale devices to commercially prepared large area devices, making optimization difficult.
Using a mini-slot die coater (Fig. 8), Russell addressed this issue, where the commercial process was
translated to the laboratory setting and real time, in situ to characterization of the active layer could be
performed as films are cast from solution. The evolution of the morphology in the active layer was
characterized under different drying conditions and a mechanism was proposed by which the morphology
in the dried film is produced. This mini-slot die coater offers a simple, convenient, materials efficient
route by which the morphology in the active layer can be optimized.



o Self- healing polymer sealant for encapsulating flexible solar cells

Venkataraman used polyisobutylene (PIB)-based fully printable self-healing sealant for protecting
organic photovoltaic (OPV) devices from degradation upon exposure to ambient environmental
conditions. These sealants can be coated on flexible substrates using any roll-to-roll processing methods.
PIB-based crosslinked sealants provide excellent device stability, especially the sealant made from the
low molecular weight PIB. Additionally, this sealant provides healing of damage even under sunlight,
albeit more slowly compared to that under UV light. Although various polymers such as polyvinyl
alcohol, polyurethane, poly(methyl methacrylate) or poly(methyl methacrylate)-polyolefin have been
used as a coating materials to protect organic active layers of OPVs from degradation. However, these
polymers are also susceptible to degradation and crack formation upon prolonged exposure to unfavorable
weather condition which ultimately allows moisture to pass through the coating and eventually damage
the OPV systems. Furthermore, these coating materials are generally too permeable to moisture and
oxygen. In this work, we demonstrated that PIB-based self-healing polymer sealants protect organic
photovoltaics from damages caused by prolong exposure to hot and humid environmental conditions. The
broad impact of this work is new materials for protecting the OPVs from environmental damages and
providing enhanced life times of the OPVs which will benefit the society.

e Self- Raising efficiency of organic solar cells with electrotropic additives

Incorporation of electrotropic additives with large molecular dipole moments into the bulk heterojunction
layer of organic photovoltaic devices followed by electric field poling led to an increase of power
conversion efficiency up to 7.97% from 7.17% for devices that did not utilize the additives and from
5.18% for devices with additives prior to poling. The improvement is due to more efficient extraction of
photogenerated charge carriers, resulting in higher short circuit current density and fill factor. The
observed effects are proposed to arise from a re-orientation of additive molecules in the external electric
field, i.e., electrotropism, leading to a macroscopic alignment of their dipole moments. This leads to an
increased built-in electrostatic potential difference in the device active layer post-poling. The dependence
of device performance on the polarity of poling bias and reversibility of the effect are demonstrated,
further supporting the proposed mechanism.
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6. COST STATUS

PHaSE EFRC Budget Report Year 5

Total Projected Current
Spent/Enc.
Budget $ 16,000,000 $16,000,00 $16,000,000
Equipment (all of the original equipment line item budget has been expended)
Personnel (all of the original personnel line item budget has been expended)

* Five-year equipment budget $1,260,000. Approval to purchase most equipment “up front” in the early
years of the project was requested at the first EFRC Director’s meeting (June 2009) and OK’d at that
meeting. This was desired to allow a faster startup for the center, especially critical properties
measurements needed to evaluate materials for possible utility in photovoltaic test devices. This
procedure was discussed periodically during the ordering of major equipment in the first fiscal year of the
project, including a site visit by Dr. Mark Pederson in early December 2009. This was also presented as
part of the management and operations review for PHaSE that took place in mid-May 2010, which was
overseen by DOE program officers (including Dr. Pederson) and by external reviewers. The management
plan for PHaSE was approved following that review meeting. Accordingly, we have continued with this
procedure for equipment purchasing since that time.

This summary does not include matching or additional funds from other sources that were used for capital
equipment outlays.

Additional External support to PHaSE from UMass Amherst:
1. Support for Facility Director Extension Assistant Professor position: $45,225 salary and $823
benefits, per 9-month appointment
2. Space for Photovoltaic and Optical Spectroscopy Center: 1306 sq ft in two adjacent rooms
3. A 10% reduction of indirect cost rate from the UMass rate that was standard at the time PHaSE
began, allowing more of the total costs to be allocated to direct costs.
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Total

Budget

Equipment

Personnel

* Five-year equipment budget was $1,260,000. Approval to purchase most equipment “up front” in the
early years of the project was requested at the first EFRC Director’s meeting (June 2009) and approved at
that meeting. This was desired to allow a faster startup for the center, especially critical properties
measurements needed to evaluate materials for possible utility in photovoltaic test devices. This
procedure was discussed periodically during the ordering of major equipment in the first fiscal year of the
project, including a site visit by Dr. Mark Pederson in early December 2009. This was also presented as
part of the management and operations review for PHaSE that took place in mid-May 2010, which was
overseen by DOE program officers (including Dr. Pederson) and by external reviewers. The management
plan for PHaSE was approved following that review meeting. Accordingly, we continued with that

Cumulative PHaSE EFRC Budget Report Years 1-5

Projected Current Spent/Enc.
$16,000,000 $16,000,000 $16,000,000 Total Costs
1,260,000* 1,260,000 $1,260,000* Direct Costs
6,000,000 6,172,000 $5,840,000 Direct Costs

procedure for equipment purchasing.

Current budget = original budget numbers.
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7. SCHEDULE STATUS

(a) Management Timelines. The original PHaSE EFRC proposal did not set Gantt-type timelines.

(b) Budget Schedule. The full 5-year PHaSE budget was front-loaded in August 2009 because PHaSE

was funded through ARRA. All funds have been expended.

(c) Research and Organizational Milestones. PHaSE was created in 2009 as a new research center at

UMass Amherst: it was not "spring-boarded" from a previously organized group of faculty or center.
A number of milestones given below were specifically identified by the 2010 DOE BES Management

Review, the 2012 Mid-term Scientific Review of PHaSE by DOE BES, and 2013 major internal
review by the PHaSE Internal Advisory Board (Energy Research Group coordinators).

Expansion of the Center's External Advisory Committee to six people was finalized.

Expansion of the Center's internal leadership group was fully implemented.

A near-field scanning optical microscopy (NSOM) setup was successfully completed.
Generally strengthened linkage of computational and experimental work was done.

New high risk, high potential yield research foci targeted in Year 4 was accomplished through:

(i) fabrication of polymer nanoparticles (NPs) into test photovoltaic devices (achieveing 2.1%
PCE by mixing P3HT NPs with PC61BM NPs, highest value in the world for this promising new
technology) (Venkataraman, Lahti, Dinsmore)

(ii) organic polymer zwitterion interlayers were fabricated as thin (5 nm) layers by an
orthogonal solvent procedure to tune electrode properties (Emrick, Russell)

(iii) the polymer zwitterion interlayer technique was computationally modeled by collaboration
between Russell (UMass) and Sumpter (Oak Ridge)

(iv) a new computational/experimental collaboration between Spano of Temple University and
Barnes of PHaSE at UMass was established and continues for the study of exciton dynamics in
aggregated, conjugated organic polymers and molecules.

(v) push-pull polymers incorporating benzothiadiazole and dithienylpyrrolo-pyrrole (DPP) that
were targeted in 2012 and 2013 PHaSE reviews were synthesized and tested in single junction,
bulk heterojunction devices (Lahti, Coughlin, Venkataraman)

(vii) synthesis and photovoltaic testing is well advanced for a novel set of triarylamino-
substituted squaraine compound being used as electron donor phases, both alone and in mixtures
with conjugated polymers or with solution-fabricated perovskites; the work comes from a team
comprising Thayumanavan, Lahti, and Kumar (UMass Lowell)

(viii) fabrication of bulk heterojunction (BHJ) organic polymer, single-junction photovoltaic
devices at or near the world's best PCE levels, e.g., a 8.91% NREL certified PCE with FF =
71.7% for a PCE10/PC7,BM photovoltaic device using an organic zwitterion interlayer (Russell,
Emrick)

8. CHANGES IN APPROACH OR AIMS

There have been no major changes in the project aims or research strategy/approach. Work increasedin
focus to fabricate test solar cells using the most promising new materials and methods to make them into

bulk heterojunctions and other electronic assemblies.

9. PROBLEMS OR DELAYS

none
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10. SABBATICALS, LEAVES OF ABSENCE, CHANGES OF KEY PERSONNEL OR TEAMING
ARRANGEMENTS

These have been described in previous annual reports.

11. PRODUCTS AND TECHNOLOGY TRANSFER

(a) Journal and Book Publications

All papers, articles, and book chapters are listed at www.energyfrontier.us per DOE BES instructions.

From 1 August 2009 to 1 December 2016, 188 articles have appeared or are in press acknowledging
PHaSE EFRC support (not counting basic meeting abstracts). The se are provided in Appendix 1.

(b) Other Publications

o (We chose not to list basic meeting abstracts or other non-refereed publications.)

e The following articles acknowledging PHaSE-supported work were selected for special
recognition in the relevant journals in which the articles were published. These cover art recognitions
(including cover and frontpiece art) publicize PHaSE and the EFRC program.

O

(Cover) “Using Light To Guide the Motion of Nanorods in Photoresponsive Binary Blends:
Designing Hierarchically Structured Nanocomposites” by Ya Liu, Olga Kuksenok, and Anna
C. Balazs (Balazs, UPitt) for pages 12785-12795 of Langmuir, October 15, 2013: Vol. 29,
Issue 41.

(Frontpiece) “Efficient Charge Transport in Assemblies of Surfactant-Stabilized
Semiconducting Nanoparticles” by Monojit Bag et al. (Venkataraman, Lahti, Russell) for
pages 6411-6415 of Advanced Materials, November 26, 2013: Vol. 26, Issue 44.
(Frontpiece) “Photovoltaic Effect at the Schottky Interface with Organic Single Crystal
Rubrene” by Supravat Karak et al. (Briseno) for pages 1039-1046 of Advanced Functional
Materials, February 26, 2014: Volume 24, Issue 8.

(Frontpiece) “Highly Stretchable Nanoparticle Helices Through Geometric Asymmetry and
Surface Forces” by Jonathan T. Pham et al. (Grason, Emrick, Crosby) for pages 6703-6708
of Advanced Materials, December 10, 2013: Volume 25, Issue 46.

(Editor's Choice Article) “Highly Stretchable Nanoparticle Helices Through Geometric
Asymmetry and Surface Forces” by Peng Liu et al. (Russell) has just appeared online at
DO0I:10.1021/cm500953e of Chemistry of Materials, April 14, 2014:
dx.doi.org/10.1021/cm500953e.

(c) Selected websites that publicized, highlight, or use PHaSE work

e "PHaSE Energy Frontier Research Center at UMass Amherst" (www.cns.umass.edu/efrc).
This site was significantly revamped this year in terms of content and format.
Public site with details of PHaSE personnel, facilities, news, publication listing, useful links.
Password protected secure intranet site includes PHaSE internal reporting site,
presentation/discussion group archives, materials for use of External Advisory Committee members
during virtual meetings.
e " Solar PHaSE. Advancing the frontiers of polymer-based photovoltaic research”
(www.umass.edu/researchnext/solar-phase). Featured in March-(present) research news webpage
from UMass Amherst Research Next.
o "Power Polymers -- Developing the next generation of solar cells" (www.umass.edu/
researchnext/power-polymers) and " Light Show: Next Generation of Solar Cells"
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(www.umass.edu/researchnext/light-show-next-generation-solar-cells) still show PHaSE work from
2012-2013 at the research news webpage from UMass Amherst Research Next.

e "Science Works for U.S." (www.scienceworksforus.org/massachusetts/scientists-seek-better-
ways-to-harvest-sun-s-power-for-electricity). Webpage for ScienceWorksForU.S., a project of the
Association of American Universities. The specific page gives a summary of PHaSE's research as an
Energy Frontier Research Center.

o "The Role of Molecular Architecture in Organic Photovoltaic Cells", (pubs.acs.org/page/jpclcd/
dv-video.html). This is an American Chemical Society Office of Public Affairs video that describes
findings supported (in part) by PHaSE. It is linked from a perspectives article published in J. Phys.
Chem. Lett. by UMass Amherst PHaSE members -- the text article acknowledges PHaSE support.

e A Timeline of Photovoltaic Progress (www.tiki-toki.com/timeline/entry/62320/
Photovoltaics/#vars!date=1839-09-29_00:00:00!). A "discovery" based website describing progress
made in the area of photovoltaic cells, particularly in the area of organic-based solar cells (Plastic
solar cells). The time line starts with Becquerel's observation of the photoelectric effect, and includes
links to the DOE BES EFRC program at the DOE's description for the PHaSE center. The page is
pitched at a level to interest any science-minded person, young to old.

e "Science Cinema" (www.osti.gov/sciencecinema/product.biblio.jsp?osti_id=1027996). From the
DOE multimedia website, UMass Amherst video clip entry for EFRC program.

(d) Inventions, Patents, Disclosures

A table for patents field are in Appendix 2.
(e) Other Products (invited presentations, symposia, infrastructure improvements)

(i) Symposia
A PHaSE mini-symposium will be featured at the 14 May 2014 UMass Amherst Spring Polymer
Event attended by numerous companies and organizations interested in applying polymer and
materials science.

(ii) Special Invited Presentations by PHaSE Leadership Members.

PHaSE senior scientists made over 75 invited and contributed presentations at nationally meetings
and venues, and over a dozen invited presentations internationally, describing work enabled by
PHaSE support.

Examples by PHaSE Leadership Senior Investigators:

PHaSE co-director Lahti gave 4 international talks focusing on PHaSE work: Universidade de Minas
Gerais, Belo Horizonte, Brazil (27 September 2013); Universidade Federal do Rio de Janeiro,
Brazil (4 October 2013); Waseda University, Tokyo, Japan (9 October 2013); Keio University,
Tokyo, Japan (9 October 2013). He also spoke about organic based photovoltaics to the ACS
Connecticut Valley Section overseen round of the 2014 U.S. National Chemistry Olympiad held at
UMass Amherst on 18 Mar 2014).

PHaSE co-director Russell gave invited international presentations at AIMR Tohoku University (18
March 2014) and Waseda University (18 March 2014). He also gave an invited talk at the 2014
Triennial Review of the Advanced Light Source at LBNL.

PHaSE ERG 1 coordinator Emrick spoke about “New functional hydrophilic polymers in materials
applications,” at the ACS National Meeting (Dallas, 16 March 2014) and about “Directing
assembly of polymer-functionalized nanoparticles in fluids and on substrates,” at the ACS National
Meeting (Indianapolis, 8 September 2013).

PHaSE ERG 2 coordinator Venkataraman spoke about "Geometry and Entropy as New Tools for
Self-Assembly”, at the Indo-US Symposium on Molecular Materials, Indian Institute of Science
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(Bangalore, 15 July 2013) and about “Polymer Nanoparticle Assemblies” at the ACS National
Meeting (Indianapolis, 10 Sept 2013).

PHaSE ERG 3 co-coordinator Barnes spoke about “Tuning Exciton Coupling in P3HT
Nanostructures,” at the ACS National Meeting (Indianapolis, 7 Sept 2013).

PHaSE ERG 3 co-coordinator Maroudas spoke about “Computational Analysis of Electronic and
Mechanical Properties of Graphene/Diamond Superstructures,” at the VI Brazilian Congress on
Applied Thermodynamics (Uberlandia, MG, Brazil, November 2013).

(iii) Infrastructure Improvements

e University of Massachusetts Amherst, PHaSE Photovoltaic & Optical Spectroscopy Facility was
established and continues to operate under independent funding.

e A near-field scanning optical microscopy (NSOM) setup was successfully completed and continues
to operate under independent funding.
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