

LA-UR-16-29183

Approved for public release; distribution is unlimited.

Title: Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Plutonium Metals, Oxides, and Solutions on the High Performance Computing Platform Moonlight

Author(s): Chapman, Bryan Scott  
Gough, Sean T.

Intended for: Report

Issued: 2016-12-05

---

**Disclaimer:**

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.



*Criticality Safety Technical Document*  
*Nuclear Criticality Safety Division*

*To: NCS File*  
*Through: S. A. Parra, NCS, E585* *SAP*  
*From: S. T. Gough, NCS, E585* *STG*  
*From: B. S. Chapman, NCS, E585* *BC*  
*Phone/Fax: 7-3477*  
*7-1629*  
*Email: sgough@lanl.gov*  
*bschapman@lanl.gov*  
*Symbol: NCS-TECH-15-005*  
*Date: 2015-05-12*

**Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Plutonium Metals, Oxides, and Solutions on the High Performance Computing Platform Moonlight**

### 1.0 Summary

Nuclear criticality safety analyses are performed for all fissile material systems and operations at facilities that handle fissile material. The nuclear criticality safety analysis establishes the nuclear safety operating limits for fissile material systems and operations. Calculational methods are used to provide an estimate of criticality conditions, and sensitivity analyses are run to determine the margin of subcriticality for all fissile material systems and operations. The computational methods predict the neutronic behavior of the fissile material system or operation of interest. However, the computer code must be validated because certain approximations are inherent in the computer code used, including neutron cross section data and statistical uncertainty.

Validation compares the computational method with benchmark critical experiments to determine any bias that might exist between the calculated results of a given system and the benchmark critical experiment conditions. It is a process that determines and establishes computational method applicability, adequacy, and uncertainty.

This report documents a validation of the MCNP6 Version 1.0 (Reference 2) computer code, on the High-Performance Computing (HPC) platform Moonlight, for operations at Los Alamos National Laboratory (LANL) that involve plutonium metals, oxides, and solutions. The validation is conducted using the ENDF/B-VII.1 continuous energy group cross section library at room temperature (293.6 K). The results are for use by nuclear criticality safety personnel in performing analysis and evaluation of various facility activities involving plutonium materials. Through the selection and validation of appropriate benchmark critical experiments and analysis, this report validates the computational methods for an entire range of normal and abnormal operating conditions involving fissile material. The benchmark critical experiments are modeled as reported in NEA/NCS/DOC (95)03 (Reference 1).

### 2.0 MCNP6 Verification

The MCNP6 version 1.0 code has been verified on the Moonlight cluster (Reference 3). The HPC platform Moonlight is hosted and maintained by the HPC division. The hardware consists of nodes having two Eight-Core Intel Xeon model E5-2670 processor chips at 2.6 GHz. The operating system is Clustered High Availability Operating System (CHAOS), a Lawrence

Livermore National Laboratory-modified version of RedHat Linux. The input and output files for the benchmark critical experiments modelled are stored in a controlled directory, as documented in Appendix 1.

## 2.1 MCNP6 Summary

MCNP is a general-purpose Monte Carlo N-Particle code that can be used for neutron, photon, electron, or coupled neutron/photon/electron transport, including the capability to calculate eigenvalues for critical systems. The code treats an arbitrary three-dimensional configuration of materials in geometric cells bounded by first- and second-degree surfaces and fourth-degree elliptical tori.

Pointwise cross section data are used. For neutrons, all reactions given in a particular cross section evaluation (such as ENDF/B-VII.1) are accounted for. Thermal neutrons are described by both the free gas and  $S(\alpha, \beta)$  models. For photons, the code accounts for incoherent and coherent scattering, the possibility of fluorescent emission after photoelectric absorption, absorption in pair production with local emission of annihilation radiation, and bremsstrahlung. A continuous-slowng-down model is used for electron transport that includes positrons,  $\gamma$  x-rays, and bremsstrahlung, but does not include external or self-induced fields.

Important standard features that make MCNP very versatile and easy to use include a powerful general source, criticality source, and surface source; both geometry and output tally plotters; a rich collection of variance reduction techniques; a flexible tally structure; and an extensive collection of cross section data.

## 2.2 ENDF/B-VII.1 Cross Section Library

The ENDF/B-VII.1 cross section library at room temperature (293.6 K) is used for the benchmark critical experiment calculations in this validation analysis. A list of the nuclides benchmarked in this evaluation is provided in Table 1. All of these nuclides were identified with the 80c extension in the cases executed for the validation.

**Table 1 Library Definitions of Evaluated Nuclides**

| Element   | ZAID  | Element    | ZAID  |
|-----------|-------|------------|-------|
| Hydrogen  | 1001  | Gallium    | 31069 |
| Lithium   | 3006  |            | 31071 |
|           | 3007  | Zirconium  | 40090 |
| Beryllium | 4009  |            | 40091 |
| Boron     | 5010  |            | 40092 |
|           | 5011  |            | 40094 |
| Carbon    | 6000  |            | 40096 |
| Nitrogen  | 7014  | Molybdenum | 42092 |
|           | 7015  |            | 42094 |
| Oxygen    | 8016  |            | 42095 |
|           | 8017  |            | 42096 |
| Sodium    | 11023 |            | 42097 |
| Magnesium | 12024 |            | 42098 |
|           | 12025 |            | 42100 |
|           | 12026 | Silver     | 47107 |

| Element    | ZAID  |
|------------|-------|
| Aluminum   | 13027 |
| Silicon    | 14028 |
|            | 14029 |
|            | 14030 |
| Phosphorus | 15031 |
| Sulfur     | 16032 |
|            | 16033 |
|            | 16034 |
|            | 16036 |
| Chlorine   | 17035 |
|            | 17037 |
| Argon      | 18036 |
|            | 18038 |
|            | 18040 |
| Potassium  | 19039 |
|            | 19040 |
|            | 19041 |
| Calcium    | 20040 |
|            | 20042 |
|            | 20043 |
|            | 20044 |
|            | 20046 |
|            | 20048 |
| Titanium   | 22046 |
|            | 22047 |
|            | 22048 |
|            | 22049 |
|            | 22050 |
| Vanadium   | 23050 |
|            | 23051 |
| Chromium   | 24050 |
|            | 24052 |
|            | 24053 |
|            | 24054 |
| Manganese  | 25055 |
| Iron       | 26054 |
|            | 26056 |
|            | 26057 |
|            | 26058 |
| Cobalt     | 27059 |
| Nickel     | 28058 |
|            | 28060 |
|            | 28061 |
|            | 28062 |
|            | 28064 |
| Copper     | 29063 |
|            | 29065 |
| Zinc       | 30064 |
|            | 30066 |
|            | 30067 |
|            | 30068 |
|            | 30070 |

| Element    | ZAID  |
|------------|-------|
|            | 47109 |
| Cadmium    | 48106 |
|            | 48108 |
|            | 48110 |
|            | 48111 |
|            | 48112 |
|            | 48113 |
|            | 48114 |
|            | 48116 |
| Tin        | 50112 |
|            | 50114 |
|            | 50115 |
|            | 50116 |
|            | 50117 |
|            | 50118 |
|            | 50119 |
|            | 50120 |
|            | 50122 |
|            | 50124 |
| Barium     | 56130 |
|            | 56132 |
|            | 56134 |
|            | 56135 |
|            | 56136 |
|            | 56137 |
|            | 56138 |
| Gadolinium | 64152 |
|            | 64154 |
|            | 64155 |
|            | 64156 |
|            | 64157 |
|            | 64158 |
|            | 64160 |
| Tantalum   | 73181 |
| Tungsten   | 74182 |
|            | 74183 |
|            | 74184 |
|            | 74186 |
| Lead       | 82204 |
|            | 82206 |
|            | 82207 |
|            | 82208 |
| Bismuth    | 83209 |
| Thorium    | 90232 |
| Uranium    | 92234 |
|            | 92235 |
|            | 92238 |
| Plutonium  | 94238 |
|            | 94239 |
|            | 94240 |
|            | 94241 |
|            | 94242 |
| Americium  | 95241 |

In addition to the above, several room temperature  $S(\alpha, \beta)$  tables are used to model thermal scattering in certain materials, as shown in Table 2.

**Table 2 Library Definitions of Evaluated  $S(\alpha, \beta)$  Tables**

| Material        | ZAID               | $S(\alpha, \beta)$ |
|-----------------|--------------------|--------------------|
| Aluminum        | 13027              | al27.22t           |
| Be Metal        | 4009               | be.20t             |
| BeO             | 4009               | be-o.20t           |
|                 | 8016, 8017, 8018   | o-be.20t           |
| Iron            | 26056              | fe56.22t           |
| Graphite        | 6000, 6012         | grph.20t           |
| Light Water     | 1001               | lwtr.20t           |
| Polyethylene    | 1001               | poly.20t           |
| Silicon Dioxide | 8016, 14028, 14029 | sio2.30t           |

### 3.0 Validation Methodology

ANSI/ANS-8.1 (Reference 4) requires that calculational methods used for nuclear criticality safety (e.g., to determine the  $k_{\text{eff}}$  of a system or derive subcritical limits) be validated to determine the appropriate biases and bias uncertainties for the areas of applicability. The bias and bias uncertainty represent the numerical difference between the results of modeling benchmark critical experiments with a computer code and the measured experimental  $k_{\text{eff}}$ . These biases may result in either under- or over-predictions of criticality, and the bias may be reported as either positive or negative. A positive bias occurs when the computations tend to report a higher  $k_{\text{eff}}$  than the benchmark critical experiments (i.e.,  $k_{\text{eff}} > 1.0$ ), while a negative bias occurs when the calculated results tend to report a lower  $k_{\text{eff}}$  than the benchmark critical experiments (i.e.,  $k_{\text{eff}} < 1.0$ ).

Biases (and their associated bias uncertainties) are determined through statistical treatment of the calculated results from benchmark critical experiments. Weighted single sided lower tolerance limits are used for statistical calculations in this validation report when the calculated results are normally distributed. A non-parametric method is used herein when the calculated results are not from a normal distribution.

When performing calculations to assess the subcriticality of a fissile material system or operation, a limit must be established on the calculated  $k_{\text{eff}}$  to ensure that subcriticality is maintained. This limit is defined for the purposes of this validation as the Upper Subcritical Limit (USL). In this validation, the USL is determined by statistical analysis of the calculated  $k_{\text{eff}}$  data from the benchmark critical experiments. An additional Margin of Subcriticality (MoS) is added to ensure subcriticality. Also, an additional area of applicability margin (AoA) may be necessary for uncertainties related to interpolation and extrapolation beyond the validated area of applicability.

#### 3.1 Establishment of an Upper Subcritical Limit (USL)

The purpose of a computer code validation is to determine values of  $k_{\text{eff}}$  that are demonstrated to be subcritical (i.e., at or below the USL) for areas of applicability similar to fissile material systems or operations being analyzed. The USL is defined as follows:

$$USL = 1.0 + \text{Bias} - \text{Bias Uncertainty} - \text{MoS} - \text{AoA}$$

where:

|                    |                                                                                                                |
|--------------------|----------------------------------------------------------------------------------------------------------------|
| Bias =             | difference between benchmark critical experimental conditions and the calculated results of those experiments. |
| Bias Uncertainty = | statistical uncertainty in the bias                                                                            |
| MoS =              | margin of subcriticality (See Section 3.2)                                                                     |
| AoA =              | additional margin for calculations outside the area of applicability (see Section 3.3)                         |

The bias and its associated bias uncertainty may be represented by one of several statistical methods, as described in Section 3.4).

A  $k_{\text{eff}}$  calculated by an analysis is then required to meet the following condition:

$$\text{calculated } k_{\text{eff}} + 2\sigma \leq \text{USL}$$

where  $\sigma$  is the Monte Carlo statistical uncertainty associated with the analysis. Using  $2\sigma$  provides the 95% confidence level that the Monte Carlo calculated  $k_{\text{eff}}$  will remain below the USL.

### 3.2 Margin of Subcriticality

As defined in Section 3.1, the USL explicitly incorporates a margin of subcriticality (MoS), which is required per ANSI/ANS-8.24 (Reference 10). The MoS is an additional administrative margin applied to nuclear criticality safety calculations. Section 6.4 of Reference 10 states that:

*“A margin of subcriticality shall be applied that is sufficiently large to ensure that calculated conditions will actually be subcritical. The selection of a margin of subcriticality should take into account the sensitivity of the system or process to variations in fissile form, geometry or other physical characteristics. A single margin might not be appropriate over the entire validation applicability.”*

The phrase “ensure subcriticality” in ANSI/ANSI 8.24 implies that the analyst should not have any reservations that the condition modeled is actually subcritical. This cannot be done with normal statistical methodologies and therefore relies on an administrative margin to ensure subcriticality.

Reference 11 provides guidance on the selection of an appropriate MoS. However, it is ultimately the responsibility of the analyst to apply the proper MoS for the system being analyzed, and careful consideration needs to be taken when this determination is being made.

### 3.3 Area of Applicability

The area of applicability determination quantifies parameters potentially important to the computational calculation of  $k_{\text{eff}}$ . An area of applicability determination should be performed as a part of every calculation performed and compared to the area of applicability of the benchmark critical experiments used for the code validation. This comparison insures that the selected USL

is valid for the calculations being performed. For systems which are outside the validation area of applicability, an area of applicability margin (AoA) may also be warranted, depending on the specific problem being analyzed. The analyst must document and justify any extrapolation beyond the validation area of applicability, including any chosen margin. Guidance for extrapolation may be found in LA-12683 (Reference 5), specifically Appendix E of that report.

### 3.4 Discussion of Statistical Analysis

The bias and its associated bias uncertainty may be represented by one of several statistical methods depending on whether the data follows a normal distribution. A weighted, single sided lower tolerance limit analysis is used herein when the data has a normal statistical distribution. A weighted, single sided lower tolerance limit is a single lower limit above which a defined fraction of the true population of  $k_{\text{eff}}$  is expected to lie, with a proscribed confidence and with the defined area of applicability. A lower tolerance limit should be used when there are no apparent trends in the benchmark results.

If the data does not have a normal statistical distribution, a non-parametric statistical treatment must be used. The method used for analysis of data with a non-normal distribution is taken from NUREG/CR-6698 (Reference 9). It should be noted that this approach is more conservative than other methods for dealing with non-normal data distribution, for example calculating a distribution-free confidence interval based on the sign test as presented Reference 6.

#### 3.4.1 Normality Testing of Data

There are several tests which can be performed to determine if data follows a normal distribution. For cases with greater than 50 data points used in establishing the area of applicability, the modified Chi Square test, Kolmogorov-Smirnov test, or Lilliefors test may be utilized. The methodology for these tests can be found in NUREG/CR-4604 (Reference 7) and Natrella (Reference 8).

For the modified Chi Square test, the benchmark critical experiment data are ordered and grouped into classes. For each class, the data range midpoint ( $m_j$ ) and data point frequency ( $O_j$ ) are recorded. The method of moments is used to estimate the mean ( $\bar{\mu}$ ) and the variance ( $\bar{\sigma}^2$ ):

$$\bar{\mu} = \sum_{j=1}^c \frac{O_j m_j}{n}$$

$$\bar{\sigma}^2 = \left[ \sum_{j=1}^c \frac{O_j m_j^2}{n} \right] - \bar{\mu}^2$$

where  $n$  is the number of benchmark critical experiments and  $c$  is the number of classes in which the experimental data are grouped.

The expected values  $E_j$  are then computed for a normal distribution with mean  $\bar{\mu}$  and variance  $\bar{\sigma}^2$ . The test statistic is computed using the following:

$$\chi^* = \left[ \sum_{j=1}^c \frac{O_j^2}{E_j} \right] - n$$

$\chi^*$  is compared to  $\chi^2_{1-\alpha}(c - k - 1)$  obtained from Table A4 of Reference 7, where  $k$  is the number of unspecified parameters and  $\alpha$  is 0.05. If  $\chi^*$  is less than  $\chi^2_{1-\alpha}(c - k - 1)$ , the hypothesis that the data is from a normal distribution is supported.

For the Kolmogorov-Smirnov test, the empirical cumulative distribution function (cdf)  $G(x)$  from the random sample is compared with the hypothesized cdf  $F^*(x)$ . The empirical cdf is a function of  $x$ , which equals the fractions of the observations  $x_i$  that are less than or equal to  $x$  for each  $x$ ,  $-\infty < x < \infty$ . The test statistic is calculated as follows:

$$T^* = \sup_x |F^*(x) - G(x)|$$

The supremum requires comparing  $F^*(x)$  to  $G(x)$  both just before and just after each step in  $G(x)$ . Both  $|F^*(x_i) - G(x_i)|$  and  $|F^*(x_i) - G(x_{i-1})|$  are calculated and  $T^*$  is the largest of the absolute differences over all  $i$ . If  $T^*$  is less than  $w_{1-\alpha}$  (determined from Table A17 in Reference 7), the hypothesis that the data are from a normal distribution is supported.

For the Lilliefors test, the standardized sample values are calculated:

$$z_i = \frac{x_i - \bar{x}}{s}$$

where:  $x$  = sample mean  
 $s$  = sample standard deviation

The test consists of letting  $F^*(z)$  be the standard normal cdf and then comparing it to the empirical cdf of the  $z_i$ s, denoted by  $G(z)$ . The Lilliefors test statistic is the greatest difference between  $F^*(z)$  and  $G(z)$ , i.e.:

$$T^* = \sup_z |F^*(z) - G(z)|$$

$T^*$  is the largest of all values  $|F^*(z_i) - G(z_i)|$  or  $|F^*(z_i) - G(z_{i-1})|$ . Values of  $F^*(z_i)$  are obtained from Table A3 in Reference 7. The table consists of values for the cumulative standard normal distribution.  $T^*$  is compared to  $w_{1-\alpha}$ , obtained from Table A18 of Reference 7. The variable  $w_{1-\alpha}$  is dependent on the sample size as well as the desired level of significance. If  $T^*$  is less than  $w_{1-\alpha}$ , the data are probably from a normal distribution.

### 3.4.2 Weighted Single Sided Lower Tolerance Limit

If the benchmark critical experiment results are verified to be part of a normal distribution, a weighted, single sided lower tolerance limit technique may be used to construct a USL for criticality safety. The weighted, single sided lower tolerance limit is calculated with a 95% confidence that 95% of the benchmark data lies above it. Thus, a calculation involving a subcritical system would have a 95% confidence that 95% of all calculations performed on it would yield a result less than the tolerance limit. The weighted, single sided lower tolerance limit is calculated using the method presented in NUREG/CR-6698 (Reference 9). Note that “*This method cannot be used to extrapolate the area of applicability beyond the limits of the validation data*” (Reference 9).

First, take the equation from Section 3.1 where the USL is defined as follows:

$$USL = 1.0 + \text{Bias} - \text{Bias Uncertainty} - \text{MoS} - \text{AoA}$$

Then, bias is defined as: Bias =  $\bar{k}_{\text{eff}} - 1$  if  $\bar{k}_{\text{eff}} < 1$ , otherwise Bias = 0. This is done to eliminate any positive, non-conservative bias. Then, with Bias Uncertainty =  $K^* S_t$ :

$$USL = \bar{k}_{\text{eff}} - K^* S_t - \text{MoS} - \text{AoA}, \bar{k}_{\text{eff}} < 1 \text{ or}$$

$$USL = 1 - K^* S_t - \text{MoS} - \text{AoA}, \bar{k}_{\text{eff}} \geq 1$$

where:

|                          |                                                                                                                             |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| $USL =$                  | Maximum subcritical value of $k_{\text{eff}}$                                                                               |
| $\bar{k}_{\text{eff}} =$ | weighted mean $k_{\text{eff}}$ value of the benchmark critical experiments                                                  |
| $K^* =$                  | tolerance factor, 2.065 for the 95% confidence level (Reference 9)                                                          |
| $S_t =$                  | square root of the pooled variance                                                                                          |
| $S^2 =$                  | variance about the mean                                                                                                     |
| $\text{MoS} =$           | margin of subcriticality                                                                                                    |
| $\text{AoA} =$           | additional margin for calculations outside the area of applicability (i.e., interpolation within the area of applicability) |

and

$$\bar{k}_{\text{eff}} = \frac{\sum \frac{1}{\sigma_i^2} k_{\text{eff}} i}{\sum \frac{1}{\sigma_i^2}}$$

$$S^2 = \frac{(\frac{1}{n-1}) \sum \frac{1}{\sigma_i^2} (k_{\text{eff}} - \bar{k}_{\text{eff}})^2}{\frac{1}{n} \sum \frac{1}{\sigma_i^2}}$$

$$\sigma_i = \sqrt{(\sigma_s^2 + \sigma_e^2)}$$

$$\bar{\sigma}^2 = \frac{n}{\sum \frac{1}{\sigma_i^2}}$$

$$S_t = \sqrt{(S^2 + \bar{\sigma}^2)}$$

where:

- $\sigma_s$  = Monte Carlo statistical uncertainty associated with calculations that modeled the benchmark critical experiments
- $\sigma_e$  = experimental uncertainty associated with the benchmark critical experiment
- $\bar{\sigma}^2$  = average uncertainty

The statistical uncertainty,  $\sigma_s$ , is the Monte Carlo standard deviation calculated by the code and reported in the output for each benchmark critical experiment. If available, the experimental uncertainty,  $\sigma_e$ , is determined through rigorous evaluation of each benchmark critical experiment. NEA/NCS/DOC (95)03 documents such evaluations and thus reports an experimental uncertainty.

### 3.4.3 Non-Parametric Analysis

If the benchmark critical experiment results are not normally distributed, then the data can be analyzed using non-parametric techniques. The method used for this validation is taken from NUREG/CR-6698 (Reference 9). As stated previously, this approach is more conservative than other non-parametric techniques available to determine distribution-free confidence interval. This method results in a determination of the degree of confidence that a fraction of the true population of data lies above the smallest observed value. This determination is calculated as follows:

$$\beta = 1 - \sum_{j=0}^{m-1} \frac{n!}{j!(n-j)!} (1-q)^j q^{n-j}$$

where:

- $\beta$  = level of confidence
- $q$  = the desired population fraction (0.95 for this validation)
- $n$  = the number of data in one data sample
- $m$  = the rank order indexing from the smallest sample to the largest ( $m=1$  for the smallest sample); non-parametric techniques do not require reliance upon distributions but are rather an analysis of ranks
- $j$  = the ranked sample in the sample population being evaluated

As stated in NUREG/CR-6698, for a desired population fraction of 95% and a rank order of 1 (the smallest data sample), the equation simplifies to:

$$\beta = 1 - 0.95^n$$

For a non-parametric set of data, the combination of bias and bias uncertainty is represented by the minimum calculated  $k_{\text{eff}}$  in the data set, the associated uncertainty, and a non-parametric margin. The USL is then determined as follows:

$$\text{USL} = \text{Smallest } k_{\text{eff}} \text{ value in the data set} - \sigma_t - \text{NPM} - \text{MoS} - \text{AoA}$$

where:

|            |                                                                                                                                    |
|------------|------------------------------------------------------------------------------------------------------------------------------------|
| $\sigma_t$ | = combined uncertainty corresponding to the smallest $k_{\text{eff}}$ value in the data set (i.e., calculational and experimental) |
| NPM        | = non-parametric margin, determined from $\beta$                                                                                   |
| MoS        | = margin of subcriticality                                                                                                         |
| AoA        | = additional margin for calculations outside the area of applicability                                                             |

The non-parametric margin is an additional amount subtracted from the lowest data point to account for sample size and non-normal distribution of the data. Recommended values for the non-parametric margin are established in NUREG/CR-6698, Table 2.2.

## 4.0 Benchmark Experiments

The benchmark critical experiments modeled herein are described below. The chosen benchmark critical experiments comprise 261 individual cases, including 68 plutonium metal cases, 35 plutonium oxide cases, and 158 plutonium nitrate solution cases. These benchmarks were chosen to encompass the range of normal and credible abnormal operating conditions anticipated for systems or processes to which this validation will be applied. The benchmarks were chosen to cover a wide variety of plutonium forms (e.g., Pu metal,  $\text{PuO}_2$ ,  $\text{Pu}(\text{NO}_3)_4$ ), moderation, homogeneity or heterogeneity,  $^{240}\text{Pu}$  content, spectra, and geometry. Note, however, that MCNP6 is a Monte Carlo code and does not employ quadrature, meshes (except for tallies), or cell homogenization. Therefore, it is not a significant concern if certain geometries are not covered in the chosen benchmark critical experiments.

The benchmark critical experiments were taken from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (NEA/NCS/DOC (95)03). A summary of the benchmark critical experiment information is listed in Appendix 2.

### 4.1 Normalization of $k_{\text{eff}}$

If a critical experiment being modeled was at other than a critical state, (i.e., slightly super or subcritical), NUREG/CR-6698 recommends that the calculated  $k_{\text{eff}}$  be adjusted. This adjustment is done by normalizing the  $k_{\text{calc}}$  value to the experimental value. This normalization assumes that the inherent bias in the calculation is not affected by the normalization, which is valid for small differences in  $k_{\text{eff}}$ . To normalize  $k_{\text{eff}}$ , the following formula applies:

$$k_{\text{normal}} = k_{\text{calc}} / k_{\text{exp}}$$

The  $k_{\text{normal}}$  values are presented in Section 4.2 and are used in place of  $k_{\text{eff}}$  in the subsequent normality testing and determination of the USL.

## 4.2 Experimental and Calculated Results

The experimental  $k_{\text{eff}}$  and uncertainty data listed in Table 3 are obtained from Reference 1 for each benchmark critical experiment. Further, the experimental uncertainty is combined with the calculated uncertainty by taking the square root of the sum of the squares to yield a total uncertainty for each benchmark critical experiment. The total uncertainty is used as input to the statistical analysis.

The calculated results shown in Table 3 were produced using MCNP6 with ENDF/B-VII.1 cross sections running on the HPC platform Moonlight. They were run with a minimum of 5,000 neutrons per cycle, skipping the first 25 cycles, and running for 225 total cycles. All of the calculated results meet the Shannon entropy test utilized in MCNP6 to show convergence. The lowest calculated  $k_{\text{normal}}$  value is highlighted.

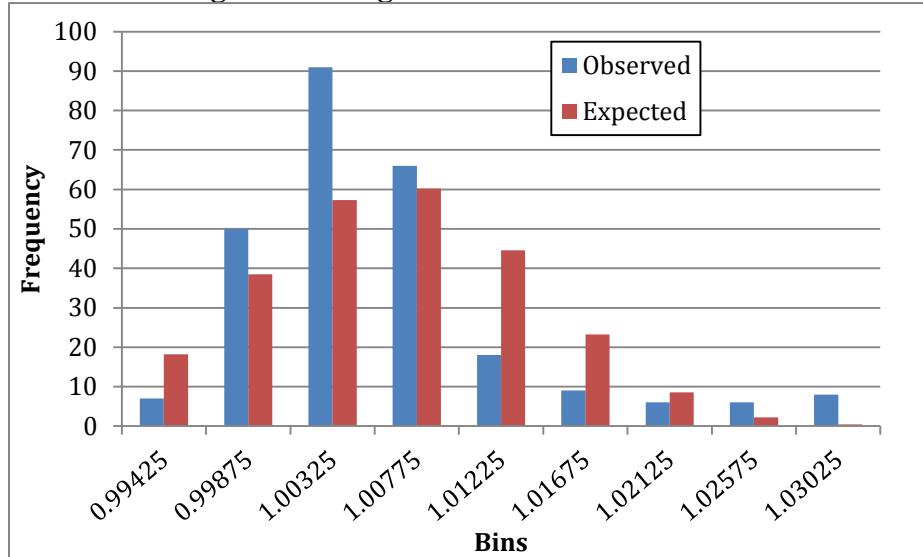
**Table 3 Experimental and Calculated Results**

| Benchmark             | Calc.<br>$k_{\text{eff}}$ | Calc.<br>$\sigma$ | ANECF<br>(MeV) | EALF<br>(MeV) | Exp.<br>$k_{\text{eff}}$ | Exp.<br>$\sigma$ | $k_{\text{normal}}$ | Total<br>$\sigma$ |
|-----------------------|---------------------------|-------------------|----------------|---------------|--------------------------|------------------|---------------------|-------------------|
| pu-comp-inter-001-001 | 1.0116                    | 0.0002            | 1.27E-01       | 2.96E-04      | 1.0000                   | 0.0110           | 1.0116              | 0.0110            |
| pu-comp-mixed-001-001 | 1.0247                    | 0.0002            | 1.71E+00       | 9.70E-01      | 0.9986                   | 0.0041           | 1.0262              | 0.0041            |
| pu-comp-mixed-001-002 | 1.0283                    | 0.0003            | 6.30E-01       | 1.69E-03      | 1.0000                   | 0.0068           | 1.0283              | 0.0068            |
| pu-comp-mixed-001-003 | 1.0238                    | 0.0003            | 2.71E-01       | 3.16E-05      | 0.9990                   | 0.0067           | 1.0248              | 0.0067            |
| pu-comp-mixed-001-004 | 0.9944                    | 0.0003            | 2.86E-01       | 3.85E-05      | 1.0000                   | 0.0066           | 0.9944              | 0.0066            |
| pu-comp-mixed-001-005 | 1.0089                    | 0.0003            | 9.95E-02       | 1.56E-06      | 0.9989                   | 0.0072           | 1.0100              | 0.0072            |
| pu-comp-mixed-002-001 | 1.0310                    | 0.0003            | 1.05E+00       | 5.00E-03      | 0.9990                   | 0.0046           | 1.0320              | 0.0046            |
| pu-comp-mixed-002-002 | 1.0297                    | 0.0003            | 1.03E+00       | 4.32E-03      | 0.9990                   | 0.0046           | 1.0307              | 0.0046            |
| pu-comp-mixed-002-003 | 1.0249                    | 0.0003            | 1.01E+00       | 3.57E-03      | 0.9990                   | 0.0046           | 1.0259              | 0.0046            |
| pu-comp-mixed-002-004 | 1.0146                    | 0.0003            | 9.84E-01       | 2.86E-03      | 0.9990                   | 0.0046           | 1.0156              | 0.0046            |
| pu-comp-mixed-002-005 | 1.0144                    | 0.0003            | 9.41E-01       | 1.93E-03      | 0.9990                   | 0.0046           | 1.0154              | 0.0046            |
| pu-comp-mixed-002-006 | 1.0254                    | 0.0003            | 4.36E-01       | 9.52E-05      | 1.0000                   | 0.0075           | 1.0254              | 0.0075            |
| pu-comp-mixed-002-007 | 1.0235                    | 0.0003            | 4.31E-01       | 8.68E-05      | 1.0000                   | 0.0075           | 1.0235              | 0.0075            |
| pu-comp-mixed-002-008 | 1.0228                    | 0.0003            | 4.21E-01       | 7.03E-05      | 1.0000                   | 0.0075           | 1.0228              | 0.0075            |
| pu-comp-mixed-002-009 | 1.0230                    | 0.0003            | 4.10E-01       | 5.88E-05      | 1.0000                   | 0.0075           | 1.0230              | 0.0075            |
| pu-comp-mixed-002-010 | 1.0324                    | 0.0003            | 1.83E-01       | 4.24E-06      | 1.0000                   | 0.0073           | 1.0324              | 0.0073            |
| pu-comp-mixed-002-011 | 1.0299                    | 0.0003            | 1.86E-01       | 4.65E-06      | 1.0000                   | 0.0073           | 1.0299              | 0.0073            |
| pu-comp-mixed-002-012 | 1.0302                    | 0.0003            | 1.91E-01       | 5.28E-06      | 1.0000                   | 0.0073           | 1.0302              | 0.0073            |
| pu-comp-mixed-002-013 | 1.0276                    | 0.0003            | 1.93E-01       | 5.58E-06      | 1.0000                   | 0.0073           | 1.0276              | 0.0073            |
| pu-comp-mixed-002-014 | 1.0314                    | 0.0003            | 1.94E-01       | 5.71E-06      | 1.0000                   | 0.0073           | 1.0314              | 0.0073            |
| pu-comp-mixed-002-015 | 1.0297                    | 0.0003            | 1.94E-01       | 5.68E-06      | 1.0000                   | 0.0073           | 1.0297              | 0.0073            |
| pu-comp-mixed-002-016 | 1.0260                    | 0.0003            | 1.91E-01       | 5.28E-06      | 1.0000                   | 0.0073           | 1.0260              | 0.0073            |
| pu-comp-mixed-002-017 | 1.0073                    | 0.0003            | 1.94E-01       | 5.07E-06      | 0.9988                   | 0.0055           | 1.0085              | 0.0055            |
| pu-comp-mixed-002-018 | 1.0118                    | 0.0003            | 2.02E-01       | 6.32E-06      | 0.9988                   | 0.0055           | 1.0130              | 0.0055            |
| pu-comp-mixed-002-019 | 1.0109                    | 0.0003            | 2.04E-01       | 6.63E-06      | 0.9988                   | 0.0055           | 1.0121              | 0.0055            |
| pu-comp-mixed-002-020 | 1.0108                    | 0.0003            | 2.05E-01       | 6.83E-06      | 0.9988                   | 0.0055           | 1.0120              | 0.0055            |
| pu-comp-mixed-002-021 | 1.0115                    | 0.0003            | 2.05E-01       | 6.85E-06      | 0.9988                   | 0.0055           | 1.0127              | 0.0055            |
| pu-comp-mixed-002-022 | 1.0153                    | 0.0003            | 2.04E-01       | 6.58E-06      | 0.9988                   | 0.0055           | 1.0165              | 0.0055            |
| pu-comp-mixed-002-023 | 1.0064                    | 0.0003            | 7.69E-02       | 7.08E-07      | 1.0000                   | 0.0068           | 1.0064              | 0.0068            |
| pu-comp-mixed-002-024 | 1.0079                    | 0.0003            | 7.72E-02       | 7.20E-07      | 1.0000                   | 0.0068           | 1.0079              | 0.0068            |
| pu-comp-mixed-002-025 | 1.0076                    | 0.0003            | 7.74E-02       | 7.30E-07      | 1.0000                   | 0.0068           | 1.0076              | 0.0068            |
| pu-comp-mixed-002-026 | 1.0089                    | 0.0003            | 7.78E-02       | 7.38E-07      | 1.0000                   | 0.0068           | 1.0089              | 0.0068            |
| pu-comp-mixed-002-027 | 1.0093                    | 0.0004            | 7.81E-02       | 7.47E-07      | 1.0000                   | 0.0068           | 1.0093              | 0.0068            |
| pu-comp-mixed-002-028 | 1.0092                    | 0.0003            | 7.80E-02       | 7.51E-07      | 1.0000                   | 0.0068           | 1.0092              | 0.0068            |
| pu-comp-mixed-002-029 | 1.0097                    | 0.0003            | 7.84E-02       | 7.59E-07      | 1.0000                   | 0.0068           | 1.0097              | 0.0068            |

| Benchmark                  | Calc.<br>$k_{\text{eff}}$ | Calc.<br>$\sigma$ | ANECF<br>(MeV)  | EALF<br>(MeV)   | Exp.<br>$k_{\text{eff}}$ | Exp.<br>$\sigma$ | $k_{\text{normal}}$ | Total<br>$\sigma$ |
|----------------------------|---------------------------|-------------------|-----------------|-----------------|--------------------------|------------------|---------------------|-------------------|
| pu-met-fast-001-001        | 1.0007                    | 0.0006            | 1.91E+00        | 1.25E+00        | 1.0000                   | 0.0020           | 1.0007              | 0.0021            |
| pu-met-fast-002-001        | 1.0004                    | 0.0006            | 1.92E+00        | 1.27E+00        | 1.0000                   | 0.0020           | 1.0004              | 0.0021            |
| pu-met-fast-003-103        | 0.9990                    | 0.0003            | 1.89E+00        | 1.24E+00        | 1.0000                   | 0.0030           | 0.9990              | 0.0030            |
| pu-met-fast-005-001        | 1.0002                    | 0.0006            | 1.68E+00        | 1.01E+00        | 1.0000                   | 0.0013           | 1.0002              | 0.0014            |
| pu-met-fast-006-001        | 1.0010                    | 0.0008            | 1.90E+00        | 1.06E+00        | 1.0000                   | 0.0030           | 1.0010              | 0.0031            |
| pu-met-fast-008-001        | 0.9988                    | 0.0007            | 1.78E+00        | 1.07E+00        | 1.0000                   | 0.0006           | 0.9988              | 0.0009            |
| pu-met-fast-009-001        | 1.0070                    | 0.0006            | 1.80E+00        | 1.14E+00        | 1.0000                   | 0.0027           | 1.0070              | 0.0028            |
| pu-met-fast-010-001        | 1.0003                    | 0.0007            | 1.89E+00        | 1.17E+00        | 1.0000                   | 0.0018           | 1.0003              | 0.0019            |
| pu-met-fast-011-001        | 1.0006                    | 0.0007            | 1.52E+00        | 8.21E-02        | 1.0000                   | 0.0010           | 1.0006              | 0.0012            |
| pu-met-fast-012-001        | 1.0028                    | 0.0007            | 1.80E+00        | 9.51E-01        | 1.0009                   | 0.0021           | 1.0019              | 0.0022            |
| pu-met-fast-013-001        | 1.0084                    | 0.0007            | 1.49E+00        | 7.84E-01        | 1.0034                   | 0.0023           | 1.0050              | 0.0024            |
| pu-met-fast-014-001        | 1.0076                    | 0.0006            | 1.52E+00        | 7.91E-01        | 1.0037                   | 0.0031           | 1.0039              | 0.0032            |
| pu-met-fast-015-001        | 1.0010                    | 0.0006            | 1.63E+00        | 9.61E-01        | 1.0041                   | 0.0026           | 0.9969              | 0.0027            |
| pu-met-fast-016-001        | 1.0174                    | 0.0001            | 1.28E+00        | 1.12E-02        | 0.9974                   | 0.0042           | 1.0200              | 0.0042            |
| pu-met-fast-016-002        | 1.0070                    | 0.0001            | 1.25E+00        | 8.04E-03        | 1.0000                   | 0.0038           | 1.0070              | 0.0038            |
| pu-met-fast-016-003        | 1.0050                    | 0.0001            | 1.25E+00        | 7.76E-03        | 1.0000                   | 0.0033           | 1.0050              | 0.0033            |
| pu-met-fast-016-004        | 1.0045                    | 0.0001            | 1.24E+00        | 7.53E-03        | 1.0000                   | 0.0030           | 1.0045              | 0.0030            |
| pu-met-fast-016-005        | 1.0042                    | 0.0001            | 1.24E+00        | 7.40E-03        | 1.0000                   | 0.0034           | 1.0042              | 0.0034            |
| pu-met-fast-016-006        | 1.0067                    | 0.0001            | 1.24E+00        | 7.37E-03        | 1.0000                   | 0.0032           | 1.0067              | 0.0032            |
| pu-met-fast-018-001        | 0.9995                    | 0.0007            | 1.67E+00        | 9.10E-01        | 1.0000                   | 0.0030           | 0.9995              | 0.0031            |
| pu-met-fast-019-001        | 1.0010                    | 0.0007            | 1.62E+00        | 7.72E-01        | 0.9992                   | 0.0015           | 1.0018              | 0.0016            |
| pu-met-fast-020-001        | 0.9982                    | 0.0006            | 1.88E+00        | 1.13E+00        | 0.9993                   | 0.0017           | 0.9989              | 0.0018            |
| pu-met-fast-021-001        | 1.0045                    | 0.0001            | 1.66E+00        | 7.80E-01        | 1.0000                   | 0.0026           | 1.0045              | 0.0026            |
| pu-met-fast-021-002        | 0.9935                    | 0.0001            | 1.67E+00        | 8.66E-01        | 1.0000                   | 0.0026           | 0.9935              | 0.0026            |
| pu-met-fast-022-001        | 0.9987                    | 0.0006            | 1.89E+00        | 1.24E+00        | 1.0000                   | 0.0021           | 0.9987              | 0.0022            |
| pu-met-fast-023-001        | 1.0002                    | 0.0006            | 1.80E+00        | 1.14E+00        | 1.0000                   | 0.0022           | 1.0002              | 0.0023            |
| pu-met-fast-024-001        | 1.0027                    | 0.0006            | 1.74E+00        | 6.35E-01        | 1.0000                   | 0.0022           | 1.0027              | 0.0023            |
| pu-met-fast-025-001        | 0.9994                    | 0.0006            | 1.84E+00        | 1.19E+00        | 1.0000                   | 0.0022           | 0.9994              | 0.0023            |
| pu-met-fast-026-001        | 0.9990                    | 0.0006            | 1.74E+00        | 1.09E+00        | 1.0000                   | 0.0026           | 0.9990              | 0.0027            |
| pu-met-fast-027-001        | 1.0031                    | 0.0008            | 1.47E+00        | 7.17E-02        | 1.0000                   | 0.0024           | 1.0031              | 0.0025            |
| pu-met-fast-028-001        | 0.9992                    | 0.0006            | 1.72E+00        | 1.07E+00        | 1.0000                   | 0.0024           | 0.9992              | 0.0025            |
| pu-met-fast-029-001        | 0.9955                    | 0.0006            | 1.92E+00        | 1.25E+00        | 1.0000                   | 0.0022           | 0.9955              | 0.0023            |
| pu-met-fast-030-001        | 1.0029                    | 0.0006            | 1.81E+00        | 1.14E+00        | 1.0000                   | 0.0023           | 1.0029              | 0.0024            |
| pu-met-fast-031-001        | 1.0045                    | 0.0007            | 1.60E+00        | 1.85E-01        | 1.0000                   | 0.0023           | 1.0045              | 0.0024            |
| pu-met-fast-032-001        | 0.9983                    | 0.0006            | 1.82E+00        | 1.17E+00        | 1.0000                   | 0.0022           | 0.9983              | 0.0023            |
| pu-met-fast-035-001        | 0.9981                    | 0.0006            | 1.83E+00        | 1.18E+00        | 1.0000                   | 0.0016           | 0.9981              | 0.0017            |
| pu-met-fast-036-001        | 1.0065                    | 0.0001            | 1.72E+00        | 6.22E-01        | 1.0000                   | 0.0031           | 1.0065              | 0.0031            |
| pu-met-fast-038-001        | 1.0026                    | 0.0001            | 1.55E+00        | 5.02E-01        | 1.0007                   | 0.0019           | 1.0019              | 0.0019            |
| <b>pu-met-fast-039-001</b> | <b>0.9922</b>             | <b>0.0001</b>     | <b>1.81E+00</b> | <b>1.16E+00</b> | <b>1.0000</b>            | <b>0.0022</b>    | <b>0.9922</b>       | <b>0.0022</b>     |
| pu-met-fast-040-001        | 0.9967                    | 0.0001            | 1.79E+00        | 1.15E+00        | 1.0000                   | 0.0038           | 0.9967              | 0.0038            |
| pu-met-fast-041-001        | 1.0056                    | 0.0001            | 1.94E+00        | 1.10E+00        | 1.0000                   | 0.0016           | 1.0056              | 0.0016            |
| pu-met-fast-042-001        | 1.0198                    | 0.0008            | 1.43E+00        | 5.29E-02        | 1.0004                   | 0.0077           | 1.0194              | 0.0077            |
| pu-met-fast-042-002        | 1.0133                    | 0.0008            | 1.46E+00        | 7.12E-02        | 1.0007                   | 0.0074           | 1.0126              | 0.0074            |
| pu-met-fast-042-003        | 1.0119                    | 0.0008            | 1.48E+00        | 8.80E-02        | 1.0013                   | 0.0080           | 1.0105              | 0.0080            |
| pu-met-fast-042-004        | 1.0100                    | 0.0007            | 1.50E+00        | 1.07E-01        | 1.0026                   | 0.0080           | 1.0074              | 0.0080            |
| pu-met-fast-042-005        | 1.0100                    | 0.0007            | 1.52E+00        | 1.21E-01        | 1.0013                   | 0.0080           | 1.0087              | 0.0080            |
| pu-met-fast-042-006        | 1.0078                    | 0.0008            | 1.52E+00        | 1.39E-01        | 1.0015                   | 0.0079           | 1.0063              | 0.0079            |
| pu-met-fast-042-007        | 1.0075                    | 0.0008            | 1.53E+00        | 1.53E-01        | 1.0006                   | 0.0075           | 1.0069              | 0.0075            |
| pu-met-fast-042-008        | 1.0111                    | 0.0008            | 1.53E+00        | 1.57E-01        | 1.0019                   | 0.0080           | 1.0092              | 0.0080            |
| pu-met-fast-042-009        | 1.0129                    | 0.0007            | 1.54E+00        | 1.73E-01        | 1.0019                   | 0.0073           | 1.0109              | 0.0073            |
| pu-met-fast-042-010        | 1.0148                    | 0.0007            | 1.54E+00        | 1.75E-01        | 1.0015                   | 0.0079           | 1.0132              | 0.0079            |
| pu-met-fast-042-011        | 1.0116                    | 0.0008            | 1.55E+00        | 1.86E-01        | 1.0010                   | 0.0078           | 1.0105              | 0.0078            |
| pu-met-fast-042-012        | 1.0111                    | 0.0007            | 1.55E+00        | 1.93E-01        | 1.0016                   | 0.0076           | 1.0095              | 0.0076            |
| pu-met-fast-042-013        | 1.0112                    | 0.0008            | 1.55E+00        | 2.03E-01        | 1.0016                   | 0.0074           | 1.0096              | 0.0074            |
| pu-met-fast-042-014        | 1.0120                    | 0.0007            | 1.56E+00        | 2.08E-01        | 1.0016                   | 0.0078           | 1.0104              | 0.0078            |
| pu-met-fast-042-015        | 1.0127                    | 0.0008            | 1.56E+00        | 2.17E-01        | 1.0014                   | 0.0076           | 1.0113              | 0.0076            |
| pu-met-fast-044-001        | 1.0005                    | 0.0001            | 1.65E+00        | 4.00E-01        | 0.9977                   | 0.0021           | 1.0028              | 0.0021            |
| pu-met-fast-044-002        | 1.0000                    | 0.0001            | 1.65E+00        | 3.16E-01        | 0.9980                   | 0.0022           | 1.0020              | 0.0022            |
| pu-met-fast-044-003        | 0.9994                    | 0.0001            | 1.66E+00        | 4.52E-01        | 0.9977                   | 0.0021           | 1.0017              | 0.0021            |
| pu-met-fast-044-004        | 1.0000                    | 0.0001            | 1.60E+00        | 1.89E-01        | 0.9978                   | 0.0026           | 1.0022              | 0.0026            |
| pu-met-fast-044-005        | 0.9991                    | 0.0001            | 1.64E+00        | 2.84E-01        | 0.9977                   | 0.0024           | 1.0014              | 0.0024            |
| pu-met-fast-045-001        | 1.0018                    | 0.0005            | 1.60E+00        | 8.54E-01        | 1.0000                   | 0.0047           | 1.0018              | 0.0047            |

| Benchmark            | Calc.<br>$k_{\text{eff}}$ | Calc.<br>$\sigma$ | ANECF<br>(MeV) | EALF<br>(MeV) | Exp.<br>$k_{\text{eff}}$ | Exp.<br>$\sigma$ | $k_{\text{normal}}$ | Total<br>$\sigma$ |
|----------------------|---------------------------|-------------------|----------------|---------------|--------------------------|------------------|---------------------|-------------------|
| pu-met-fast-045-002  | 1.0068                    | 0.0007            | 1.60E+00       | 8.90E-01      | 1.0000                   | 0.0046           | 1.0068              | 0.0047            |
| pu-met-fast-045-003  | 1.0054                    | 0.0005            | 1.62E+00       | 9.22E-01      | 1.0000                   | 0.0044           | 1.0054              | 0.0044            |
| pu-met-fast-045-004  | 1.0050                    | 0.0007            | 1.64E+00       | 8.96E-01      | 1.0000                   | 0.0046           | 1.0050              | 0.0046            |
| pu-met-fast-045-005  | 1.0081                    | 0.0007            | 1.68E+00       | 9.32E-01      | 1.0000                   | 0.0045           | 1.0081              | 0.0045            |
| pu-met-fast-045-006  | 1.0059                    | 0.0007            | 1.65E+00       | 8.11E-01      | 1.0000                   | 0.0049           | 1.0059              | 0.0049            |
| pu-met-fast-045-007  | 1.0064                    | 0.0005            | 1.62E+00       | 7.43E-01      | 1.0000                   | 0.0050           | 1.0064              | 0.0050            |
| pu-sol-therm-001-001 | 1.0056                    | 0.0009            | 1.30E-02       | 8.67E-08      | 1.0000                   | 0.0050           | 1.0056              | 0.0051            |
| pu-sol-therm-001-002 | 1.0076                    | 0.0009            | 1.72E-02       | 1.09E-07      | 1.0000                   | 0.0050           | 1.0076              | 0.0051            |
| pu-sol-therm-001-003 | 1.0096                    | 0.0009            | 2.14E-02       | 1.32E-07      | 1.0000                   | 0.0050           | 1.0096              | 0.0051            |
| pu-sol-therm-001-004 | 1.0049                    | 0.0009            | 2.40E-02       | 1.48E-07      | 1.0000                   | 0.0050           | 1.0049              | 0.0051            |
| pu-sol-therm-001-005 | 1.0093                    | 0.0010            | 2.49E-02       | 1.56E-07      | 1.0000                   | 0.0050           | 1.0093              | 0.0051            |
| pu-sol-therm-001-006 | 1.0116                    | 0.0009            | 4.84E-02       | 3.42E-07      | 1.0000                   | 0.0050           | 1.0116              | 0.0051            |
| pu-sol-therm-002-001 | 1.0037                    | 0.0008            | 9.06E-03       | 6.99E-08      | 1.0000                   | 0.0047           | 1.0037              | 0.0048            |
| pu-sol-therm-002-002 | 1.0043                    | 0.0009            | 9.46E-03       | 7.14E-08      | 1.0000                   | 0.0047           | 1.0043              | 0.0048            |
| pu-sol-therm-002-003 | 1.0040                    | 0.0008            | 1.06E-02       | 7.64E-08      | 1.0000                   | 0.0047           | 1.0040              | 0.0048            |
| pu-sol-therm-002-004 | 1.0058                    | 0.0008            | 1.11E-02       | 7.94E-08      | 1.0000                   | 0.0047           | 1.0058              | 0.0048            |
| pu-sol-therm-002-005 | 1.0091                    | 0.0009            | 1.20E-02       | 8.32E-08      | 1.0000                   | 0.0047           | 1.0091              | 0.0048            |
| pu-sol-therm-002-006 | 1.0025                    | 0.0009            | 1.33E-02       | 9.13E-08      | 1.0000                   | 0.0047           | 1.0025              | 0.0048            |
| pu-sol-therm-002-007 | 1.0090                    | 0.0009            | 1.45E-02       | 9.83E-08      | 1.0000                   | 0.0047           | 1.0090              | 0.0048            |
| pu-sol-therm-003-001 | 1.0019                    | 0.0007            | 6.35E-03       | 5.71E-08      | 1.0000                   | 0.0047           | 1.0019              | 0.0048            |
| pu-sol-therm-003-002 | 1.0029                    | 0.0008            | 6.98E-03       | 5.85E-08      | 1.0000                   | 0.0047           | 1.0029              | 0.0048            |
| pu-sol-therm-003-003 | 1.0044                    | 0.0009            | 7.29E-03       | 6.10E-08      | 1.0000                   | 0.0047           | 1.0044              | 0.0048            |
| pu-sol-therm-003-004 | 1.0048                    | 0.0009            | 7.12E-03       | 6.13E-08      | 1.0000                   | 0.0047           | 1.0048              | 0.0048            |
| pu-sol-therm-003-005 | 1.0047                    | 0.0009            | 7.71E-03       | 6.40E-08      | 1.0000                   | 0.0047           | 1.0047              | 0.0048            |
| pu-sol-therm-003-006 | 1.0060                    | 0.0008            | 8.53E-03       | 6.80E-08      | 1.0000                   | 0.0047           | 1.0060              | 0.0048            |
| pu-sol-therm-003-007 | 1.0068                    | 0.0001            | 6.80E-03       | 5.81E-08      | 1.0000                   | 0.0047           | 1.0068              | 0.0047            |
| pu-sol-therm-003-008 | 1.0055                    | 0.0001            | 7.00E-03       | 5.91E-08      | 1.0000                   | 0.0047           | 1.0055              | 0.0047            |
| pu-sol-therm-004-001 | 1.0028                    | 0.0008            | 4.97E-03       | 5.22E-08      | 1.0000                   | 0.0047           | 1.0028              | 0.0048            |
| pu-sol-therm-004-002 | 0.9987                    | 0.0007            | 5.20E-03       | 5.30E-08      | 1.0000                   | 0.0047           | 0.9987              | 0.0048            |
| pu-sol-therm-004-003 | 1.0021                    | 0.0008            | 5.39E-03       | 5.38E-08      | 1.0000                   | 0.0047           | 1.0021              | 0.0048            |
| pu-sol-therm-004-004 | 0.9971                    | 0.0008            | 5.74E-03       | 5.50E-08      | 1.0000                   | 0.0047           | 0.9971              | 0.0048            |
| pu-sol-therm-004-005 | 1.0013                    | 0.0008            | 5.33E-03       | 5.35E-08      | 1.0000                   | 0.0047           | 1.0013              | 0.0048            |
| pu-sol-therm-004-006 | 1.0001                    | 0.0008            | 5.80E-03       | 5.40E-08      | 1.0000                   | 0.0047           | 1.0001              | 0.0048            |
| pu-sol-therm-004-007 | 1.0040                    | 0.0009            | 5.83E-03       | 5.48E-08      | 1.0000                   | 0.0047           | 1.0040              | 0.0048            |
| pu-sol-therm-004-008 | 1.0010                    | 0.0008            | 5.95E-03       | 5.54E-08      | 1.0000                   | 0.0047           | 1.0010              | 0.0048            |
| pu-sol-therm-004-009 | 0.9992                    | 0.0008            | 6.25E-03       | 5.75E-08      | 1.0000                   | 0.0047           | 0.9992              | 0.0048            |
| pu-sol-therm-004-010 | 1.0041                    | 0.0008            | 7.49E-03       | 6.20E-08      | 1.0000                   | 0.0047           | 1.0041              | 0.0048            |
| pu-sol-therm-004-011 | 1.0008                    | 0.0008            | 8.10E-03       | 6.69E-08      | 1.0000                   | 0.0047           | 1.0008              | 0.0048            |
| pu-sol-therm-004-012 | 1.0012                    | 0.0007            | 5.76E-03       | 5.48E-08      | 1.0000                   | 0.0047           | 1.0012              | 0.0048            |
| pu-sol-therm-004-013 | 1.0006                    | 0.0008            | 5.80E-03       | 5.48E-08      | 1.0000                   | 0.0047           | 1.0006              | 0.0048            |
| pu-sol-therm-005-001 | 1.0027                    | 0.0008            | 5.94E-03       | 5.45E-08      | 1.0000                   | 0.0047           | 1.0027              | 0.0048            |
| pu-sol-therm-005-002 | 1.0029                    | 0.0008            | 5.89E-03       | 5.55E-08      | 1.0000                   | 0.0047           | 1.0029              | 0.0048            |
| pu-sol-therm-005-003 | 1.0034                    | 0.0008            | 6.21E-03       | 5.67E-08      | 1.0000                   | 0.0047           | 1.0034              | 0.0048            |
| pu-sol-therm-005-004 | 1.0042                    | 0.0008            | 6.70E-03       | 5.90E-08      | 1.0000                   | 0.0047           | 1.0042              | 0.0048            |
| pu-sol-therm-005-005 | 1.0069                    | 0.0008            | 7.59E-03       | 6.16E-08      | 1.0000                   | 0.0047           | 1.0069              | 0.0048            |
| pu-sol-therm-005-006 | 1.0060                    | 0.0008            | 7.72E-03       | 6.48E-08      | 1.0000                   | 0.0047           | 1.0060              | 0.0048            |
| pu-sol-therm-005-007 | 1.0042                    | 0.0008            | 8.72E-03       | 6.80E-08      | 1.0000                   | 0.0047           | 1.0042              | 0.0048            |
| pu-sol-therm-005-008 | 0.9989                    | 0.0008            | 6.14E-03       | 5.57E-08      | 1.0000                   | 0.0047           | 0.9989              | 0.0048            |
| pu-sol-therm-005-009 | 1.0020                    | 0.0008            | 6.30E-03       | 5.68E-08      | 1.0000                   | 0.0047           | 1.0020              | 0.0048            |
| pu-sol-therm-006-001 | 1.0009                    | 0.0008            | 5.09E-03       | 5.14E-08      | 1.0000                   | 0.0035           | 1.0009              | 0.0036            |
| pu-sol-therm-006-002 | 1.0011                    | 0.0007            | 5.12E-03       | 5.25E-08      | 1.0000                   | 0.0035           | 1.0011              | 0.0036            |
| pu-sol-therm-006-003 | 1.0007                    | 0.0008            | 5.59E-03       | 5.42E-08      | 1.0000                   | 0.0035           | 1.0007              | 0.0036            |
| pu-sol-therm-007-002 | 1.0091                    | 0.0001            | 4.07E-02       | 2.70E-07      | 1.0000                   | 0.0047           | 1.0091              | 0.0047            |
| pu-sol-therm-007-003 | 1.0034                    | 0.0001            | 3.92E-02       | 2.56E-07      | 1.0000                   | 0.0047           | 1.0034              | 0.0047            |
| pu-sol-therm-007-005 | 1.0091                    | 0.0001            | 1.75E-02       | 1.10E-07      | 1.0000                   | 0.0047           | 1.0091              | 0.0047            |
| pu-sol-therm-007-006 | 1.0030                    | 0.0001            | 1.79E-02       | 1.12E-07      | 1.0000                   | 0.0047           | 1.0030              | 0.0047            |
| pu-sol-therm-007-007 | 1.0054                    | 0.0001            | 1.77E-02       | 1.11E-07      | 1.0000                   | 0.0047           | 1.0054              | 0.0047            |
| pu-sol-therm-007-008 | 0.9988                    | 0.0001            | 1.82E-02       | 1.13E-07      | 1.0000                   | 0.0047           | 0.9988              | 0.0047            |
| pu-sol-therm-007-009 | 0.9971                    | 0.0001            | 1.81E-02       | 1.13E-07      | 1.0000                   | 0.0047           | 0.9971              | 0.0047            |
| pu-sol-therm-007-010 | 1.0009                    | 0.0001            | 1.66E-02       | 1.05E-07      | 1.0000                   | 0.0047           | 1.0009              | 0.0047            |
| pu-sol-therm-009-003 | 1.0192                    | 0.0001            | 2.58E-03       | 4.05E-08      | 1.0000                   | 0.0033           | 1.0192              | 0.0033            |
| pu-sol-therm-010-001 | 1.0180                    | 0.0001            | 1.69E-02       | 1.08E-07      | 1.0000                   | 0.0048           | 1.0180              | 0.0048            |

| Benchmark            | Calc.<br>$k_{\text{eff}}$ | Calc.<br>$\sigma$ | ANECF<br>(MeV) | EALF<br>(MeV) | Exp.<br>$k_{\text{eff}}$ | Exp.<br>$\sigma$ | $k_{\text{normal}}$ | Total<br>$\sigma$ |
|----------------------|---------------------------|-------------------|----------------|---------------|--------------------------|------------------|---------------------|-------------------|
| pu-sol-therm-010-002 | 1.0146                    | 0.0001            | 1.30E-02       | 8.77E-08      | 1.0000                   | 0.0048           | 1.0146              | 0.0048            |
| pu-sol-therm-010-003 | 1.0083                    | 0.0001            | 9.88E-03       | 7.27E-08      | 1.0000                   | 0.0048           | 1.0083              | 0.0048            |
| pu-sol-therm-010-004 | 1.0126                    | 0.0001            | 1.00E-02       | 7.41E-08      | 1.0000                   | 0.0048           | 1.0126              | 0.0048            |
| pu-sol-therm-010-005 | 1.0107                    | 0.0001            | 8.83E-03       | 6.87E-08      | 1.0000                   | 0.0048           | 1.0107              | 0.0048            |
| pu-sol-therm-010-006 | 1.0094                    | 0.0001            | 8.76E-03       | 6.76E-08      | 1.0000                   | 0.0048           | 1.0094              | 0.0048            |
| pu-sol-therm-010-007 | 1.0025                    | 0.0001            | 8.13E-03       | 6.54E-08      | 1.0000                   | 0.0048           | 1.0025              | 0.0048            |
| pu-sol-therm-010-008 | 1.0040                    | 0.0001            | 7.52E-03       | 6.30E-08      | 1.0000                   | 0.0048           | 1.0040              | 0.0048            |
| pu-sol-therm-010-009 | 1.0147                    | 0.0001            | 1.14E-02       | 7.99E-08      | 1.0000                   | 0.0048           | 1.0147              | 0.0048            |
| pu-sol-therm-010-010 | 1.0027                    | 0.0001            | 9.11E-03       | 6.92E-08      | 1.0000                   | 0.0048           | 1.0027              | 0.0048            |
| pu-sol-therm-010-011 | 1.0099                    | 0.0001            | 8.96E-03       | 6.85E-08      | 1.0000                   | 0.0048           | 1.0099              | 0.0048            |
| pu-sol-therm-010-012 | 1.0097                    | 0.0001            | 8.01E-03       | 6.43E-08      | 1.0000                   | 0.0048           | 1.0097              | 0.0048            |
| pu-sol-therm-010-013 | 1.0160                    | 0.0001            | 6.96E-03       | 5.96E-08      | 1.0000                   | 0.0048           | 1.0160              | 0.0048            |
| pu-sol-therm-010-014 | 1.0096                    | 0.0001            | 6.13E-03       | 5.60E-08      | 1.0000                   | 0.0048           | 1.0096              | 0.0048            |
| pu-sol-therm-011-161 | 1.0101                    | 0.0001            | 7.65E-03       | 6.23E-08      | 1.0000                   | 0.0052           | 1.0101              | 0.0052            |
| pu-sol-therm-011-162 | 1.0147                    | 0.0001            | 7.91E-03       | 6.35E-08      | 1.0000                   | 0.0052           | 1.0147              | 0.0052            |
| pu-sol-therm-011-163 | 1.0168                    | 0.0001            | 8.38E-03       | 6.59E-08      | 1.0000                   | 0.0052           | 1.0168              | 0.0052            |
| pu-sol-therm-011-164 | 1.0090                    | 0.0001            | 8.54E-03       | 6.65E-08      | 1.0000                   | 0.0052           | 1.0090              | 0.0052            |
| pu-sol-therm-011-165 | 1.0064                    | 0.0001            | 9.90E-03       | 7.39E-08      | 1.0000                   | 0.0052           | 1.0064              | 0.0052            |
| pu-sol-therm-011-181 | 0.9944                    | 0.0001            | 5.17E-03       | 5.11E-08      | 1.0000                   | 0.0052           | 0.9944              | 0.0052            |
| pu-sol-therm-011-182 | 1.0003                    | 0.0001            | 5.35E-03       | 5.21E-08      | 1.0000                   | 0.0052           | 1.0003              | 0.0052            |
| pu-sol-therm-011-183 | 0.9970                    | 0.0001            | 5.36E-03       | 5.20E-08      | 1.0000                   | 0.0052           | 0.9970              | 0.0052            |
| pu-sol-therm-011-184 | 0.9937                    | 0.0001            | 5.62E-03       | 5.33E-08      | 1.0000                   | 0.0052           | 0.9937              | 0.0052            |
| pu-sol-therm-011-185 | 1.0035                    | 0.0001            | 5.86E-03       | 5.46E-08      | 1.0000                   | 0.0052           | 1.0035              | 0.0052            |
| pu-sol-therm-011-186 | 1.0005                    | 0.0001            | 6.56E-03       | 5.83E-08      | 1.0000                   | 0.0052           | 1.0005              | 0.0052            |
| pu-sol-therm-011-187 | 0.9996                    | 0.0001            | 5.57E-03       | 5.31E-08      | 1.0000                   | 0.0052           | 0.9996              | 0.0052            |
| pu-sol-therm-012-001 | 1.0055                    | 0.0001            | 4.75E-03       | 4.74E-08      | 1.0000                   | 0.0043           | 1.0055              | 0.0043            |
| pu-sol-therm-012-002 | 1.0059                    | 0.0001            | 4.36E-03       | 4.58E-08      | 1.0000                   | 0.0043           | 1.0059              | 0.0043            |
| pu-sol-therm-012-003 | 1.0071                    | 0.0001            | 4.16E-03       | 4.51E-08      | 1.0000                   | 0.0058           | 1.0071              | 0.0058            |
| pu-sol-therm-012-004 | 1.0077                    | 0.0001            | 3.78E-03       | 4.36E-08      | 1.0000                   | 0.0058           | 1.0077              | 0.0058            |
| pu-sol-therm-012-005 | 1.0098                    | 0.0001            | 3.49E-03       | 4.25E-08      | 1.0000                   | 0.0058           | 1.0098              | 0.0058            |
| pu-sol-therm-012-006 | 1.0065                    | 0.0001            | 2.22E-02       | 1.30E-07      | 1.0000                   | 0.0007           | 1.0065              | 0.0007            |
| pu-sol-therm-012-007 | 1.0052                    | 0.0001            | 1.77E-02       | 1.05E-07      | 1.0000                   | 0.0013           | 1.0052              | 0.0013            |
| pu-sol-therm-012-008 | 1.0042                    | 0.0001            | 1.14E-02       | 7.45E-08      | 1.0000                   | 0.0013           | 1.0042              | 0.0013            |
| pu-sol-therm-012-009 | 1.0100                    | 0.0001            | 7.22E-03       | 5.69E-08      | 1.0000                   | 0.0043           | 1.0100              | 0.0043            |
| pu-sol-therm-012-010 | 1.0039                    | 0.0001            | 6.28E-03       | 5.30E-08      | 1.0000                   | 0.0043           | 1.0039              | 0.0043            |
| pu-sol-therm-012-011 | 1.0065                    | 0.0001            | 5.17E-03       | 4.88E-08      | 1.0000                   | 0.0043           | 1.0065              | 0.0043            |
| pu-sol-therm-012-012 | 1.0068                    | 0.0001            | 4.80E-03       | 4.74E-08      | 1.0000                   | 0.0043           | 1.0068              | 0.0043            |
| pu-sol-therm-012-013 | 1.0096                    | 0.0001            | 3.50E-03       | 4.25E-08      | 1.0000                   | 0.0058           | 1.0096              | 0.0058            |
| pu-sol-therm-018-001 | 1.0082                    | 0.0001            | 3.36E-02       | 1.65E-07      | 1.0000                   | 0.0034           | 1.0082              | 0.0034            |
| pu-sol-therm-018-002 | 1.0117                    | 0.0001            | 2.72E-02       | 1.29E-07      | 1.0000                   | 0.0034           | 1.0117              | 0.0034            |
| pu-sol-therm-018-003 | 1.0094                    | 0.0001            | 2.30E-02       | 1.08E-07      | 1.0000                   | 0.0032           | 1.0094              | 0.0032            |
| pu-sol-therm-018-004 | 1.0077                    | 0.0001            | 1.97E-02       | 9.35E-08      | 1.0000                   | 0.0030           | 1.0077              | 0.0030            |
| pu-sol-therm-018-005 | 1.0064                    | 0.0001            | 1.74E-02       | 8.39E-08      | 1.0000                   | 0.0030           | 1.0064              | 0.0030            |
| pu-sol-therm-018-006 | 1.0045                    | 0.0001            | 1.49E-02       | 7.47E-08      | 1.0000                   | 0.0031           | 1.0045              | 0.0031            |
| pu-sol-therm-018-007 | 1.0041                    | 0.0001            | 1.29E-02       | 6.75E-08      | 1.0000                   | 0.0032           | 1.0041              | 0.0032            |
| pu-sol-therm-018-008 | 1.0036                    | 0.0001            | 1.08E-02       | 6.04E-08      | 1.0000                   | 0.0033           | 1.0036              | 0.0033            |
| pu-sol-therm-018-009 | 1.0021                    | 0.0001            | 9.49E-03       | 5.60E-08      | 1.0000                   | 0.0034           | 1.0021              | 0.0034            |
| pu-sol-therm-022-001 | 0.9996                    | 0.0001            | 3.26E-02       | 2.06E-07      | 1.0000                   | 0.0020           | 0.9996              | 0.0020            |
| pu-sol-therm-022-002 | 1.0022                    | 0.0001            | 2.15E-02       | 1.29E-07      | 1.0000                   | 0.0016           | 1.0022              | 0.0016            |
| pu-sol-therm-022-003 | 1.0008                    | 0.0001            | 1.28E-02       | 8.23E-08      | 1.0000                   | 0.0015           | 1.0008              | 0.0015            |
| pu-sol-therm-022-004 | 1.0015                    | 0.0001            | 1.07E-02       | 7.24E-08      | 1.0000                   | 0.0017           | 1.0015              | 0.0017            |
| pu-sol-therm-022-005 | 1.0025                    | 0.0001            | 8.74E-03       | 6.38E-08      | 1.0000                   | 0.0019           | 1.0025              | 0.0019            |
| pu-sol-therm-022-006 | 1.0025                    | 0.0001            | 7.77E-03       | 5.99E-08      | 1.0000                   | 0.0021           | 1.0025              | 0.0021            |
| pu-sol-therm-022-007 | 1.0043                    | 0.0001            | 7.26E-03       | 5.76E-08      | 1.0000                   | 0.0021           | 1.0043              | 0.0021            |
| pu-sol-therm-022-008 | 1.0050                    | 0.0001            | 6.79E-03       | 5.57E-08      | 1.0000                   | 0.0023           | 1.0050              | 0.0023            |
| pu-sol-therm-022-009 | 1.0038                    | 0.0001            | 6.41E-03       | 5.42E-08      | 1.0000                   | 0.0024           | 1.0038              | 0.0024            |
| pu-sol-therm-028-001 | 1.0079                    | 0.0001            | 1.54E-02       | 1.04E-07      | 1.0000                   | 0.0012           | 1.0079              | 0.0012            |
| pu-sol-therm-028-002 | 1.0074                    | 0.0001            | 1.36E-02       | 9.35E-08      | 1.0000                   | 0.0012           | 1.0074              | 0.0012            |
| pu-sol-therm-028-003 | 1.0089                    | 0.0001            | 1.18E-02       | 8.41E-08      | 1.0000                   | 0.0012           | 1.0089              | 0.0012            |
| pu-sol-therm-028-004 | 1.0088                    | 0.0001            | 9.95E-03       | 7.51E-08      | 1.0000                   | 0.0012           | 1.0088              | 0.0012            |
| pu-sol-therm-028-005 | 1.0099                    | 0.0001            | 9.08E-03       | 7.08E-08      | 1.0000                   | 0.0012           | 1.0099              | 0.0012            |
| pu-sol-therm-028-006 | 1.0111                    | 0.0001            | 7.17E-03       | 6.18E-08      | 1.0000                   | 0.0012           | 1.0111              | 0.0012            |


| Benchmark            | Calc.<br>$k_{\text{eff}}$ | Calc.<br>$\sigma$ | ANECF<br>(MeV) | EALF<br>(MeV) | Exp.<br>$k_{\text{eff}}$ | Exp.<br>$\sigma$ | $k_{\text{normal}}$ | Total<br>$\sigma$ |
|----------------------|---------------------------|-------------------|----------------|---------------|--------------------------|------------------|---------------------|-------------------|
| pu-sol-therm-028-007 | 1.0080                    | 0.0001            | 1.45E-02       | 9.57E-08      | 1.0000                   | 0.0012           | 1.0080              | 0.0012            |
| pu-sol-therm-028-008 | 1.0079                    | 0.0001            | 1.28E-02       | 8.68E-08      | 1.0000                   | 0.0012           | 1.0079              | 0.0012            |
| pu-sol-therm-028-009 | 1.0100                    | 0.0001            | 1.11E-02       | 7.85E-08      | 1.0000                   | 0.0012           | 1.0100              | 0.0012            |
| pu-sol-therm-032-001 | 0.9961                    | 0.0001            | 1.27E-02       | 8.56E-08      | 1.0000                   | 0.0019           | 0.9961              | 0.0019            |
| pu-sol-therm-032-002 | 1.0013                    | 0.0001            | 1.17E-02       | 8.10E-08      | 1.0000                   | 0.0019           | 1.0013              | 0.0019            |
| pu-sol-therm-032-003 | 1.0027                    | 0.0001            | 1.04E-02       | 7.46E-08      | 1.0000                   | 0.0019           | 1.0027              | 0.0019            |
| pu-sol-therm-032-004 | 1.0024                    | 0.0001            | 9.40E-03       | 6.98E-08      | 1.0000                   | 0.0019           | 1.0024              | 0.0019            |
| pu-sol-therm-032-005 | 1.0044                    | 0.0001            | 8.45E-03       | 6.55E-08      | 1.0000                   | 0.0019           | 1.0044              | 0.0019            |
| pu-sol-therm-032-006 | 1.0048                    | 0.0001            | 7.52E-03       | 6.13E-08      | 1.0000                   | 0.0019           | 1.0048              | 0.0019            |
| pu-sol-therm-032-007 | 1.0051                    | 0.0001            | 7.14E-03       | 5.96E-08      | 1.0000                   | 0.0019           | 1.0051              | 0.0019            |
| pu-sol-therm-032-008 | 1.0044                    | 0.0001            | 6.53E-03       | 5.67E-08      | 1.0000                   | 0.0019           | 1.0044              | 0.0019            |
| pu-sol-therm-032-009 | 1.0032                    | 0.0001            | 6.10E-03       | 5.50E-08      | 1.0000                   | 0.0019           | 1.0032              | 0.0019            |
| pu-sol-therm-032-010 | 1.0052                    | 0.0001            | 5.76E-03       | 5.36E-08      | 1.0000                   | 0.0019           | 1.0052              | 0.0019            |
| pu-sol-therm-032-011 | 1.0044                    | 0.0001            | 5.58E-03       | 5.28E-08      | 1.0000                   | 0.0019           | 1.0044              | 0.0019            |
| pu-sol-therm-032-012 | 1.0037                    | 0.0001            | 5.39E-03       | 5.20E-08      | 1.0000                   | 0.0019           | 1.0037              | 0.0019            |
| pu-sol-therm-032-013 | 1.0023                    | 0.0001            | 1.01E-02       | 7.23E-08      | 1.0000                   | 0.0019           | 1.0023              | 0.0019            |
| pu-sol-therm-032-014 | 1.0019                    | 0.0001            | 9.13E-03       | 6.78E-08      | 1.0000                   | 0.0019           | 1.0019              | 0.0019            |
| pu-sol-therm-032-015 | 1.0038                    | 0.0001            | 8.22E-03       | 6.36E-08      | 1.0000                   | 0.0019           | 1.0038              | 0.0019            |
| pu-sol-therm-032-016 | 1.0038                    | 0.0001            | 7.29E-03       | 5.97E-08      | 1.0000                   | 0.0019           | 1.0038              | 0.0019            |
| pu-sol-therm-032-017 | 1.0040                    | 0.0001            | 6.93E-03       | 5.80E-08      | 1.0000                   | 0.0019           | 1.0040              | 0.0019            |
| pu-sol-therm-034-001 | 0.9996                    | 0.0001            | 2.31E-02       | 1.43E-07      | 1.0000                   | 0.0062           | 0.9996              | 0.0062            |
| pu-sol-therm-034-002 | 1.0017                    | 0.0001            | 2.49E-02       | 1.71E-07      | 1.0000                   | 0.0044           | 1.0017              | 0.0044            |
| pu-sol-therm-034-003 | 0.9994                    | 0.0001            | 2.63E-02       | 1.99E-07      | 1.0000                   | 0.0040           | 0.9994              | 0.0040            |
| pu-sol-therm-034-004 | 1.0025                    | 0.0001            | 2.75E-02       | 2.24E-07      | 1.0000                   | 0.0039           | 1.0025              | 0.0039            |
| pu-sol-therm-034-005 | 0.9999                    | 0.0001            | 2.87E-02       | 2.50E-07      | 1.0000                   | 0.0040           | 0.9999              | 0.0040            |
| pu-sol-therm-034-006 | 1.0013                    | 0.0001            | 2.97E-02       | 2.73E-07      | 1.0000                   | 0.0042           | 1.0013              | 0.0042            |
| pu-sol-therm-034-007 | 0.9987                    | 0.0001            | 9.06E-02       | 1.44E-06      | 1.0000                   | 0.0057           | 0.9987              | 0.0057            |
| pu-sol-therm-034-008 | 0.9989                    | 0.0001            | 9.18E-02       | 1.53E-06      | 1.0000                   | 0.0055           | 0.9989              | 0.0055            |
| pu-sol-therm-034-009 | 0.9980                    | 0.0001            | 9.29E-02       | 1.62E-06      | 1.0000                   | 0.0052           | 0.9980              | 0.0052            |
| pu-sol-therm-034-010 | 0.9974                    | 0.0001            | 9.50E-02       | 1.78E-06      | 1.0000                   | 0.0052           | 0.9974              | 0.0052            |
| pu-sol-therm-034-011 | 0.9986                    | 0.0001            | 9.65E-02       | 1.91E-06      | 1.0000                   | 0.0048           | 0.9986              | 0.0048            |
| pu-sol-therm-034-012 | 0.9984                    | 0.0001            | 9.84E-02       | 2.09E-06      | 1.0000                   | 0.0042           | 0.9984              | 0.0042            |
| pu-sol-therm-034-013 | 0.9969                    | 0.0001            | 1.00E-01       | 2.26E-06      | 1.0000                   | 0.0043           | 0.9969              | 0.0043            |
| pu-sol-therm-034-014 | 0.9967                    | 0.0001            | 1.02E-01       | 2.40E-06      | 1.0000                   | 0.0044           | 0.9967              | 0.0044            |
| pu-sol-therm-034-015 | 0.9974                    | 0.0001            | 1.03E-01       | 2.49E-06      | 1.0000                   | 0.0042           | 0.9974              | 0.0042            |
| pu-sol-therm-038-001 | 1.0033                    | 0.0002            | 4.75E-03       | 4.65E-08      | 1.0005                   | 0.0015           | 1.0028              | 0.0015            |
| pu-sol-therm-038-002 | 1.0036                    | 0.0002            | 4.83E-03       | 4.68E-08      | 1.0005                   | 0.0015           | 1.0031              | 0.0015            |
| pu-sol-therm-038-003 | 1.0036                    | 0.0002            | 3.80E-03       | 4.32E-08      | 1.0005                   | 0.0018           | 1.0031              | 0.0018            |
| pu-sol-therm-038-004 | 1.0016                    | 0.0002            | 3.65E-03       | 4.27E-08      | 1.0005                   | 0.0013           | 1.0011              | 0.0013            |
| pu-sol-therm-038-005 | 1.0021                    | 0.0002            | 3.74E-03       | 4.28E-08      | 1.0005                   | 0.0013           | 1.0016              | 0.0013            |

### 4.3 Normality Testing

The benchmark critical experiment results are tested for normality using the modified Chi Square test, the Kolmogorov-Smirnov test, and the Lilliefors test. The test results are presented in Appendix 3.

The results demonstrate that the benchmark critical experiment data fails all three tests. In addition, the calculation results are plotted in a histogram. The binning structure and the expected number of observations are provided by the data used in the Chi Square test. The histogram is presented as Figure 1.

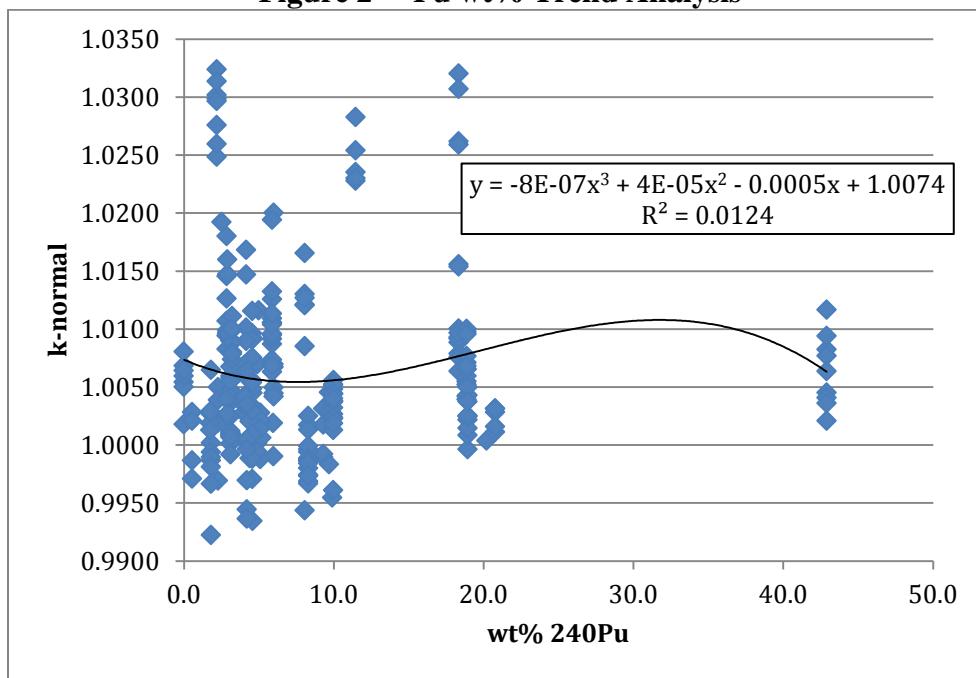
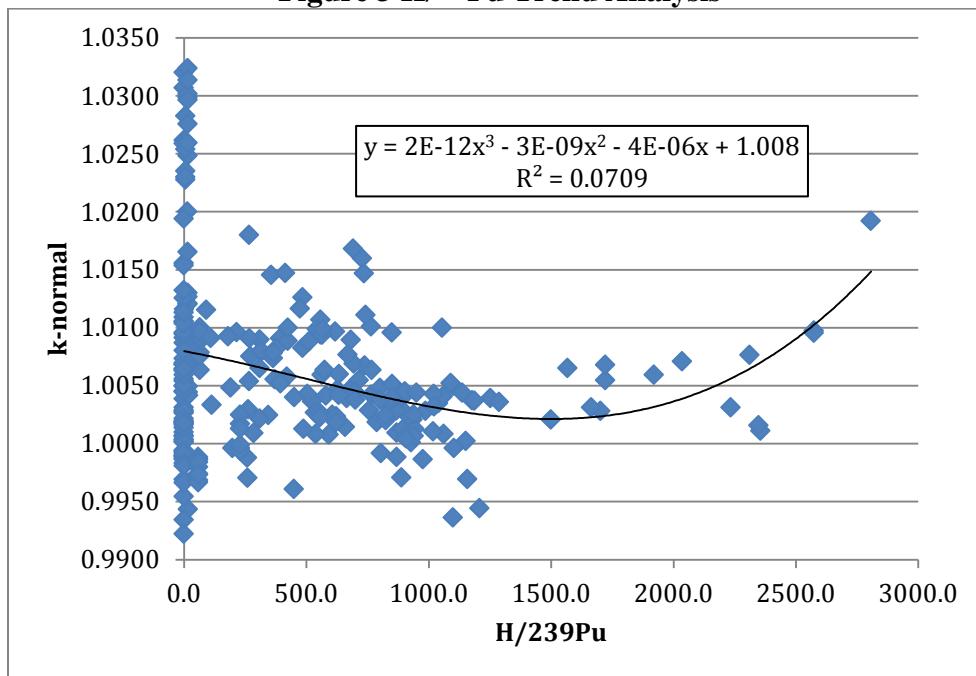
**Figure 1 Histogram of Calculation Results**

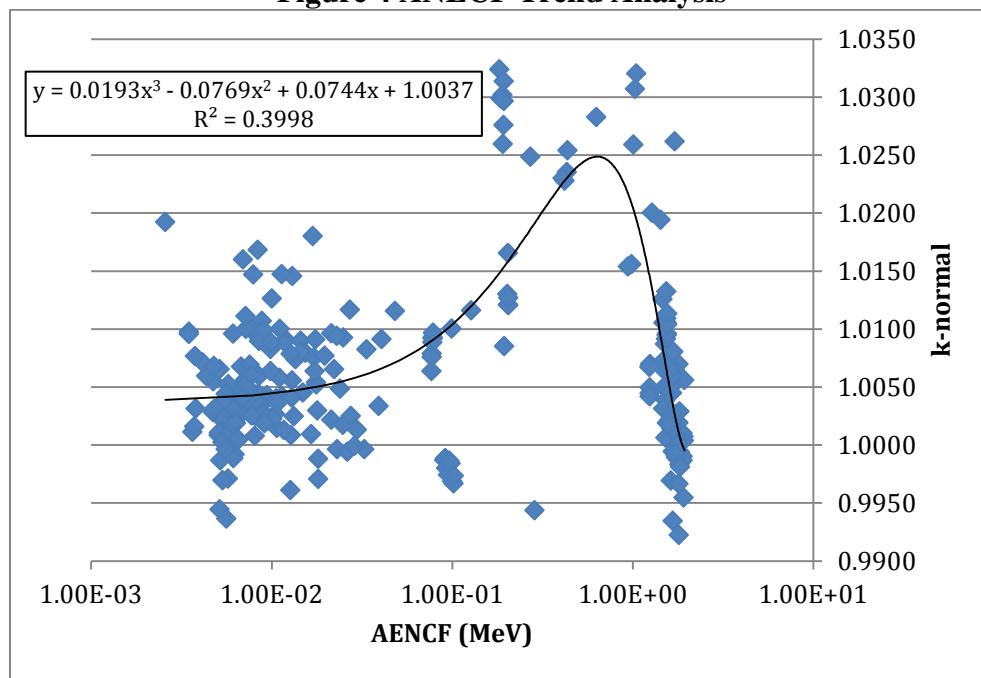


Based on the failure of the data to pass the three normality tests, and supported by visual inspection of the histogram, it is concluded that the entire benchmark critical experiment data cannot be confirmed to come from a normal distribution. Therefore, the non-parametric technique must be used to determine the USL for the entire set of validation cases.

### 4.4 Trend Analysis

The  $k_{\text{eff}}$  results are also analyzed to determine if any trends exists between calculated  $k_{\text{eff}}$  and important nuclear parameters. A calculational methodology should have a bias that neither has dependence on a characteristic nor is a smooth function of a parameter. If a trend exists, the bias will vary as a function of that trend over the parameter range. If no trend exists, then the bias will be constant over the area of applicability.



Three benchmark critical experiment parameters are examined:  $^{240}\text{Pu}$  content, moderation ratio ( $H/^{239}\text{Pu}$ ), and the average neutron energy causing fission (ANECF).  $^{240}\text{Pu}$  content was examined because plutonium at LANL typically has about 2 - 4 wt%  $^{240}\text{Pu}$ . The moderation ratio was examined because it is applicable to metal, oxide and solution. Finally ANECF was chosen to


represent the energy spectrum within the validation and because it is also indicative of the energy of the average neutron lethargy causing fission (EALF).

Graphs of the validation results for these parameters are presented as Figures 2 through 4. The graphs of the results and the trending parameters also include the coefficient of determination value ( $R^2$ ) for the plotted trend line. Note, an  $R^2$  value less than 0.3 is considered to indicate no data correlation, while an  $R^2$  value of 0.8 or greater is indicative of data correlation; thus, a trend exist. A listing of the attempted fits to each of the three trending parameters for the complete benchmark critical experiment data set is provided in Table 4.

**Table 4 Attempted Fits**

| Plot                                   | Least Squares Fits                                                                | $R^2$  |
|----------------------------------------|-----------------------------------------------------------------------------------|--------|
| $k_{normal}$ vs $^{240}\text{Pu}$ wt % | $y = 4\text{E-}05x + 1.0059$                                                      | < 0.01 |
| $x = ^{240}\text{Pu}$ wt%              | $y = 1.0058e^{4\text{E-}05x}$                                                     | < 0.01 |
|                                        | $y = -2\text{E-}06x^2 + 0.0001x + 1.0056$                                         | < 0.01 |
|                                        | $y = -8\text{E-}07x^3 + 4\text{E-}05x^2 - 0.0005x + 1.0074$<br>(see Figure 2)     | 0.01   |
|                                        |                                                                                   |        |
| $k_{normal}$ vs $H/^{239}\text{Pu}$    | $y = -2\text{E-}06x + 1.0072$                                                     | 0.02   |
| $x = H/^{239}\text{Pu}$                | $y = 1.0072e^{-2\text{E-}06x}$                                                    | 0.02   |
|                                        | $y = 3\text{E-}09x^2 - 8\text{E-}06x + 1.0082$                                    | 0.07   |
|                                        | $y = 2\text{E-}12x^3 - 3\text{E-}09x^2 - 4\text{E-}06x + 1.008$<br>(see Figure 3) | 0.07   |
|                                        |                                                                                   |        |
| $k_{normal}$ vs ANECF                  | $y = -0.0006x + 1.0065$                                                           | < 0.01 |
| $x = \text{ANECF}$                     | $y = 0.0004\ln(x) + 1.0075$                                                       | 0.02   |
|                                        | $y = 1.0065e^{-6\text{E-}04x}$                                                    | < 0.01 |
|                                        | $y = -0.022x^2 + 0.0366x + 1.0048$                                                | 0.32   |
|                                        | $y = 0.0193x^3 - 0.0769x^2 + 0.0744x + 1.0037$<br>(see Figure 4)                  | 0.40   |
|                                        | $y = 1.0074x^{0.0004}$                                                            | 0.02   |

**Figure 2  $^{240}\text{Pu}$  wt% Trend Analysis****Figure 3 H/ $^{239}\text{Pu}$  Trend Analysis**

**Figure 4 ANECF Trend Analysis**

Inspection of Figures 2 through 4, and the very low calculated  $R^2$  values, support the judgment that none of the fits presented in Table 4 adequately characterize the data distribution. Therefore, it is concluded that the data are not correlated.

Three individual data subsets, based on material form (i.e., metal, oxide, or solution), were also analyzed for potential trends in Appendix 4. The results demonstrate that no correlations exist within these individual material form subsets, either.

## 5.0 Area of Applicability

This validation is appropriate for plutonium systems (metal, oxide, and solution) at room temperature (293.6 K). A summary of the area of applicability derived from the entire evaluated benchmark critical experiment set is provided in Table 5. For fissile material systems or operations outside this area of applicability, an additional AoA margin may be warranted, as described in Section 3.3.

**Table 5 Area of Applicability**

| Parameter                                    | Area of Applicability                                                                                     |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Fissile Material                             | $^{239}\text{Pu}$                                                                                         |
| Fissile Material Form                        | Pu Metal, $\text{PuO}_2$ , and $\text{Pu}(\text{NO}_3)_4$                                                 |
| $\text{H}/^{239}\text{Pu}$                   | $0 \leq \text{H}/^{239}\text{Pu} \leq 2807$                                                               |
| Average Neutron Energy Causing Fission (MeV) | $0.003 \leq \text{ANECF} \leq 1.935$                                                                      |
| $^{240}\text{Pu}$                            | 0 to 42.9 wt% $^{240}\text{Pu}$                                                                           |
| Moderating Materials                         | none, water, graphite, polystyrene                                                                        |
| Reflecting Materials                         | none, water, steel, oil, Plexiglas, polyethylene, graphite, W, Cu, U, Th, Al, Ni, Fe, Pb, Cd, Mo, Be, BeO |
| Other Materials                              | concrete, PVC, Ga, B, Gd, Ta                                                                              |
| Geometry                                     | cylinder array, cylinder, slab, sphere, hemisphere, stacked discs, cuboid, annular                        |

As shown in Table 5, the area of applicability covers a wide range of material forms, moderators, reflectors, and other materials. Note that, given the similarity of polystyrene ( $\text{C}_8\text{H}_8$ ) to polyethylene ( $\text{CH}_2$  or  $\text{C}_2\text{H}_4$ ), the area of applicability is judged to encompass polyethylene-moderated systems as well. Further, reflectors and other materials listed in the table may be considered equivalent when comparing to a calculational area of applicability. In terms of geometry, a reasonably wide range of shapes was evaluated. However, as stated in Section 4.0, geometrical congruence between the validation and calculations areas of applicability is not a significant concern with MCNP6.

With respect to  $\text{H}/^{239}\text{Pu}$  ratio, the area of applicability covers a range between zero and 2807. Further, the figures in Section 4.4 demonstrate that the evaluated data is well distributed throughout this range, albeit more sparsely at moderation ratios greater than  $\sim 1500$ . With respect to  $^{240}\text{Pu}$  content, the area of applicability covers a range between zero and 42.9 wt%. Although the figures of Section 4.4 demonstrate a large gap in the evaluated data between 27 and 43 wt%, an additional AoA margin for interpolation within this range is judged not to be necessary because the data are not correlated.

With respect to spectra, the area of applicability covers ANECFs between 0.003 and 1.935 MeV, and the figures in Section 4.4 demonstrate that the evaluated data is relatively well distributed throughout this range. Further, given the number of thermal benchmark critical experiments modeled, it is judged that the area of applicability may be extended down to ANECF values of approximately zero. ANECF was arbitrarily chosen over EALF to describe the area of applicability because there is a high degree of correlation between the two parameters (i.e., using both parameters would have been redundant).

Finally, note the following cautions which are applicable to this validation:

- Not all nuclides (stable or radioactive) of any given element are necessarily included in the validation. For example, none of the benchmark cases model deuterium; water should thus be modeled using  $^1\text{H}$  only. If modeling nuclides not included in this validation additional margin or sensitivity analyses may be required.

- Only one benchmark critical experiment case includes graphite as a moderator. Modeling graphite moderation may thus require additional margin.
- With respect to neutron absorbers, multiple benchmark cases model gadolinium and cadmium. However, only one case includes boron. Modeling boron as an absorber may thus require additional margin.

If a calculation requires an extrapolation to the area of applicability, guidance may be found in LA-12683 (Reference 5), specifically Appendix E of that report. In addition, sensitivity analyses may be useful in determining if an extrapolation has a significant impact on calculated  $k_{\text{eff}}$  and in determining the magnitude of any AoA margin employed.

## 6.0 USL Determination

Based on the benchmark critical experiment results presented in Section 4.2, a USL is derived for the entire data set in Section 6.1, while Section 6.2 documents an evaluation justifying the derivation of a single USL.

### 6.1 Complete Benchmark Critical Data Set USL

Since the benchmark critical experiment results could not be shown to be normally distributed, a USL is derived using the non-parametric technique described in Section 3.4.3. For a sample size of 261,  $\beta$  becomes:

$$\begin{aligned}\beta &= 1 - 0.95^n \\ &= 1 - 0.95^{261} \\ &= 1.0000\end{aligned}$$

From Reference 9,  $\beta > 0.90$  yields a NPM of zero (because the number of sample points is sufficiently large). The USL is then calculated using the lowest calculated  $k_{\text{normal}}$  from the benchmark evaluation (PU-MET-FAST-039-001):

$$\begin{aligned}\text{USL} &= \text{Smallest } k_{\text{normal}} \text{ value in the data set} - \sigma_t - \text{NPM} - \text{MoS} - \text{AoA} \\ &= 0.9922 - 0.0022 - 0.0 - \text{MoS} - \text{AoA} \\ &= 0.9900 - \text{MoS} - \text{AoA}\end{aligned}$$

### 6.2 Individual Material Form Subsets

In Section 7.2 of ANSI/ANS-8.24 (Reference 10) a recommendation is made that states:

*“The validation applicability should not be so large that a subset of the data with a high degree of similarity to the system or process would produce an upper subcritical limit that is lower than that determined for the entire set. This criterion is recommended to ensure that a subset of data that is closely related to the system or process is not nonconservatively masked by benchmarks that do not match the system as well.”*

To address this recommendation, the USLs of the three individual material form subsets of the complete data set were determined and evaluated. The individual material form subsets are as follows:

- metal (based on the PU-METAL-FAST benchmarks)
- oxide (based on the PU-COMP-INTER and PU-COMP-MIXED benchmarks)
- solution (based on the PU-SOL-THERM benchmarks)

Table 6 summarizes some characteristics of these three material form data subsets, as well as the corresponding characteristics of the entire data set. Note that each individual material form subset was determined to be non-normally distributed in Appendix 3. Therefore, the subset USLs were derived using the non-parametric technique, as shown in Appendix 5. Note that the individual USLs listed in the table do not include MoS or AoA margins; they are for demonstration purposes only and are not intended for use by analysts.

**Table 6 Material Form Subset Characteristics**

| Parameter      | Metal | Oxide | Solution | All   |
|----------------|-------|-------|----------|-------|
| Mean $k_{eff}$ | 1.004 | 1.019 | 1.004    | 1.006 |
| Min $k_{eff}$  | 0.992 | 0.994 | 0.994    | 0.992 |
| Max $k_{eff}$  | 1.020 | 1.032 | 1.019    | 1.032 |
| USL*           | 0.990 | 0.978 | 0.988    | 0.990 |

\*These USLs do not include MoS or AoA margins; these values are for demonstration purposes only and shall not be used by analysts.

From the table, the mean, minimum, and maximum normalized  $k_{eff}$  values are similar for each of the material form subsets, except that mean and maximum  $k_{eff}$  values calculated for the oxide subset are about 0.01 higher than the metal and solution subsets. This over-prediction in the oxide cases is conservative, as it will lead to a higher value of the calculated  $k_{eff}$  of the system being analyzed. The similarity in the mean and max  $k_{eff}$  in addition to the overprediction of  $k_{eff}$  in oxide cases supports a conclusion that the data does not need to be separated by material form.

Benchmark experiments were separated into material form subsets to determine if there was any correlation to nuclear parameters within the data subsets. Appendix 4 demonstrates that the material form data subsets do not individually correlate with any investigated nuclear parameter. Because there is no correlation between the material form data subsets and any of the evaluated nuclear parameters, there is no justification for separating the data by material form.

With the exception of thermal scattering from non-fissile components of a few materials, MCNP does not model the molecular structure or chemical forms of input materials. Because of this, separating the data by material form of the fissile material with no underlying correlation to nuclear parameters is untenable.

Finally, the USLs derived from the individual material form subsets are almost identical, except that the oxide USL is ~0.01 lower. However, note that the oxide USL is less than the others because it was reduced by an additional 0.01 to account for the small sample size (only 35 cases). With the reduction, the USLs range from 0.978 to 0.990 (neglecting MoS and AoA

margins). Without that statistical reduction, the three individual USLs would range from 0.988 to 0.990. Because there is such a small amount of variation in the USL when separated by material form, there is no need to separate the data.

Therefore, given the similarity in the normalized  $k_{\text{eff}}$  values (with some extra conservativism for oxides), the lack of any correlation in the individual material form subsets, the fact that MCNP does not model molecular structure, and the small spread in USLs, it is concluded herein that the overall data set is not nonconservatively masking any characteristics of the individual material form subsets. Therefore, a single USL derived from the combined data set is appropriate.

## 7.0 Conclusion

For the combined area of applicability defined in Section 5.0, it is concluded that the following USL may be used:

$$\text{USL} = 0.990 - \text{MoS} - \text{AoA}$$

Therefore, a  $k_{\text{eff}}$  calculated by an MCNP6 analysis is required to meet the following condition:

$$k_{\text{eff}} + 2\sigma \leq 0.990 - \text{MoS} - \text{AoA}$$

where  $k_{\text{eff}}$  and  $\sigma$  are the calculated  $k_{\text{eff}}$  and Monte Carlo statistical uncertainty associated with the MCNP6 calculation using the ENDF/B-VII.1 continuous energy group cross section library.

As described in Section 3.2, guidance for the selection of an appropriate MoS may be found in Reference 11. As described in Section 3.3, for systems which are outside the validation area of applicability, an additional margin may be necessary. Guidance may be found in LA-12683 (Reference 5).

## 8.0 References

1. *International Handbook of Evaluated Criticality Safety Benchmark Experiments*, NEA/NCS/DOC (95)03, Organization for Economic Cooperation and Development, September 2012.
2. *Initial MCNP6 Release Overview - MCNP6 version 1.0*, LA-UR-13-22934, Los Alamos National Laboratory.
3. F.B. Brown, B.C. Kiedrowski, J.S. Bull, *Verification of MCNP5-1.60 and MCNP6.1 for Criticality Safety Applications*, LA-UR-13-22196, Los Alamos National Laboratory Report, 2013.
4. *Nuclear Criticality Safety in Operations with Fissionable Material Outside Reactors*, ANSI/ANS-8.1-2014, American Nuclear Society.
5. *Forecast of Criticality Benchmark Experiments and Experimental Programs Needed to Support Nuclear Operations in the United States of America: 1994-1999*, LA-12683 (Appendix E), Los Alamos, March, 1994.
6. Hollander, M., and D. A. Wolfe, *Nonparametric Statistical Methods*, John Wiley & Sons, 1973.
7. *Statistical Methods for Nuclear Material Management*, NUREG/CR-4604, PNL, December, 1988.
8. Natrella, M. G., *Experimental Statistics*, National Bureau of Standards Handbook 91, August, 1963.
9. J. C. Dean, R. W Tayloe, NUREG/CR-6698, *Guide for Validation of Nuclear Criticality Safety Calculational Methodology*, January 2001.
10. *Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations*, ANSI/ANS-8.24-2007, American Nuclear Society.
11. *Criticality Safety Evaluations*, NCS-GUIDE-01.

**APPENDIX 1: BENCHMARK i/o FILES**

Input and output files are stored on the NCSD common drive in the following directory:

Common/NCS Memos/TECHs/NCS-TECH-15-005/plutonium

These files were also archived on the High Performance Storage System (HPSS) as follows:

hpss/ncs-sqm/ML/NCS-TECH-15-005/plutonium.tar

hpss/ncs-sqm/ML/NCS-TECH-15-005/plutonium.tar-index.txt

## APPENDIX 2: BENCHMARK EXPERIMENTS

This appendix presents brief descriptions of the benchmarks used in this validation report. Following these descriptions, data for each benchmark experiment is tabulated. Note that only the main materials utilized in the benchmark critical experiments are listed under "Other Materials" in this table. For a complete list of nuclides utilized in the benchmark critical experiments, see Table 1.

**$k_{\infty}$  Experiments in Intermediate Neutron Spectra for  $^{239}\text{Pu}$  (PU-COMP-INTER-001):** The experimental program comprised a series of small-sample  $k_{\infty}$  experiments in intermediate neutron spectra. The experiments were performed at the HECTOR (Hot Enriched Carbon-moderated Thermal Oscillator Reactor) zero-power, graphite-moderated reactor at Winfrith, United Kingdom, during the late 1960s. The plutonium elements, within the test region for the HPG (Homogeneous Plutonium Graphite) experiment, contained a mixture of plutonium powder (5%  $^{240}\text{Pu}$ ), boron and graphite.

**Polystyrene-Moderated  $\text{PuO}_2$  (PU-COMP-MIX-001 and -002):** Thirty-four critical experiments involving unreflected and Plexiglas-reflected arrays of  $\text{PuO}_2$ /polystyrene cubes (compacts) are reported in Reference 1. The five unreflected experiments are evaluated in PU-COMP-MIX-001 with the 29 Plexiglas reflected experiments are evaluated in PU-COMP-MIX-002. Experimental arrays were constructed from  $\text{PuO}_2$ /polystyrene cubes with H/Pu ratios of 0.04, 5, 15, and 50.

**Bare Sphere of  $^{239}\text{Pu}$  Metal ( $^{239}\text{Pu}$  Jezebel) (PU-MET-FAST-001):** In the mid-1950s, the  $^{239}\text{Pu}$  Jezebel critical assembly was fabricated and operated at the Los Alamos Scientific Laboratory (LASL). There were three Jezebel assemblies built, one using Pu (4.5 at%  $^{240}\text{Pu}$ ) and referred to as the  $^{239}\text{Pu}$  Jezebel, one using Pu (20 at%  $^{240}\text{Pu}$ ) and referred to as the  $^{240}\text{Pu}$  or "dirty" Jezebel, and one using  $^{233}\text{U}$  and referred to as the  $^{233}\text{U}$  Jezebel. Only the  $^{239}\text{Pu}$  Jezebel is described in this evaluation. The  $^{239}\text{Pu}$  Jezebel was a minimally reflected  $\delta$ -phase  $^{239}\text{Pu}$  critical assembly, nearly spherical in shape.

**Bare Sphere of  $^{239}\text{Pu}$  Metal ( $^{240}\text{Pu}$  Jezebel) (PU-MET-FAST-002):** As discussed above, three different Jezebel critical assemblies were built at LASL. Only the  $^{240}\text{Pu}$  Jezebel is described in this report. The  $^{240}\text{Pu}$  Jezebel was an unreflected, or bare,  $\delta$ -phase  $^{240}\text{Pu}$  critical assembly, nearly spherical in shape.

**Unmoderated Pu Metal Button Array (PU-MET-FAST-003):** Between 1965 and 1969 at the Lawrence Livermore Laboratory, plutonium metal "parts" weighing 3 kg and 6 kg were used to form reflected and unreflected arrays, of various sizes, on an aluminum table. An array was formed with half of the units on each side of a split table. A center-to-center spacing in both the vertical and lateral dimensions was chosen, and then the table was remotely pushed together.

**Benchmark Critical Experiment of a Plutonium Sphere Reflected by Tungsten or Beryllium (PU-MET-FAST-005 and -018):** In 1958, an experiment was performed at LASL using a slightly subcritical spherical mass of  $\delta$ -phase plutonium reflected by tungsten or

beryllium. The experiment was performed using the Planet universal assembly machine. The core was composed of two hemispheres of  $\delta$ -phase plutonium alloy having a diameter of 3.970 inches and plated with 0.005-inch-thick nickel with a 0.85-inch diameter source cavity in the center of the two hemispheres. Hemishells of various thicknesses were constructed to enclose the plutonium hemispheres.

**Plutonium Sphere Reflected by Normal Uranium Using Flattop (PU-MET-FAST-006):** In the mid-1960s a critical experiment was performed at LASL using a spherical  $\delta$ -phase plutonium core reflected by normal uranium. Delayed critical was achieved. The experiment was performed using the Flattop critical assembly machine. This Flattop assembly has a core of  $\delta$ -phase plutonium metal alloy, enclosed in a thick normal uranium reflector. The core is composed of two hemispheres of plutonium metal. Both halves combined to form a sphere with an outside diameter of 3.586 inches, which includes the Ni coating.

**Benchmark Critical Experiment of a Thorium Reflected Plutonium Sphere (PU-MET-FAST-008):** From December 1960 through November 1961, a critical assembly was operated at LASL using a spherical mass of  $\delta$ -phase plutonium closely reflected by thorium. The experiment was designed to study the neutronic properties of thorium in support of a potential fast,  $^{233}\text{U}$  breeder reactor. The average of the results for two critical experimental configurations was used to determine the final critical mass. The experiment was performed using the Thor assembly machine, a modification of the Planet universal assembly machine. The plutonium core was constructed of three major parts; an upper polar cap, a lower polar cap, and a central section. Together, the three parts approximated a sphere 10.59 cm in diameter when assembled. The upper polar cap and central section remained stationary while the lower polar cap was located on a pneumatic lift. The central section had a 1.27-cm-diameter glory hole, which was filled with plutonium as needed.

**Plutonium Sphere Reflected by Aluminum (PU-METAL-FAST-009):** In 1960 a critical experiment was performed at LASL using a spherical mass of  $\delta$ -phase plutonium reflected by type 2014 aluminum. Measurements were taken with a single spherical mass of plutonium and three different reflector thicknesses. Measurements with the first two reflector thicknesses resulted in subcritical configurations, and measurements with the final reflector thickness yielded a slightly supercritical configuration. A curve was fitted to the three data points to derive the critical mass. The experiment was conducted using the COMET universal assembly machine. Two hemispheres with diameters of 4.34 inches were constructed of  $\delta$ -phase plutonium alloy and plated with 0.005 inches of nickel. The upper hemisphere had a cylindrical central source cavity  $\frac{1}{2}$  inch deep and  $\frac{1}{2}$  inch diameter. The source cavity could accommodate either a fission source or a close fitting piece of plutonium. The nickel coated plutonium hemispheres made up the core. Nested hemishells of type 2014 aluminum were constructed to enclose the plutonium hemispheres.

**Benchmark Critical Experiment of a Delta-Phase Plutonium Sphere Reflected by Normal Uranium (PU-METAL-FAST-010):** In 1958, an experiment was performed at LASL using a slightly subcritical spherical mass of  $\delta$ -phase plutonium reflected by normal uranium. The experiment was performed using the Planet universal assembly machine. Two hemispheres with

a 0.85-inch-diameter central source cavity and a diameter of 3.970 inches were constructed of  $\delta$ -phase plutonium alloy and plated with 0.005-inch-thick nickel. Hemishells of various thicknesses of normal uranium were constructed to enclose the plutonium hemispheres.

**Benchmark Critical Experiment of a Water Reflected Alpha-Phase Plutonium Sphere (PU-MET-FAST-011):** In 1968, an experiment was performed at LASL using two subcritical spherical masses of  $\alpha$ -phase plutonium reflected by water. From the two subcritical inverse multiplication measurements, an accurate prediction was made of the critical mass. The sphere was painstakingly fabricated to obtain highly pure and highly dense plutonium. The plutonium was electro-refined to produce metal with total impurities of 230 ppm and cast into two split ingots. Two hemispheres were constructed from the split ingots, and the pieces were shrink-fitted together and machined to exacting tolerances.

**Uranium-Reflected Array of Plutonium Fuel Rods (PU-MET-FAST-012, -013, -014, and -015):** Experiments on the critical assembly BR-1-1 were performed in 1956 - 1962 at the Institute of Physics and Power Engineering (IPPE), Obninsk, Russia. The core was a cylindrical arrangement of short, close-packed, stainless-steel-clad rods of plutonium metal (97.6 at%  $^{239}\text{Pu}$ ) reflected on all sides by thick depleted uranium (-012), copper (-013), nickel (-014), or iron (-015). The assembly was located on a steel platform with thickness 2.5 cm in the center of a cell with dimensions 12 by 6 by 6.5 m high.

**Flooded 3x3x3 Arrays of 3-kg Plutonium Metal Cylinders - Phase I (PU-MET-FAST-016):** In 1982, a set of critical experiments was conducted at the Rocky Flats Critical Mass Laboratory (CML). Plutonium metal cylinders were assembled into a 3x3x3 array and flooded with water. For each of the experiments, horizontal and vertical spacing were chosen and water was added until the array was critical. Twenty-seven 3-kg plutonium metal parts were used in these experiments. The plutonium part consisted of a machined right circular cylinder of plutonium metal contained in a seamless aluminum can with a mild steel lid.

**Sphere of Plutonium Reflected by Beryllium or Depleted Uranium (PU-MET-FAST-019 and -020):** The experiments described in these evaluations are critical configurations that were assembled in the 1980s using the VNIITF Criticality Test Facility (CTF). The assembly is a sphere of plutonium reflected by beryllium or depleted uranium, divided into two parts and separated by a gap.

**Beryllium- and Beryllium Oxide-Reflected Cylinders of Plutonium (PU-MET-FAST-021):** The experiments presented in this report were performed in 1987. The critical assemblies are plutonium cylinders reflected by beryllium or beryllium oxide on their ends. Two such critical assemblies have been built and are taken for the detailed description. Each critical assembly has an identical cylindrical core of 95 at%  $^{239}\text{Pu}$  and end reflectors of Be or BeO. Each assembly consists of two almost equal parts, divided by a gap. The bottom part is movable, and the top is immovable.

**Bare and Reflected Spherical Assemblies of  $^{239}\text{Pu}$  ( $\delta$ , 98%) (PU-MET-FAST-022, -023, -024, -025, -026, -035, -036, -039, and -040):** Criticality measurements of bare or reflected

(graphite, polyethylene, steel, lead, cadmium/polyethylene, duralumin, or copper)  $\delta$ -phase metal  $^{239}\text{Pu}$  (98%) were carried out in the 1960s at the VNII EF CTF. The assembly cores included five or six spherical layers of fissile material. Some cores included central cavities, and some of these were filled with additional plutonium. The reflectors consisted of one or more layers with varying outer radii. Each assembly consisted of two separate units: an upper unit and a lower (movable) unit.

**Polyethylene-Reflected Spherical Assembly of  $^{239}\text{Pu}$  ( $\delta$ , 89%) (PU-MET-FAST-027 and -028):** Criticality measurements of polyethylene- or steel-reflected,  $\delta$ -phase metal  $^{239}\text{Pu}$  (89%) were carried out in 1965 at the VNII EF CTF. The assembly cores included a central cavity and five spherical layers of fissile material. The reflectors consisted of multiple layers with varying outer radii. Each assembly consisted of two separate units: an upper unit and a lower (movable) unit.

**Bare and Reflected Spherical Assemblies of  $^{239}\text{Pu}$  ( $\alpha$ , 88%) (PU-MET-FAST-029, -030, -031, and -041):** Criticality measurements of bare or reflected (graphite, polyethylene, steel, or depleted uranium)  $\alpha$ -phase metal  $^{239}\text{Pu}$  (88%) were carried out in 1965 at the VNII EF CTF. The assembly cores included three to five spherical layers of fissile material (some cores included central cavities). The reflectors consisted of one or more layers with varying outer radii. Each assembly consisted of two separate units: an upper unit and a lower (movable) unit.

**Plutonium Sphere Reflected by Beryllium (PU-MET-FAST-038):** The BERP (BEryllium Reflected Plutonium) Ball experiments were conducted with an  $\alpha$ -phase plutonium sphere reflected by beryllium at the Planet critical assembly at the Los Alamos Critical Experiments Facility (LACEF) in 1986. The stainless steel-clad plutonium sphere was cast and turned to a mean diameter of 7.5876 cm. Four beryllium hemispheres provide neutron reflection to the system, with a total beryllium reflector thickness of 3.349 inches.

**Plutonium Hemispheres Reflected by Steel and Oil (PU-MET-FAST-042):** This benchmark examines fifteen, partially oil-reflected hemispherical assemblies, representing a series of unique, steel-oil reflected experiments. Fourteen of these assemblies had close-fitting steel hemishell reflectors, used to determine the effective critical reflector height of oil with varying steel-reflector thickness. The first case represents a bare oil-reflected plutonium hemisphere. With each subsequent case, a thin steel hemishell of approximately one-third of a centimeter is added to the assembly of the previous case. The final case thus represents the original plutonium assembly in Case 1 with a series of steel hemispheres with total thickness of approximately 4.67 cm. The simplified models in this benchmark critical experiment were used in the validation.

**Plutonium (5.1 wt%  $^{240}\text{Pu}$ ) Metal Sphere with Beryllium, Graphite, Aluminum, Iron, and Molybdenum Tampers and Polyethylene Reflectors (PU-MET-FAST-044):** Between January 1973 and September 1975, experiments involving a plutonium-alloy core with metal/graphite tampers and a polyethylene reflector were conducted at LASL. The experiments used a 9.76 kg plutonium (5.1 wt%  $^{240}\text{Pu}$ )-alloy core, which is often referred to as the “Thor core”. This nearly spherical core consisted of three nickel-coated sections. In each experimental assembly, the plutonium-alloy core was surrounded by a close-fitting inner tamper shell and an outer

Polyethylene reflector shell. The purpose of these experiments was to determine the critical polyethylene reflector thicknesses required with various tampers surrounding the plutonium-alloy core. A critical configuration was attained for three of the tamper materials (C, Fe and Al). The critical polyethylene reflector masses for configurations involving the other two tamper materials (Mo, Be) were determined by extrapolation of the approach-to-critical experiments. The benchmark critical experiments were performed using the COMET assembly machine.

**Critical Experiments Performed for LAMPRE, the Los Alamos Molten Plutonium Reactor (PU-MET-FAST-045):** This series of critical experiments was performed in 1957 to support construction and operation of the Los Alamos Molten Plutonium Reactor (LAMPRE), operated at LASL between May 1960 and December 1965. This set of critical experiments was known as LCX-I. The experiments were performed to 1) establish the critical mass for LAMPRE, 2) establish the effectiveness of various control schemes, and 3) determine power and flux distributions. Critical mass measurements using LCX-I were performed using three different core compositions and three different metal reflectors resulting in seven critical configurations. The LCX-I core was composed of Pu-Ni discs, Ta discs, and reduced-density Al discs placed inside of a core sleeve. The core sleeve rested on the lower reflector, which in turn rested on a cylindrical block of polyethylene on a hydraulic lift. The upper half of the assembly consisted of a water tank with a central cavity that contained the top and radial metal reflectors. The lower part of the assembly could be inserted into the upper part of the assembly to accomplish criticality or an approach-to-critical.

**Water-Reflected 11.5-inch Diameter Spheres of Plutonium Nitrate Solutions (PU-SOL-THERM-001):** Evaluated in this report are experiments performed at the Battelle Pacific Northwest Laboratories (PNL) Critical Mass Laboratory (CML). This benchmark consists of six experiments with a stainless steel spherical shell, 11.5 inches in diameter, surrounded by an effectively infinite water reflector. The solution was plutonium nitrate with the plutonium having 4.57 wt%  $^{240}\text{Pu}$ .

**Bare and Water-Reflected Spheres of Plutonium Nitrate Solutions (PU-SOL-THERM-002, -003, -004, -005, -006, -007, and -011):** Experiments performed in the P-11 area of the Hanford Reservation in the early 1950s are evaluated in this report. The experiments were directed toward determining the effect of geometry, concentration, foreign atoms, plutonium isotopic content, neutron reflection, and temperature on the critical mass of light water moderated and reflected homogeneous plutonium solutions. The plutonium nitrate solution was contained in nominally 12-, 13-, 14-, 15-, 16-, or 18-inch diameter spheres, which were inside a large cylindrical tank that provided effectively full water reflection around the sphere. The 11.5-inch experiments involved a partially filled sphere, while the other spheres were completely full.

**Unreflected 48-inch-Diameter Sphere of Plutonium Nitrate Solution (PU-SOL-THERM-009):** Evaluated in this report are three experiments performed at the PNL CML in a 48-inch-diameter bare sphere. Minimum critical plutonium concentrations were determined for  $^{239}\text{Pu}$ -nitrate solutions, by using the data from the 48-inch sphere experiments and from eight experiments in smaller spheres.

**Water-Reflected 9-, 10-, 11-, and 12-inch-Diameter Cylinders of Plutonium Nitrate Solutions (PU-SOL-THERM-010):** Thirty-five critical experiments with cylindrical reactors were performed in the P-11 area of the Hanford Reservation in the early 1950s. The P-11 series of experiments were directed toward determining the effect of geometry, concentration, foreign atoms, plutonium isotopic content, neutron reflection, and temperature on the critical mass of light water moderated and reflected homogeneous plutonium solutions. The plutonium nitrate solutions were contained in a series of cylinders with inside diameters of 9, 10, 11, and 12 inches. The cylindrical reactors were inside a large cylindrical water-filled tank that provided at least 12 inches of water reflection around the cylinders in all directions. Each cylinder was fitted with a movable water-filled piston 'tamper' (top reflector) which was 12 inches thick.

**Criticality of Plutonium Nitrate Solution in a Large Water-Reflected Cubic Tank (130 x 130 x 100 cm) (19%  $^{240}\text{Pu}$ ) (PU-SOL-THERM-012):** The experimental program considered plutonium nitrate solution in a large right parallelepiped tank. The tank was either fully reflected by water on six sides, water reflected on five sides, or not water reflected. A plutonium concentration range of 13.2 to 105 g/l was examined. The plutonium contained 18.88%  $^{240}\text{Pu}$ . These experiments, performed at the VALDUC facility (CEA-FRANCE) in 1974, were subcritical approaches extrapolated to critical. The multiplication factor reached was very close to 1.000 (within 0.1%). Five fully water-reflected experiments and eight experiments water-reflected on five sides are evaluated.

**Water-Reflected 24-inch Diameter Cylinder Of Plutonium Nitrate Solution (PU-SOL-THERM-018):** In 1971, experiments involving water-reflected cylinders of plutonium nitrate solutions from high burn-up fuel (~42.9 wt%  $^{240}\text{Pu}$ ) were performed at the PNL CML. The purpose of the experiments was to "establish the combined effects of the various isotopes of plutonium on criticality." There were nine reported configurations corresponding to plutonium concentration in the solution varying from ~40 to ~140 g Pu/liter. Critical heights (and volumes) were determined for each plutonium concentration.

**Plutonium Nitrate Solution in a Water-Reflected Annular Cylinder Tank (PU-SOL-THERM-022, -028, and -032):** The experimental program considered plutonium nitrate solution in an annular cylinder tank. The outer and inner diameters of the tank were 50 cm/20 cm or 50 cm/30 cm. The tank was reflected by water on the side and at the bottom. A plutonium concentration range of 28.5 to 165 g/l was examined. The plutonium contained 3.22 or 18.88%  $^{240}\text{Pu}$ . These experiments, performed at the Valduc facility (CEA-FRANCE) in the 19060s and 1970s, were subcritical approaches extrapolated to critical. The multiplication factor reached was very close to 1.000 (within 0.1%).

**Plutonium (8.3 wt%  $^{240}\text{Pu}$ ) Nitrate Solution with Gadolinium in Water-Reflected 24-inch Diameter Cylinder (PU-SOL-THERM-034):** Between September 1970 and March 1971, experiments involving water-reflected cylinders (24-inch diameter) of plutonium nitrate solutions poisoned with gadolinium nitrate were performed at the PNL CML. The purpose of the experiments was to "establish the effect of a soluble neutron absorber on the criticality of plutonium nitrate solutions." There are fifteen reported configurations at a plutonium concentration of either 116 or 363 g Pu/liter. The plutonium contained 8.3 wt%  $^{240}\text{Pu}$ . Critical

heights and volumes were determined at gadolinium concentrations varying from 0 to 20.25 g Gd/liter for the fifteen configurations.

**Plutonium Temperature Effect Program - Low Concentrated (20, 15 Or 14.3 g/L) Plutonium Nitrate Solutions at Room Temperature (PU-SOL-THERM-038):** The main goal of the French Plutonium Temperature Effect Experimental Program is to effectively show that a positive temperature effect exists for diluted plutonium solutions. The experiments were conducted in the “Apparatus B” facility at the CEA VALDUC research center in France and involved 17 sub-critical approaches using plutonium nitrate solutions with concentrations of 14.3, 15, and 20 g/l at temperatures ranging from 22 - 40°C. The experiments started in late 2006 and were concluded in July 2007. The experimental set-up consists of two concentric cylindrical vessels: an inner vessel which accommodates the plutonium solutions during the experiment and an outer vessel which provides neutron reflection by a water layer laterally and under the plutonium vessel.

**Table 7 Benchmark Critical Experiment Summary**

| Benchmark             | <sup>240</sup> Pu wt% | Form             | Geometry       | Moderator / Reflector | H/ <sup>239</sup> Pu | Other Materials |
|-----------------------|-----------------------|------------------|----------------|-----------------------|----------------------|-----------------|
| pu-comp-inter-001-001 | 5.0                   | PuO <sub>2</sub> | Infinite       | Graphite/None         | 0.4                  | B               |
| pu-comp-mixed-001-001 | 18.4                  | PuO <sub>2</sub> | Slab           | Water/None            | 0.1                  | Concrete        |
| pu-comp-mixed-001-002 | 11.5                  | PuO <sub>2</sub> | Slab           | Polystyrene/None      | 5.9                  | Concrete        |
| pu-comp-mixed-001-003 | 2.2                   | PuO <sub>2</sub> | Slab           | Polystyrene/None      | 15.5                 | Concrete        |
| pu-comp-mixed-001-004 | 8.1                   | PuO <sub>2</sub> | Slab           | Polystyrene/None      | 16.4                 | Concrete        |
| pu-comp-mixed-001-005 | 18.4                  | PuO <sub>2</sub> | Slab           | Polystyrene/None      | 65.4                 | Concrete        |
| pu-comp-mixed-002-001 | 18.4                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 0.1                  | None            |
| pu-comp-mixed-002-002 | 18.4                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 0.1                  | None            |
| pu-comp-mixed-002-003 | 18.4                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 0.1                  | None            |
| pu-comp-mixed-002-004 | 18.4                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 0.1                  | None            |
| pu-comp-mixed-002-005 | 18.4                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 0.1                  | None            |
| pu-comp-mixed-002-006 | 11.5                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 5.9                  | None            |
| pu-comp-mixed-002-007 | 11.5                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 5.9                  | None            |
| pu-comp-mixed-002-008 | 11.5                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 5.9                  | None            |
| pu-comp-mixed-002-009 | 11.5                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 5.9                  | None            |
| pu-comp-mixed-002-010 | 2.2                   | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 15.5                 | None            |
| pu-comp-mixed-002-011 | 2.2                   | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 15.5                 | None            |
| pu-comp-mixed-002-012 | 2.2                   | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 15.5                 | None            |
| pu-comp-mixed-002-013 | 2.2                   | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 15.5                 | None            |
| pu-comp-mixed-002-014 | 2.2                   | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 15.5                 | None            |
| pu-comp-mixed-002-015 | 2.2                   | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 15.5                 | None            |
| pu-comp-mixed-002-016 | 2.2                   | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 15.5                 | None            |
| pu-comp-mixed-002-017 | 8.1                   | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 15.5                 | None            |
| pu-comp-mixed-002-018 | 8.1                   | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 15.5                 | None            |
| pu-comp-mixed-002-019 | 8.1                   | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 15.5                 | None            |
| pu-comp-mixed-002-020 | 8.1                   | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 15.5                 | None            |
| pu-comp-mixed-002-021 | 8.1                   | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 15.5                 | None            |
| pu-comp-mixed-002-022 | 8.1                   | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 15.5                 | None            |
| pu-comp-mixed-002-023 | 18.4                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 65.4                 | None            |
| pu-comp-mixed-002-024 | 18.4                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 65.4                 | None            |
| pu-comp-mixed-002-025 | 18.4                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 65.4                 | None            |
| pu-comp-mixed-002-026 | 18.4                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 65.4                 | None            |
| pu-comp-mixed-002-027 | 18.4                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 65.4                 | None            |
| pu-comp-mixed-002-028 | 18.4                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 65.4                 | None            |
| pu-comp-mixed-002-029 | 18.4                  | PuO <sub>2</sub> | Slab           | Polystyrene/Plexiglas | 65.4                 | None            |
| pu-met-fast-001-001   | 4.5                   | Metal            | Sphere         | None                  | 0.0                  | Ga              |
| pu-met-fast-002-001   | 20.2                  | Metal            | Sphere         | None                  | 0.0                  | Ga              |
| pu-met-fast-003-103   | 6.0                   | Metal            | Cylinder Array | None/Polyethylene     | 0.0                  | Al, Steel       |

| Benchmark           | <sup>240</sup> Pu wt% | Form  | Geometry       | Moderator / Reflector        | H/ <sup>239</sup> Pu | Other Materials         |
|---------------------|-----------------------|-------|----------------|------------------------------|----------------------|-------------------------|
| pu-met-fast-005-001 | 4.9                   | Metal | Sphere         | None/W                       | 0.0                  | Ga, Ni                  |
| pu-met-fast-006-001 | 4.8                   | Metal | Sphere         | None/U                       | 0.0                  | Ga                      |
| pu-met-fast-008-001 | 5.1                   | Metal | Sphere         | None/Th                      | 0.0                  | Ga                      |
| pu-met-fast-009-001 | 4.9                   | Metal | Sphere         | None/Al                      | 0.0                  | Ga                      |
| pu-met-fast-010-001 | 4.9                   | Metal | Sphere         | None/U                       | 0.0                  | Ga                      |
| pu-met-fast-011-001 | 5.2                   | Metal | Sphere         | None/Water                   | 0.0                  | None                    |
| pu-met-fast-012-001 | 2.3                   | Metal | Cylinder       | None/U                       | 0.0                  | Ga, Cu, Steel           |
| pu-met-fast-013-001 | 2.3                   | Metal | Cylinder       | None/Cu                      | 0.0                  | Ga, Cu, Steel           |
| pu-met-fast-014-001 | 2.3                   | Metal | Cylinder       | None/Ni                      | 0.0                  | Ga, Cu, Steel           |
| pu-met-fast-015-001 | 2.3                   | Metal | Cylinder       | None/Fe                      | 0.0                  | Ga, Cu, Steel           |
| pu-met-fast-016-001 | 6.0                   | Metal | Cylinder Array | Water/Water                  | 14.2                 | Al, Steel               |
| pu-met-fast-016-002 | 6.0                   | Metal | Cylinder Array | Water/Water                  | 16.3                 | Al, Steel               |
| pu-met-fast-016-003 | 6.0                   | Metal | Cylinder Array | Water/Water                  | 16.9                 | Al, Steel               |
| pu-met-fast-016-004 | 6.0                   | Metal | Cylinder Array | Water/Water                  | 17.2                 | Al, Steel               |
| pu-met-fast-016-005 | 6.0                   | Metal | Cylinder Array | Water/Water                  | 17.3                 | Al, Steel               |
| pu-met-fast-016-006 | 6.0                   | Metal | Cylinder Array | Water/Water                  | 17.1                 | Al, Steel               |
| pu-met-fast-018-001 | 4.9                   | Metal | Sphere         | None/Be                      | 0.0                  | Ga                      |
| pu-met-fast-019-001 | 9.3                   | Metal | Sphere         | None/Be                      | 0.0                  | Ga, Cu, Steel           |
| pu-met-fast-020-001 | 9.3                   | Metal | Sphere         | None/U                       | 0.0                  | Al, Ga, Fe              |
| pu-met-fast-021-001 | 4.6                   | Metal | Stacked Discs  | None/Be                      | 0.0                  | Al, Steel               |
| pu-met-fast-021-002 | 4.6                   | Metal | Stacked Discs  | None/BeO                     | 0.0                  | Al, Steel               |
| pu-met-fast-022-001 | 1.8                   | Metal | Sphere         | None                         | 0.0                  | Ga                      |
| pu-met-fast-023-001 | 1.8                   | Metal | Sphere         | None/Graphite                | 0.0                  | Ga                      |
| pu-met-fast-024-001 | 1.8                   | Metal | Sphere         | None/Polyethylene            | 0.0                  | Ga                      |
| pu-met-fast-025-001 | 1.8                   | Metal | Sphere         | None/Steel                   | 0.0                  | Ga                      |
| pu-met-fast-026-001 | 1.8                   | Metal | Sphere         | None/Steel                   | 0.0                  | Ga                      |
| pu-met-fast-027-001 | 9.3                   | Metal | Sphere         | None/Polyethylene            | 0.0                  | Ga                      |
| pu-met-fast-028-001 | 9.3                   | Metal | Sphere         | None/Steel                   | 0.0                  | Ga                      |
| pu-met-fast-029-001 | 9.9                   | Metal | Sphere         | None                         | 0.0                  | None                    |
| pu-met-fast-030-001 | 9.7                   | Metal | Sphere         | None/Graphite                | 0.0                  | None                    |
| pu-met-fast-031-001 | 9.7                   | Metal | Sphere         | None/Polyethylene            | 0.0                  | None                    |
| pu-met-fast-032-001 | 9.7                   | Metal | Sphere         | None/Steel                   | 0.0                  | None                    |
| pu-met-fast-035-001 | 1.8                   | Metal | Sphere         | None/Pb                      | 0.0                  | Ga                      |
| pu-met-fast-036-001 | 1.8                   | Metal | Sphere         | None/Polyethylene & Cd       | 0.0                  | Ga                      |
| pu-met-fast-038-001 | 6.0                   | Metal | Sphere         | None/Be                      | 0.0                  | Ga, Al, Steel           |
| pu-met-fast-039-001 | 1.8                   | Metal | Sphere         | None/Al                      | 0.0                  | Ga, Ni                  |
| pu-met-fast-040-001 | 1.8                   | Metal | Sphere         | None/Cu                      | 0.0                  | Ga, Ni                  |
| pu-met-fast-041-001 | 10.0                  | Metal | Sphere         | None/U                       | 0.0                  | None                    |
| pu-met-fast-042-001 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-002 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-003 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-004 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-005 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-006 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-007 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-008 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-009 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-010 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-011 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-012 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-013 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-014 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-042-015 | 5.9                   | Metal | Hemisphere     | None/Oil                     | 0.1                  | Steel                   |
| pu-met-fast-044-001 | 5.1                   | Metal | Sphere         | None/Polyethylene & Mo       | 0.0                  | Ga, Ni                  |
| pu-met-fast-044-002 | 5.1                   | Metal | Sphere         | None/Polyethylene & Fe       | 0.0                  | Ga, Ni                  |
| pu-met-fast-044-003 | 5.1                   | Metal | Sphere         | None/Polyethylene & Be       | 0.0                  | Ga, Ni                  |
| pu-met-fast-044-004 | 5.1                   | Metal | Sphere         | None/Polyethylene & Al       | 0.0                  | Ga, Ni                  |
| pu-met-fast-044-005 | 5.1                   | Metal | Sphere         | None/Polyethylene & Graphite | 0.0                  | Ga, Ni                  |
| pu-met-fast-045-001 | 0.0                   | Metal | Stacked Discs  | None/Ni                      | 0.0                  | Ta, Al, Fe, Water, Poly |
| pu-met-fast-045-002 | 0.0                   | Metal | Stacked Discs  | None/Ni & Fe                 | 0.0                  | Ta, Al, Water, Poly     |
| pu-met-fast-045-003 | 0.0                   | Metal | Stacked Discs  | None/Ni & Fe                 | 0.0                  | Ta, Al, Water, Poly     |
| pu-met-fast-045-004 | 0.0                   | Metal | Stacked Discs  | None/Ni                      | 0.0                  | Ta, Al, Fe, Water, Poly |

| Benchmark            | <sup>240</sup> Pu wt% | Form                              | Geometry      | Moderator / Reflector | H/ <sup>239</sup> Pu | Other Materials         |
|----------------------|-----------------------|-----------------------------------|---------------|-----------------------|----------------------|-------------------------|
| pu-met-fast-045-005  | 0.0                   | Metal                             | Stacked Discs | None/Ni               | 0.0                  | Ta, Al, Fe, Water, Poly |
| pu-met-fast-045-006  | 0.0                   | Metal                             | Stacked Discs | None/Fe               | 0.0                  | Ta, Al, Ni, Water, Poly |
| pu-met-fast-045-007  | 0.0                   | Metal                             | Stacked Discs | None/Fe               | 0.0                  | Ta, Al, Ni, Water, Poly |
| pu-sol-therm-001-001 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 371.4                | Steel                   |
| pu-sol-therm-001-002 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 271.5                | Steel                   |
| pu-sol-therm-001-003 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 215.9                | Steel                   |
| pu-sol-therm-001-004 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 190.4                | Steel                   |
| pu-sol-therm-001-005 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 180.2                | Steel                   |
| pu-sol-therm-001-006 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 91.2                 | Steel                   |
| pu-sol-therm-002-001 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 524.3                | Steel                   |
| pu-sol-therm-002-002 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 504.9                | Steel                   |
| pu-sol-therm-002-003 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 451.3                | Steel                   |
| pu-sol-therm-002-004 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 420.5                | Steel                   |
| pu-sol-therm-002-005 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 392.8                | Steel                   |
| pu-sol-therm-002-006 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 344.2                | Steel                   |
| pu-sol-therm-002-007 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 308.9                | Steel                   |
| pu-sol-therm-003-001 | 1.8                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 788.0                | Steel                   |
| pu-sol-therm-003-002 | 1.8                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 756.0                | Steel                   |
| pu-sol-therm-003-003 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 698.9                | Steel                   |
| pu-sol-therm-003-004 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 681.7                | Steel                   |
| pu-sol-therm-003-005 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 626.6                | Steel                   |
| pu-sol-therm-003-006 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 562.8                | Steel                   |
| pu-sol-therm-003-007 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 737.8                | Al                      |
| pu-sol-therm-003-008 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 714.3                | Al                      |
| pu-sol-therm-004-001 | 0.5                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 987.0                | Steel                   |
| pu-sol-therm-004-002 | 0.5                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 976.9                | Steel                   |
| pu-sol-therm-004-003 | 0.5                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 934.6                | Steel                   |
| pu-sol-therm-004-004 | 0.5                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 888.9                | Steel                   |
| pu-sol-therm-004-005 | 1.8                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 942.0                | Steel                   |
| pu-sol-therm-004-006 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 927.4                | Steel                   |
| pu-sol-therm-004-007 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 891.7                | Steel                   |
| pu-sol-therm-004-008 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 869.0                | Steel                   |
| pu-sol-therm-004-009 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 805.2                | Steel                   |
| pu-sol-therm-004-010 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 689.4                | Steel                   |
| pu-sol-therm-004-011 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 592.4                | Steel                   |
| pu-sol-therm-004-012 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 892.7                | Steel                   |
| pu-sol-therm-004-013 | 3.4                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 903.1                | Steel                   |
| pu-sol-therm-005-001 | 4.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 902.8                | Steel                   |
| pu-sol-therm-005-002 | 4.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 867.7                | Steel                   |
| pu-sol-therm-005-003 | 4.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 834.4                | Steel                   |
| pu-sol-therm-005-004 | 4.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 765.2                | Steel                   |
| pu-sol-therm-005-005 | 4.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 694.1                | Steel                   |
| pu-sol-therm-005-006 | 4.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 633.4                | Steel                   |
| pu-sol-therm-005-007 | 4.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 580.6                | Steel                   |
| pu-sol-therm-005-008 | 4.4                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 868.7                | Steel                   |
| pu-sol-therm-005-009 | 4.4                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 825.1                | Steel                   |
| pu-sol-therm-006-001 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 1061.1               | Steel                   |
| pu-sol-therm-006-002 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 1017.8               | Steel                   |
| pu-sol-therm-006-003 | 3.1                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 940.1                | Steel                   |
| pu-sol-therm-007-002 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 109.6                | Steel                   |
| pu-sol-therm-007-003 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 114.0                | Steel                   |
| pu-sol-therm-007-005 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 267.5                | Steel                   |
| pu-sol-therm-007-006 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 262.0                | Steel                   |
| pu-sol-therm-007-007 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 265.7                | Steel                   |
| pu-sol-therm-007-008 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 258.5                | Steel                   |
| pu-sol-therm-007-009 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 259.7                | Steel                   |
| pu-sol-therm-007-010 | 4.6                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/Water           | 285.0                | Steel                   |
| pu-sol-therm-009-003 | 2.5                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Sphere        | Water/None            | 2806.8               | Al                      |
| pu-sol-therm-010-001 | 2.9                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Cylinder      | Water/Water           | 266.9                | Steel                   |
| pu-sol-therm-010-002 | 2.9                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Cylinder      | Water/Water           | 356.9                | Steel                   |
| pu-sol-therm-010-003 | 2.9                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Cylinder      | Water/Water           | 484.2                | Steel                   |
| pu-sol-therm-010-004 | 2.9                   | Pu(NO <sub>3</sub> ) <sub>4</sub> | Cylinder      | Water/Water           | 485.0                | Steel                   |

| Benchmark            | <sup>240</sup> Pu wt% | Form     | Geometry | Moderator / Reflector | H/ <sup>239</sup> Pu | Other Materials |
|----------------------|-----------------------|----------|----------|-----------------------|----------------------|-----------------|
| pu-sol-therm-010-005 | 2.9                   | Pu(NO3)4 | Cylinder | Water/Water           | 558.1                | Steel           |
| pu-sol-therm-010-006 | 2.9                   | Pu(NO3)4 | Cylinder | Water/Water           | 558.1                | Steel           |
| pu-sol-therm-010-007 | 2.9                   | Pu(NO3)4 | Cylinder | Water/Water           | 605.9                | Steel           |
| pu-sol-therm-010-008 | 2.9                   | Pu(NO3)4 | Cylinder | Water/Water           | 665.4                | Steel           |
| pu-sol-therm-010-009 | 2.9                   | Pu(NO3)4 | Cylinder | Water/Water           | 414.3                | Steel           |
| pu-sol-therm-010-010 | 2.9                   | Pu(NO3)4 | Cylinder | Water/Water           | 535.2                | Steel           |
| pu-sol-therm-010-011 | 2.9                   | Pu(NO3)4 | Cylinder | Water/Water           | 543.4                | Steel           |
| pu-sol-therm-010-012 | 2.9                   | Pu(NO3)4 | Cylinder | Water/Water           | 618.3                | Steel           |
| pu-sol-therm-010-013 | 2.9                   | Pu(NO3)4 | Cylinder | Water/Water           | 728.1                | Steel           |
| pu-sol-therm-010-014 | 2.9                   | Pu(NO3)4 | Cylinder | Water/Water           | 849.7                | Steel           |
| pu-sol-therm-011-161 | 4.2                   | Pu(NO3)4 | Sphere   | Water/None            | 764.8                | Steel           |
| pu-sol-therm-011-162 | 4.2                   | Pu(NO3)4 | Sphere   | Water/None            | 736.0                | Steel           |
| pu-sol-therm-011-163 | 4.2                   | Pu(NO3)4 | Sphere   | Water/None            | 691.5                | Steel           |
| pu-sol-therm-011-164 | 4.2                   | Pu(NO3)4 | Sphere   | Water/None            | 681.7                | Steel           |
| pu-sol-therm-011-165 | 4.2                   | Pu(NO3)4 | Sphere   | Water/None            | 574.5                | Steel           |
| pu-sol-therm-011-181 | 4.2                   | Pu(NO3)4 | Sphere   | Water/None            | 1207.8               | Steel, Cd       |
| pu-sol-therm-011-182 | 4.2                   | Pu(NO3)4 | Sphere   | Water/None            | 1151.4               | Steel, Cd       |
| pu-sol-therm-011-183 | 4.2                   | Pu(NO3)4 | Sphere   | Water/None            | 1158.2               | Steel, Cd       |
| pu-sol-therm-011-184 | 4.2                   | Pu(NO3)4 | Sphere   | Water/None            | 1099.7               | Steel, Cd       |
| pu-sol-therm-011-185 | 4.2                   | Pu(NO3)4 | Sphere   | Water/None            | 1038.9               | Steel, Cd       |
| pu-sol-therm-011-186 | 4.2                   | Pu(NO3)4 | Sphere   | Water/None            | 908.4                | Steel, Cd       |
| pu-sol-therm-011-187 | 4.2                   | Pu(NO3)4 | Sphere   | Water/None            | 1102.6               | Steel, Cd       |
| pu-sol-therm-012-001 | 18.9                  | Pu(NO3)4 | Cuboid   | Water/Water           | 1721.6               | Steel, PVC      |
| pu-sol-therm-012-002 | 18.9                  | Pu(NO3)4 | Cuboid   | Water/Water           | 1920.1               | Steel, PVC      |
| pu-sol-therm-012-003 | 18.9                  | Pu(NO3)4 | Cuboid   | Water/Water           | 2035.4               | Steel, PVC      |
| pu-sol-therm-012-004 | 18.9                  | Pu(NO3)4 | Cuboid   | Water/Water           | 2311.6               | Steel, PVC      |
| pu-sol-therm-012-005 | 18.9                  | Pu(NO3)4 | Cuboid   | Water/Water           | 2573.3               | Steel, PVC      |
| pu-sol-therm-012-006 | 18.9                  | Pu(NO3)4 | Cuboid   | Water/Water           | 309.1                | Steel, PVC      |
| pu-sol-therm-012-007 | 18.9                  | Pu(NO3)4 | Cuboid   | Water/Water           | 393.8                | Steel, PVC      |
| pu-sol-therm-012-008 | 18.9                  | Pu(NO3)4 | Cuboid   | Water/Water           | 632.5                | Steel, PVC      |
| pu-sol-therm-012-009 | 18.9                  | Pu(NO3)4 | Cuboid   | Water/Water           | 1054.1               | Steel, PVC      |
| pu-sol-therm-012-010 | 18.9                  | Pu(NO3)4 | Cuboid   | Water/Water           | 1251.8               | Steel, PVC      |
| pu-sol-therm-012-011 | 18.9                  | Pu(NO3)4 | Cuboid   | Water/Water           | 1566.7               | Steel, PVC      |
| pu-sol-therm-012-012 | 18.9                  | Pu(NO3)4 | Cuboid   | Water/Water           | 1721.6               | Steel, PVC      |
| pu-sol-therm-012-013 | 18.9                  | Pu(NO3)4 | Cuboid   | Water/Water           | 2573.3               | Steel, PVC      |
| pu-sol-therm-018-001 | 42.9                  | Pu(NO3)4 | Cylinder | Water/Water           | 378.8                | Steel           |
| pu-sol-therm-018-002 | 42.9                  | Pu(NO3)4 | Cylinder | Water/Water           | 473.7                | Steel           |
| pu-sol-therm-018-003 | 42.9                  | Pu(NO3)4 | Cylinder | Water/Water           | 564.8                | Steel           |
| pu-sol-therm-018-004 | 42.9                  | Pu(NO3)4 | Cylinder | Water/Water           | 669.1                | Steel           |
| pu-sol-therm-018-005 | 42.9                  | Pu(NO3)4 | Cylinder | Water/Water           | 767.4                | Steel           |
| pu-sol-therm-018-006 | 42.9                  | Pu(NO3)4 | Cylinder | Water/Water           | 902.9                | Steel           |
| pu-sol-therm-018-007 | 42.9                  | Pu(NO3)4 | Cylinder | Water/Water           | 1057.1               | Steel           |
| pu-sol-therm-018-008 | 42.9                  | Pu(NO3)4 | Cylinder | Water/Water           | 1288.0               | Steel           |
| pu-sol-therm-018-009 | 42.9                  | Pu(NO3)4 | Cylinder | Water/Water           | 1499.1               | Steel           |
| pu-sol-therm-022-001 | 18.9                  | Pu(NO3)4 | Annular  | Water/Water           | 198.5                | Steel           |
| pu-sol-therm-022-002 | 18.9                  | Pu(NO3)4 | Annular  | Water/Water           | 309.6                | Steel           |
| pu-sol-therm-022-003 | 18.9                  | Pu(NO3)4 | Annular  | Water/Water           | 538.4                | Steel           |
| pu-sol-therm-022-004 | 18.9                  | Pu(NO3)4 | Annular  | Water/Water           | 658.1                | Steel           |
| pu-sol-therm-022-005 | 18.9                  | Pu(NO3)4 | Annular  | Water/Water           | 824.9                | Steel           |
| pu-sol-therm-022-006 | 18.9                  | Pu(NO3)4 | Annular  | Water/Water           | 937.9                | Steel           |
| pu-sol-therm-022-007 | 18.9                  | Pu(NO3)4 | Annular  | Water/Water           | 1021.1               | Steel           |
| pu-sol-therm-022-008 | 18.9                  | Pu(NO3)4 | Annular  | Water/Water           | 1100.8               | Steel           |
| pu-sol-therm-022-009 | 18.9                  | Pu(NO3)4 | Annular  | Water/Water           | 1178.0               | Steel           |
| pu-sol-therm-028-001 | 3.2                   | Pu(NO3)4 | Annular  | Water/Water           | 316.2                | Steel           |
| pu-sol-therm-028-002 | 3.2                   | Pu(NO3)4 | Annular  | Water/Water           | 363.8                | Steel           |
| pu-sol-therm-028-003 | 3.2                   | Pu(NO3)4 | Annular  | Water/Water           | 424.9                | Steel           |
| pu-sol-therm-028-004 | 3.2                   | Pu(NO3)4 | Annular  | Water/Water           | 511.2                | Steel           |
| pu-sol-therm-028-005 | 3.2                   | Pu(NO3)4 | Annular  | Water/Water           | 567.4                | Steel           |
| pu-sol-therm-028-006 | 3.2                   | Pu(NO3)4 | Annular  | Water/Water           | 742.8                | Steel           |
| pu-sol-therm-028-007 | 3.2                   | Pu(NO3)4 | Annular  | Water/Water           | 316.2                | Steel           |
| pu-sol-therm-028-008 | 3.2                   | Pu(NO3)4 | Annular  | Water/Water           | 363.8                | Steel           |
| pu-sol-therm-028-009 | 3.2                   | Pu(NO3)4 | Annular  | Water/Water           | 424.9                | Steel           |

| Benchmark            | <sup>240</sup> Pu wt% | Form     | Geometry | Moderator / Reflector | H/ <sup>239</sup> Pu | Other Materials |
|----------------------|-----------------------|----------|----------|-----------------------|----------------------|-----------------|
| pu-sol-therm-032-001 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 449.5                | Steel           |
| pu-sol-therm-032-002 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 488.2                | Steel           |
| pu-sol-therm-032-003 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 555.3                | Steel           |
| pu-sol-therm-032-004 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 622.5                | Steel           |
| pu-sol-therm-032-005 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 700.7                | Steel           |
| pu-sol-therm-032-006 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 800.5                | Steel           |
| pu-sol-therm-032-007 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 850.5                | Steel           |
| pu-sol-therm-032-008 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 949.6                | Steel           |
| pu-sol-therm-032-009 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 1021.5               | Steel           |
| pu-sol-therm-032-010 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 1090.5               | Steel           |
| pu-sol-therm-032-011 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 1136.5               | Steel           |
| pu-sol-therm-032-012 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 1186.4               | Steel           |
| pu-sol-therm-032-013 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 555.3                | Steel           |
| pu-sol-therm-032-014 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 622.5                | Steel           |
| pu-sol-therm-032-015 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 700.7                | Steel           |
| pu-sol-therm-032-016 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 800.5                | Steel           |
| pu-sol-therm-032-017 | 10.0                  | Pu(NO3)4 | Annular  | Water/Water           | 850.5                | Steel           |
| pu-sol-therm-034-001 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 230.1                | Steel           |
| pu-sol-therm-034-002 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 230.1                | Steel, Gd       |
| pu-sol-therm-034-003 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 230.1                | Steel, Gd       |
| pu-sol-therm-034-004 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 230.1                | Steel, Gd       |
| pu-sol-therm-034-005 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 230.1                | Steel, Gd       |
| pu-sol-therm-034-006 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 230.1                | Steel, Gd       |
| pu-sol-therm-034-007 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 59.1                 | Steel, Gd       |
| pu-sol-therm-034-008 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 59.1                 | Steel, Gd       |
| pu-sol-therm-034-009 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 59.1                 | Steel, Gd       |
| pu-sol-therm-034-010 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 59.1                 | Steel, Gd       |
| pu-sol-therm-034-011 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 59.1                 | Steel, Gd       |
| pu-sol-therm-034-012 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 59.1                 | Steel, Gd       |
| pu-sol-therm-034-013 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 59.1                 | Steel, Gd       |
| pu-sol-therm-034-014 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 59.1                 | Steel, Gd       |
| pu-sol-therm-034-015 | 8.3                   | Pu(NO3)4 | Cylinder | Water/Water           | 59.1                 | Steel, Gd       |
| pu-sol-therm-038-001 | 20.8                  | Pu(NO3)4 | Cylinder | Water/Water           | 1701.6               | Steel           |
| pu-sol-therm-038-002 | 20.8                  | Pu(NO3)4 | Cylinder | Water/Water           | 1664.5               | Steel           |
| pu-sol-therm-038-003 | 20.8                  | Pu(NO3)4 | Cylinder | Water/Water           | 2234.1               | Steel           |
| pu-sol-therm-038-004 | 20.8                  | Pu(NO3)4 | Cylinder | Water/Water           | 2355.9               | Steel           |
| pu-sol-therm-038-005 | 20.8                  | Pu(NO3)4 | Cylinder | Water/Water           | 2347.1               | Steel           |

### APPENDIX 3: NORMALITY TESTS

The following tables provide the results of the normality tests applied to the complete set of benchmark data. Following the tables, the results of normality tests applied individually to three material form subsets are summarized.

**Table 8 Modified Chi Square Normality Test Results for Entire Data Set**

| Class | Ordered Data | Class | Class Midpoint $M_j$           | Occurrence Frequency $O_j$ | $O_j M_j / n$    | $O_j (M_j)^2 / n$ |  |
|-------|--------------|-------|--------------------------------|----------------------------|------------------|-------------------|--|
| 1     | 0.9922       | 1     | 0.99425                        | 7                          | 0.02667          | 0.02651           |  |
| 1     | 0.9935       | 2     | 0.99875                        | 50                         | 0.19133          | 0.19109           |  |
| 1     | 0.9937       | 3     | 1.00325                        | 91                         | 0.34979          | 0.35093           |  |
| 1     | 0.9944       | 4     | 1.00775                        | 66                         | 0.25483          | 0.25681           |  |
| 1     | 0.9944       | 5     | 1.01225                        | 18                         | 0.06981          | 0.07067           |  |
| 1     | 0.9955       | 6     | 1.01675                        | 9                          | 0.03506          | 0.03565           |  |
| 1     | 0.9961       | 7     | 1.02125                        | 6                          | 0.02348          | 0.02398           |  |
| 2     | 0.9967       | 8     | 1.02575                        | 6                          | 0.02358          | 0.02419           |  |
| 2     | 0.9967       | 9     | 1.03025                        | 8                          | 0.03158          | 0.03253           |  |
| 2     | 0.9969       |       |                                |                            |                  |                   |  |
| 2     | 0.9969       |       | <b>Total</b>                   | 261                        | 1.00613          | 1.01235           |  |
| 2     | 0.9970       |       |                                |                            |                  |                   |  |
| 2     | 0.9971       |       | <b>Estimated</b>               |                            | <b>Estimated</b> | <b>Estimated</b>  |  |
| 2     | 0.9971       |       | <b>Mean</b>                    |                            | <b>Variance</b>  | <b>S.D.</b>       |  |
| 2     | 0.9974       |       | 1.00613                        |                            | 0.00006          | 0.00750           |  |
| 2     | 0.9974       |       |                                |                            |                  |                   |  |
| 2     | 0.9980       |       | $p1=Pr(0.992 \leq X < 0.9965)$ |                            |                  |                   |  |
| 2     | 0.9981       | =     | 0.099443933                    |                            | -                | 0.029709608       |  |
| 2     | 0.9983       | =     | 0.069734325                    |                            |                  |                   |  |
| 2     | 0.9984       | E1=   | np1=                           | 18.2006588                 |                  |                   |  |
| 2     | 0.9986       |       |                                |                            |                  |                   |  |
| 2     | 0.9987       |       | $p2=Pr(0.9965 \leq X < 1.001)$ |                            |                  |                   |  |
| 2     | 0.9987       | =     | 0.246869398                    |                            | -                | 0.099467253       |  |
| 2     | 0.9987       | =     | 0.147402146                    |                            |                  |                   |  |
| 2     | 0.9988       | E2=   | np2=                           | 38.47195998                |                  |                   |  |
| 2     | 0.9988       |       |                                |                            |                  |                   |  |
| 2     | 0.9989       |       | $p3=Pr(1.001 \leq X < 1.0055)$ |                            |                  |                   |  |
| 2     | 0.9989       | =     | 0.466519386                    |                            | -                | 0.246911512       |  |
| 2     | 0.9989       | =     | 0.219607875                    |                            |                  |                   |  |
| 2     | 0.9990       | E3=   | np3=                           | 57.31765527                |                  |                   |  |
| 2     | 0.9990       |       |                                |                            |                  |                   |  |
| 2     | 0.9992       |       | $p4=Pr(1.0055 \leq X < 1.01)$  |                            |                  |                   |  |
| 2     | 0.9992       | =     | 0.697188008                    |                            | -                | 0.466572423       |  |
| 2     | 0.9994       | =     | 0.230615586                    |                            |                  |                   |  |
| 2     | 0.9994       | E4=   | np4=                           | 60.19066785                |                  |                   |  |
| 2     | 0.9995       |       |                                |                            |                  |                   |  |
| 2     | 0.9996       |       | $p5=Pr(1.01 \leq X < 1.0145)$  |                            |                  |                   |  |
| 2     | 0.9996       | =     | 0.867934864                    |                            | -                | 0.697234588       |  |
| 2     | 0.9996       | =     | 0.170700276                    |                            |                  |                   |  |
| 2     | 0.9999       | E5=   | np5=                           | 44.55277205                |                  |                   |  |
| 2     | 1.0001       |       |                                |                            |                  |                   |  |
| 2     | 1.0002       |       | $p6=Pr(1.0145 \leq X < 1.019)$ |                            |                  |                   |  |
| 2     | 1.0002       | =     | 0.957013544                    |                            | -                | 0.867963393       |  |
| 2     | 1.0003       | =     | 0.089050151                    |                            |                  |                   |  |
| 2     | 1.0003       | E6=   | np6=                           | 23.2420893                 |                  |                   |  |
| 2     | 1.0004       |       |                                |                            |                  |                   |  |
| 2     | 1.0005       |       | $p7=Pr(1.019 \leq X < 1.0235)$ |                            |                  |                   |  |
| 2     | 1.0006       | =     | 0.989758654                    |                            | -                | 0.95702573        |  |
| 2     | 1.0006       | =     | 0.032732924                    |                            |                  |                   |  |
| 2     | 1.0007       | E7=   | np7=                           | 8.543293245                |                  |                   |  |

|   |        |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
|---|--------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------|-----------------------------|-------------------------|-----------------------------------|--|
| 2 | 1.0007 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 2 | 1.0008 |                                                                                                                             | $p8=\Pr(1.0235 \leq X < 1.028)$ |                         |                             |                         |                                   |  |
| 2 | 1.0008 | =                                                                                                                           | 0.998237101                     | -                       | 0.989762284                 |                         |                                   |  |
| 2 | 1.0009 | =                                                                                                                           | 0.008474817                     |                         |                             |                         |                                   |  |
| 2 | 1.0009 | E8=                                                                                                                         | np8=                            | 2.21192717              |                             |                         |                                   |  |
| 2 | 1.0010 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 2 | 1.0010 |                                                                                                                             | $p9=\Pr(1.028 \leq X < 1.0325)$ |                         |                             |                         |                                   |  |
| 3 | 1.0011 | =                                                                                                                           | 0.999782668                     | -                       | 0.998237855                 |                         |                                   |  |
| 3 | 1.0011 | =                                                                                                                           | 0.001544813                     |                         |                             |                         |                                   |  |
| 3 | 1.0012 | E9=                                                                                                                         | np9=                            | 0.403196229             |                             |                         |                                   |  |
| 3 | 1.0013 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0013 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0013 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0014 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0015 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0016 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0017 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0017 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0018 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0018 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0019 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0019 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0019 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0019 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0020 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0020 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0021 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0021 |                                                                                                                             | <b>c</b>                        |                         |                             |                         |                                   |  |
| 3 | 1.0022 | $\chi^* =$                                                                                                                  | $\sum_{j=1}^c$                  | $(O_j)^2 / E_j$         |                             |                         |                                   |  |
| 3 | 1.0022 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0023 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0024 | <b>Class</b>                                                                                                                | <b>Boundaries</b>               | <b><math>O_j</math></b> | <b><math>(O_j)^2</math></b> | <b><math>E_j</math></b> | <b><math>(O_j)^2 / E_j</math></b> |  |
| 3 | 1.0025 | 1                                                                                                                           | 0.99200 - 0.99650               | 7                       | 49                          | 18.20066                | 2.69221                           |  |
| 3 | 1.0025 | 2                                                                                                                           | 0.99650 - 1.00100               | 50                      | 2500                        | 38.47196                | 64.98239                          |  |
| 3 | 1.0025 | 3                                                                                                                           | 1.00100 - 1.00550               | 91                      | 8281                        | 57.31766                | 144.4756                          |  |
| 3 | 1.0025 | 4                                                                                                                           | 1.00550 - 1.01000               | 66                      | 4356                        | 60.19067                | 72.37002                          |  |
| 3 | 1.0025 | 5                                                                                                                           | 1.01000 - 1.01450               | 18                      | 324                         | 44.55277                | 7.272275                          |  |
| 3 | 1.0027 | 6                                                                                                                           | 1.01450 - 1.01900               | 9                       | 81                          | 23.24209                | 3.485057                          |  |
| 3 | 1.0027 | 7                                                                                                                           | 1.01900 - 1.02350               | 6                       | 36                          | 8.54329                 | 4.213832                          |  |
| 3 | 1.0027 | 8                                                                                                                           | 1.02350 - 1.02800               | 6                       | 36                          | 2.21193                 | 16.2754                           |  |
| 3 | 1.0027 | 9                                                                                                                           | 1.02800 - 1.03250               | 8                       | 64                          | 0.40320                 | 158.7316                          |  |
| 3 | 1.0028 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0028 | $\chi^* =$                                                                                                                  | 213.4983861                     |                         |                             |                         |                                   |  |
| 3 | 1.0028 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0029 | $\chi^2(6) =$                                                                                                               | 12.6 for $\alpha=0.05$          |                         |                             |                         |                                   |  |
| 3 | 1.0029 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0029 | <b>Since <math>\chi^* &gt; \chi^2(9-2-1 = 6)</math>, reject the hypothesis that the data are from a normal distribution</b> |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0030 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0031 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0031 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0031 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0032 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0034 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0034 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0035 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0036 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0037 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0037 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0038 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0038 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0038 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0039 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |
| 3 | 1.0039 |                                                                                                                             |                                 |                         |                             |                         |                                   |  |

|   |        |  |  |  |  |  |  |
|---|--------|--|--|--|--|--|--|
| 3 | 1.0040 |  |  |  |  |  |  |
| 3 | 1.0040 |  |  |  |  |  |  |
| 3 | 1.0040 |  |  |  |  |  |  |
| 3 | 1.0040 |  |  |  |  |  |  |
| 3 | 1.0041 |  |  |  |  |  |  |
| 3 | 1.0041 |  |  |  |  |  |  |
| 3 | 1.0042 |  |  |  |  |  |  |
| 3 | 1.0042 |  |  |  |  |  |  |
| 3 | 1.0042 |  |  |  |  |  |  |
| 3 | 1.0042 |  |  |  |  |  |  |
| 3 | 1.0043 |  |  |  |  |  |  |
| 3 | 1.0043 |  |  |  |  |  |  |
| 3 | 1.0044 |  |  |  |  |  |  |
| 3 | 1.0044 |  |  |  |  |  |  |
| 3 | 1.0044 |  |  |  |  |  |  |
| 3 | 1.0044 |  |  |  |  |  |  |
| 3 | 1.0045 |  |  |  |  |  |  |
| 3 | 1.0045 |  |  |  |  |  |  |
| 3 | 1.0045 |  |  |  |  |  |  |
| 3 | 1.0045 |  |  |  |  |  |  |
| 3 | 1.0045 |  |  |  |  |  |  |
| 3 | 1.0047 |  |  |  |  |  |  |
| 3 | 1.0048 |  |  |  |  |  |  |
| 3 | 1.0048 |  |  |  |  |  |  |
| 3 | 1.0049 |  |  |  |  |  |  |
| 3 | 1.0050 |  |  |  |  |  |  |
| 3 | 1.0050 |  |  |  |  |  |  |
| 3 | 1.0050 |  |  |  |  |  |  |
| 3 | 1.0050 |  |  |  |  |  |  |
| 3 | 1.0051 |  |  |  |  |  |  |
| 3 | 1.0052 |  |  |  |  |  |  |
| 3 | 1.0052 |  |  |  |  |  |  |
| 3 | 1.0054 |  |  |  |  |  |  |
| 3 | 1.0054 |  |  |  |  |  |  |
| 3 | 1.0055 |  |  |  |  |  |  |
| 3 | 1.0055 |  |  |  |  |  |  |
| 4 | 1.0056 |  |  |  |  |  |  |
| 4 | 1.0056 |  |  |  |  |  |  |
| 4 | 1.0058 |  |  |  |  |  |  |
| 4 | 1.0059 |  |  |  |  |  |  |
| 4 | 1.0059 |  |  |  |  |  |  |
| 4 | 1.0060 |  |  |  |  |  |  |
| 4 | 1.0060 |  |  |  |  |  |  |
| 4 | 1.0063 |  |  |  |  |  |  |
| 4 | 1.0064 |  |  |  |  |  |  |
| 4 | 1.0064 |  |  |  |  |  |  |
| 4 | 1.0064 |  |  |  |  |  |  |
| 4 | 1.0065 |  |  |  |  |  |  |
| 4 | 1.0065 |  |  |  |  |  |  |
| 4 | 1.0065 |  |  |  |  |  |  |
| 4 | 1.0067 |  |  |  |  |  |  |
| 4 | 1.0068 |  |  |  |  |  |  |
| 4 | 1.0068 |  |  |  |  |  |  |
| 4 | 1.0068 |  |  |  |  |  |  |
| 4 | 1.0069 |  |  |  |  |  |  |
| 4 | 1.0069 |  |  |  |  |  |  |
| 4 | 1.0070 |  |  |  |  |  |  |
| 4 | 1.0070 |  |  |  |  |  |  |
| 4 | 1.0071 |  |  |  |  |  |  |
| 4 | 1.0074 |  |  |  |  |  |  |
| 4 | 1.0074 |  |  |  |  |  |  |
| 4 | 1.0076 |  |  |  |  |  |  |
| 4 | 1.0076 |  |  |  |  |  |  |
| 4 | 1.0077 |  |  |  |  |  |  |

|   |        |  |  |  |  |  |  |
|---|--------|--|--|--|--|--|--|
| 4 | 1.0077 |  |  |  |  |  |  |
| 4 | 1.0079 |  |  |  |  |  |  |
| 4 | 1.0079 |  |  |  |  |  |  |
| 4 | 1.0079 |  |  |  |  |  |  |
| 4 | 1.0080 |  |  |  |  |  |  |
| 4 | 1.0081 |  |  |  |  |  |  |
| 4 | 1.0082 |  |  |  |  |  |  |
| 4 | 1.0083 |  |  |  |  |  |  |
| 4 | 1.0085 |  |  |  |  |  |  |
| 4 | 1.0087 |  |  |  |  |  |  |
| 4 | 1.0088 |  |  |  |  |  |  |
| 4 | 1.0089 |  |  |  |  |  |  |
| 4 | 1.0089 |  |  |  |  |  |  |
| 4 | 1.0090 |  |  |  |  |  |  |
| 4 | 1.0090 |  |  |  |  |  |  |
| 4 | 1.0091 |  |  |  |  |  |  |
| 4 | 1.0091 |  |  |  |  |  |  |
| 4 | 1.0091 |  |  |  |  |  |  |
| 4 | 1.0092 |  |  |  |  |  |  |
| 4 | 1.0092 |  |  |  |  |  |  |
| 4 | 1.0093 |  |  |  |  |  |  |
| 4 | 1.0093 |  |  |  |  |  |  |
| 4 | 1.0094 |  |  |  |  |  |  |
| 4 | 1.0094 |  |  |  |  |  |  |
| 4 | 1.0095 |  |  |  |  |  |  |
| 4 | 1.0096 |  |  |  |  |  |  |
| 4 | 1.0096 |  |  |  |  |  |  |
| 4 | 1.0096 |  |  |  |  |  |  |
| 4 | 1.0097 |  |  |  |  |  |  |
| 4 | 1.0097 |  |  |  |  |  |  |
| 4 | 1.0098 |  |  |  |  |  |  |
| 4 | 1.0099 |  |  |  |  |  |  |
| 4 | 1.0099 |  |  |  |  |  |  |
| 4 | 1.0100 |  |  |  |  |  |  |
| 4 | 1.0100 |  |  |  |  |  |  |
| 4 | 1.0100 |  |  |  |  |  |  |
| 5 | 1.0101 |  |  |  |  |  |  |
| 5 | 1.0104 |  |  |  |  |  |  |
| 5 | 1.0105 |  |  |  |  |  |  |
| 5 | 1.0105 |  |  |  |  |  |  |
| 5 | 1.0107 |  |  |  |  |  |  |
| 5 | 1.0109 |  |  |  |  |  |  |
| 5 | 1.0111 |  |  |  |  |  |  |
| 5 | 1.0113 |  |  |  |  |  |  |
| 5 | 1.0116 |  |  |  |  |  |  |
| 5 | 1.0116 |  |  |  |  |  |  |
| 5 | 1.0117 |  |  |  |  |  |  |
| 5 | 1.0120 |  |  |  |  |  |  |
| 5 | 1.0121 |  |  |  |  |  |  |
| 5 | 1.0126 |  |  |  |  |  |  |
| 5 | 1.0126 |  |  |  |  |  |  |
| 5 | 1.0127 |  |  |  |  |  |  |
| 5 | 1.0130 |  |  |  |  |  |  |
| 5 | 1.0132 |  |  |  |  |  |  |
| 6 | 1.0146 |  |  |  |  |  |  |
| 6 | 1.0147 |  |  |  |  |  |  |
| 6 | 1.0147 |  |  |  |  |  |  |
| 6 | 1.0154 |  |  |  |  |  |  |
| 6 | 1.0156 |  |  |  |  |  |  |
| 6 | 1.0160 |  |  |  |  |  |  |
| 6 | 1.0165 |  |  |  |  |  |  |
| 6 | 1.0168 |  |  |  |  |  |  |
| 6 | 1.0180 |  |  |  |  |  |  |

|   |        |  |  |  |  |  |  |
|---|--------|--|--|--|--|--|--|
| 7 | 1.0192 |  |  |  |  |  |  |
| 7 | 1.0194 |  |  |  |  |  |  |
| 7 | 1.0200 |  |  |  |  |  |  |
| 7 | 1.0228 |  |  |  |  |  |  |
| 7 | 1.0230 |  |  |  |  |  |  |
| 7 | 1.0235 |  |  |  |  |  |  |
| 8 | 1.0248 |  |  |  |  |  |  |
| 8 | 1.0254 |  |  |  |  |  |  |
| 8 | 1.0259 |  |  |  |  |  |  |
| 8 | 1.0260 |  |  |  |  |  |  |
| 8 | 1.0262 |  |  |  |  |  |  |
| 8 | 1.0276 |  |  |  |  |  |  |
| 9 | 1.0283 |  |  |  |  |  |  |
| 9 | 1.0297 |  |  |  |  |  |  |
| 9 | 1.0299 |  |  |  |  |  |  |
| 9 | 1.0302 |  |  |  |  |  |  |
| 9 | 1.0307 |  |  |  |  |  |  |
| 9 | 1.0314 |  |  |  |  |  |  |
| 9 | 1.0320 |  |  |  |  |  |  |
| 9 | 1.0324 |  |  |  |  |  |  |
|   | 261    |  |  |  |  |  |  |

**Table 9 Kolmogorov-Smirnov Normality Test Results for Entire Data Set**

| Observation # | Ordered Data | G(x <sub>i</sub> ) | F*(x <sub>i</sub> ) | [F*(x <sub>i</sub> ) - G(x <sub>i</sub> )] | [F*(x <sub>i</sub> ) - G(x <sub>i-1</sub> )] | T* = sup[F*(x) - G(x)]                                                                               | w <sub>95</sub> (261) |
|---------------|--------------|--------------------|---------------------|--------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------|
| 1             | 0.9922       | 0.0038             | 0.0428              | 0.0389                                     | 0.0428                                       | 0.2174                                                                                               | 0.0842                |
| 2             | 0.9935       | 0.0077             | 0.0565              | 0.0489                                     | 0.0527                                       | Since T* > w <sub>95</sub> (261), reject the hypothesis that the data are from a normal distribution |                       |
| 3             | 0.9937       | 0.0115             | 0.0591              | 0.0476                                     | 0.0514                                       |                                                                                                      |                       |
| 4             | 0.9944       | 0.0153             | 0.0690              | 0.0537                                     | 0.0575                                       |                                                                                                      |                       |
| 5             |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 6             | 0.9955       | 0.0230             | 0.0869              | 0.0640                                     | 0.0716                                       |                                                                                                      |                       |
| 7             | 0.9961       | 0.0268             | 0.0988              | 0.0720                                     | 0.0758                                       |                                                                                                      |                       |
| 8             |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 9             | 0.9967       | 0.0345             | 0.1105              | 0.0760                                     | 0.0837                                       |                                                                                                      |                       |
| 10            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 11            | 0.9969       | 0.0421             | 0.1159              | 0.0737                                     | 0.0814                                       |                                                                                                      |                       |
| 12            | 0.9970       | 0.0460             | 0.1162              | 0.0703                                     | 0.0741                                       |                                                                                                      |                       |
| 13            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 14            | 0.9971       | 0.0536             | 0.1191              | 0.0655                                     | 0.0731                                       |                                                                                                      |                       |
| 15            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 16            | 0.9974       | 0.0613             | 0.1266              | 0.0653                                     | 0.0729                                       |                                                                                                      |                       |
| 17            | 0.9980       | 0.0651             | 0.1405              | 0.0753                                     | 0.0792                                       |                                                                                                      |                       |
| 18            | 0.9981       | 0.0690             | 0.1432              | 0.0743                                     | 0.0781                                       |                                                                                                      |                       |
| 19            | 0.9983       | 0.0728             | 0.1491              | 0.0763                                     | 0.0801                                       |                                                                                                      |                       |
| 20            | 0.9984       | 0.0766             | 0.1509              | 0.0743                                     | 0.0781                                       |                                                                                                      |                       |
| 21            | 0.9986       | 0.0805             | 0.1570              | 0.0765                                     | 0.0804                                       |                                                                                                      |                       |
| 22            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 23            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 24            | 0.9987       | 0.0920             | 0.1589              | 0.0669                                     | 0.0784                                       |                                                                                                      |                       |
| 25            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 26            | 0.9988       | 0.0996             | 0.1618              | 0.0622                                     | 0.0699                                       |                                                                                                      |                       |
| 27            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 28            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 29            | 0.9989       | 0.1111             | 0.1651              | 0.0540                                     | 0.0655                                       |                                                                                                      |                       |
| 30            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 31            | 0.9990       | 0.1188             | 0.1679              | 0.0491                                     | 0.0568                                       |                                                                                                      |                       |
| 32            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 33            | 0.9992       | 0.1264             | 0.1733              | 0.0468                                     | 0.0545                                       |                                                                                                      |                       |
| 34            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 35            | 0.9994       | 0.1341             | 0.1785              | 0.0444                                     | 0.1785                                       |                                                                                                      |                       |
| 36            | 0.9995       | 0.1379             | 0.1796              | 0.0417                                     | 0.0455                                       |                                                                                                      |                       |
| 37            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 38            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 39            | 0.9996       | 0.1494             | 0.1852              | 0.0358                                     | 0.0473                                       |                                                                                                      |                       |
| 40            | 0.9999       | 0.1533             | 0.1937              | 0.0404                                     | 0.0442                                       |                                                                                                      |                       |
| 41            | 1.0001       | 0.1571             | 0.2005              | 0.0434                                     | 0.0472                                       |                                                                                                      |                       |
| 42            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 43            | 1.0002       | 0.1648             | 0.2023              | 0.0376                                     | 0.0453                                       |                                                                                                      |                       |
| 44            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 45            | 1.0003       | 0.1724             | 0.2061              | 0.0337                                     | 0.0414                                       |                                                                                                      |                       |
| 46            | 1.0004       | 0.1762             | 0.2080              | 0.0318                                     | 0.0356                                       |                                                                                                      |                       |
| 47            | 1.0005       | 0.1801             | 0.2106              | 0.0305                                     | 0.0344                                       |                                                                                                      |                       |
| 48            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 49            | 1.0006       | 0.1877             | 0.2164              | 0.0287                                     | 0.0364                                       |                                                                                                      |                       |
| 50            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 51            | 1.0007       | 0.1954             | 0.2197              | 0.0243                                     | 0.0320                                       |                                                                                                      |                       |
| 52            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 53            | 1.0008       | 0.2031             | 0.2230              | 0.0200                                     | 0.0276                                       |                                                                                                      |                       |
| 54            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 55            | 1.0009       | 0.2107             | 0.2257              | 0.0150                                     | 0.0226                                       |                                                                                                      |                       |
| 56            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 57            | 1.0010       | 0.2184             | 0.2290              | 0.0107                                     | 0.0183                                       |                                                                                                      |                       |
| 58            |              |                    |                     |                                            |                                              |                                                                                                      |                       |
| 59            | 1.0011       | 0.2261             | 0.2328              | 0.0067                                     | 0.0144                                       |                                                                                                      |                       |

|     |        |        |        |        |        |  |  |
|-----|--------|--------|--------|--------|--------|--|--|
| 60  | 1.0012 | 0.2299 | 0.2358 | 0.0060 | 0.0098 |  |  |
| 61  |        |        |        |        |        |  |  |
| 62  |        |        |        |        |        |  |  |
| 63  | 1.0013 | 0.2414 | 0.2396 | 0.0017 | 0.0097 |  |  |
| 64  | 1.0014 | 0.2452 | 0.2418 | 0.0034 | 0.0004 |  |  |
| 65  | 1.0015 | 0.2490 | 0.2438 | 0.0052 | 0.0014 |  |  |
| 66  | 1.0016 | 0.2529 | 0.2490 | 0.0038 | 0.0000 |  |  |
| 67  |        |        |        |        |        |  |  |
| 68  | 1.0017 | 0.2605 | 0.2537 | 0.0069 | 0.0008 |  |  |
| 69  |        |        |        |        |        |  |  |
| 70  | 1.0018 | 0.2682 | 0.2558 | 0.0124 | 0.0047 |  |  |
| 71  |        |        |        |        |        |  |  |
| 72  |        |        |        |        |        |  |  |
| 73  |        |        |        |        |        |  |  |
| 74  | 1.0019 | 0.2835 | 0.2604 | 0.0231 | 0.0078 |  |  |
| 75  |        |        |        |        |        |  |  |
| 76  | 1.0020 | 0.2912 | 0.2645 | 0.0267 | 0.0190 |  |  |
| 77  |        |        |        |        |        |  |  |
| 78  | 1.0021 | 0.2989 | 0.2667 | 0.0322 | 0.0245 |  |  |
| 79  |        |        |        |        |        |  |  |
| 80  | 1.0022 | 0.3065 | 0.2702 | 0.0364 | 0.0287 |  |  |
| 81  | 1.0023 | 0.3103 | 0.2737 | 0.0367 | 0.0328 |  |  |
| 82  | 1.0024 | 0.3142 | 0.2766 | 0.0375 | 0.0337 |  |  |
| 83  |        |        |        |        |        |  |  |
| 84  |        |        |        |        |        |  |  |
| 85  |        |        |        |        |        |  |  |
| 86  |        |        |        |        |        |  |  |
| 87  | 1.0025 | 0.3333 | 0.2826 | 0.0507 | 0.0315 |  |  |
| 88  |        |        |        |        |        |  |  |
| 89  |        |        |        |        |        |  |  |
| 90  |        |        |        |        |        |  |  |
| 91  | 1.0027 | 0.3487 | 0.2898 | 0.0588 | 0.0435 |  |  |
| 92  |        |        |        |        |        |  |  |
| 93  |        |        |        |        |        |  |  |
| 94  | 1.0028 | 0.3602 | 0.2948 | 0.0654 | 0.0539 |  |  |
| 95  |        |        |        |        |        |  |  |
| 96  |        |        |        |        |        |  |  |
| 97  | 1.0029 | 0.3716 | 0.2967 | 0.0749 | 0.0634 |  |  |
| 98  | 1.0030 | 0.3755 | 0.2998 | 0.0757 | 0.0718 |  |  |
| 99  |        |        |        |        |        |  |  |
| 100 |        |        |        |        |        |  |  |
| 101 | 1.0031 | 0.3870 | 0.3064 | 0.0805 | 0.0690 |  |  |
| 102 | 1.0032 | 0.3908 | 0.3096 | 0.0812 | 0.0774 |  |  |
| 103 |        |        |        |        |        |  |  |
| 104 | 1.0034 | 0.3985 | 0.3175 | 0.0810 | 0.0733 |  |  |
| 105 | 1.0035 | 0.4023 | 0.3202 | 0.0821 | 0.0782 |  |  |
| 106 | 1.0036 | 0.4061 | 0.3250 | 0.0811 | 0.0773 |  |  |
| 107 |        |        |        |        |        |  |  |
| 108 | 1.0037 | 0.4138 | 0.3290 | 0.0847 | 0.0771 |  |  |
| 109 |        |        |        |        |        |  |  |
| 110 |        |        |        |        |        |  |  |
| 111 | 1.0038 | 0.4253 | 0.3331 | 0.0922 | 0.0807 |  |  |
| 112 |        |        |        |        |        |  |  |
| 113 | 1.0039 | 0.4330 | 0.3380 | 0.0950 | 0.0873 |  |  |
| 114 |        |        |        |        |        |  |  |
| 115 |        |        |        |        |        |  |  |
| 116 |        |        |        |        |        |  |  |
| 117 | 1.0040 | 0.4483 | 0.3420 | 0.1062 | 0.0909 |  |  |
| 118 |        |        |        |        |        |  |  |
| 119 | 1.0041 | 0.4559 | 0.3453 | 0.1106 | 0.1030 |  |  |
| 120 |        |        |        |        |        |  |  |
| 121 |        |        |        |        |        |  |  |
| 122 |        |        |        |        |        |  |  |
| 123 | 1.0042 | 0.4713 | 0.3507 | 0.1206 | 0.1053 |  |  |

|     |        |        |        |        |        |  |
|-----|--------|--------|--------|--------|--------|--|
| 124 |        |        |        |        |        |  |
| 125 | 1.0043 | 0.4789 | 0.3536 | 0.1254 | 0.1177 |  |
| 126 |        |        |        |        |        |  |
| 127 |        |        |        |        |        |  |
| 128 |        |        |        |        |        |  |
| 129 | 1.0044 | 0.4943 | 0.3589 | 0.1353 | 0.1200 |  |
| 130 |        |        |        |        |        |  |
| 131 |        |        |        |        |        |  |
| 132 |        |        |        |        |        |  |
| 133 | 1.0045 | 0.5096 | 0.3631 | 0.1465 | 0.1311 |  |
| 134 | 1.0047 | 0.5134 | 0.3690 | 0.1444 | 0.1406 |  |
| 135 |        |        |        |        |        |  |
| 136 | 1.0048 | 0.5211 | 0.3744 | 0.1466 | 0.1390 |  |
| 137 | 1.0049 | 0.5249 | 0.3761 | 0.1488 | 0.1449 |  |
| 138 |        |        |        |        |        |  |
| 139 |        |        |        |        |        |  |
| 140 |        |        |        |        |        |  |
| 141 | 1.0050 | 0.5402 | 0.3833 | 0.1569 | 0.1416 |  |
| 142 | 1.0051 | 0.5441 | 0.3885 | 0.1556 | 0.1518 |  |
| 143 |        |        |        |        |        |  |
| 144 | 1.0052 | 0.5517 | 0.3927 | 0.1590 | 0.1513 |  |
| 145 |        |        |        |        |        |  |
| 146 | 1.0054 | 0.5594 | 0.4009 | 0.1585 | 0.1508 |  |
| 147 |        |        |        |        |        |  |
| 148 | 1.0055 | 0.5670 | 0.4035 | 0.1636 | 0.1559 |  |
| 149 |        |        |        |        |        |  |
| 150 | 1.0056 | 0.5747 | 0.4082 | 0.1665 | 0.1588 |  |
| 151 | 1.0058 | 0.5785 | 0.4164 | 0.1621 | 0.1583 |  |
| 152 |        |        |        |        |        |  |
| 153 | 1.0059 | 0.5862 | 0.4230 | 0.1632 | 0.1556 |  |
| 154 |        |        |        |        |        |  |
| 155 | 1.0060 | 0.5939 | 0.4256 | 0.1683 | 0.1606 |  |
| 156 | 1.0063 | 0.5977 | 0.4392 | 0.1585 | 0.1547 |  |
| 157 |        |        |        |        |        |  |
| 158 |        |        |        |        |        |  |
| 159 |        |        |        |        |        |  |
| 160 | 1.0064 | 0.6130 | 0.4440 | 0.1690 | 0.1537 |  |
| 161 |        |        |        |        |        |  |
| 162 |        |        |        |        |        |  |
| 163 | 1.0065 | 0.6245 | 0.4488 | 0.1757 | 0.1642 |  |
| 164 | 1.0067 | 0.6284 | 0.4572 | 0.1711 | 0.1673 |  |
| 165 |        |        |        |        |        |  |
| 166 |        |        |        |        |        |  |
| 167 | 1.0068 | 0.6398 | 0.4625 | 0.1773 | 0.1658 |  |
| 168 |        |        |        |        |        |  |
| 169 | 1.0069 | 0.6475 | 0.4665 | 0.1810 | 0.1734 |  |
| 170 |        |        |        |        |        |  |
| 171 | 1.0070 | 0.6552 | 0.4683 | 0.1869 | 0.1792 |  |
| 172 | 1.0071 | 0.6590 | 0.4749 | 0.1841 | 0.1803 |  |
| 173 |        |        |        |        |        |  |
| 174 | 1.0074 | 0.6667 | 0.4869 | 0.1798 | 0.1721 |  |
| 175 |        |        |        |        |        |  |
| 176 | 1.0076 | 0.6743 | 0.4958 | 0.1786 | 0.1709 |  |
| 177 |        |        |        |        |        |  |
| 178 | 1.0077 | 0.6820 | 0.4998 | 0.1822 | 0.1746 |  |
| 179 |        |        |        |        |        |  |
| 180 |        |        |        |        |        |  |
| 181 | 1.0079 | 0.6935 | 0.5113 | 0.1822 | 0.1707 |  |
| 182 | 1.0080 | 0.6973 | 0.5149 | 0.1825 | 0.1786 |  |
| 183 | 1.0081 | 0.7011 | 0.5166 | 0.1845 | 0.1807 |  |
| 184 | 1.0082 | 0.7050 | 0.5246 | 0.1804 | 0.1765 |  |
| 185 | 1.0083 | 0.7088 | 0.5255 | 0.1833 | 0.1795 |  |
| 186 | 1.0085 | 0.7126 | 0.5375 | 0.1752 | 0.1713 |  |
| 187 | 1.0087 | 0.7165 | 0.5453 | 0.1711 | 0.1673 |  |

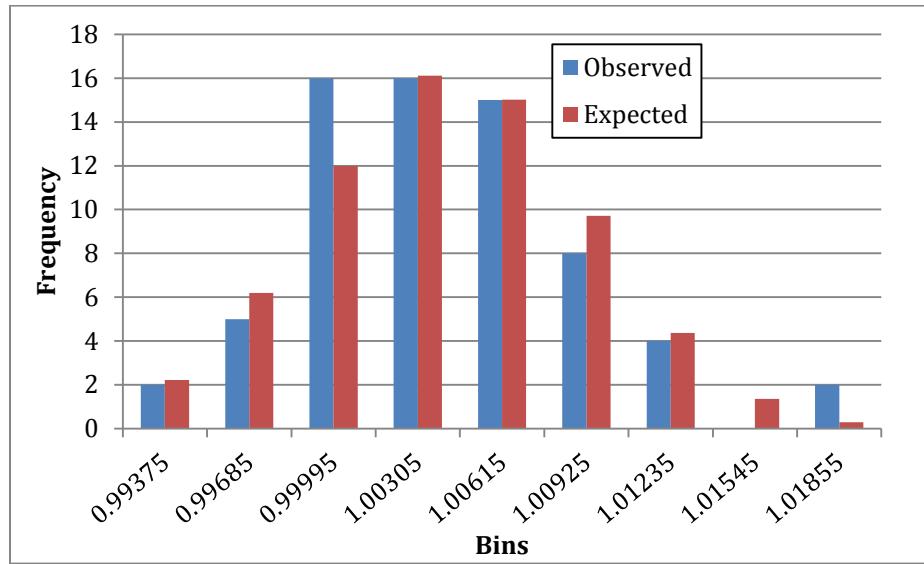
|     |        |        |        |        |        |  |  |
|-----|--------|--------|--------|--------|--------|--|--|
| 188 | 1.0088 | 0.7203 | 0.5503 | 0.1701 | 0.1662 |  |  |
| 189 |        |        |        |        |        |  |  |
| 190 | 1.0089 | 0.7280 | 0.5525 | 0.1755 | 0.1679 |  |  |
| 191 |        |        |        |        |        |  |  |
| 192 | 1.0090 | 0.7356 | 0.5577 | 0.1779 | 0.1702 |  |  |
| 193 |        |        |        |        |        |  |  |
| 194 |        |        |        |        |        |  |  |
| 195 | 1.0091 | 0.7471 | 0.5634 | 0.1837 | 0.1722 |  |  |
| 196 |        |        |        |        |        |  |  |
| 197 | 1.0092 | 0.7548 | 0.5656 | 0.1892 | 0.1815 |  |  |
| 198 |        |        |        |        |        |  |  |
| 199 | 1.0093 | 0.7625 | 0.5713 | 0.1911 | 0.1835 |  |  |
| 200 |        |        |        |        |        |  |  |
| 201 | 1.0094 | 0.7701 | 0.5774 | 0.1927 | 0.1850 |  |  |
| 202 | 1.0095 | 0.7739 | 0.5789 | 0.1950 | 0.1912 |  |  |
| 203 |        |        |        |        |        |  |  |
| 204 |        |        |        |        |        |  |  |
| 205 |        |        |        |        |        |  |  |
| 206 | 1.0096 | 0.7893 | 0.5857 | 0.2036 | 0.1883 |  |  |
| 207 |        |        |        |        |        |  |  |
| 208 | 1.0097 | 0.7969 | 0.5879 | 0.2091 | 0.2014 |  |  |
| 209 | 1.0098 | 0.8008 | 0.5918 | 0.2090 | 0.2052 |  |  |
| 210 |        |        |        |        |        |  |  |
| 211 | 1.0099 | 0.8084 | 0.5974 | 0.2111 | 0.2034 |  |  |
| 212 |        |        |        |        |        |  |  |
| 213 |        |        |        |        |        |  |  |
| 214 | 1.0100 | 0.8199 | 0.6030 | 0.2169 | 0.2054 |  |  |
| 215 | 1.0101 | 0.8238 | 0.6064 | 0.2174 | 0.2135 |  |  |
| 216 | 1.0104 | 0.8276 | 0.6189 | 0.2087 | 0.2049 |  |  |
| 217 |        |        |        |        |        |  |  |
| 218 | 1.0105 | 0.8352 | 0.6251 | 0.2102 | 0.2025 |  |  |
| 219 | 1.0107 | 0.8391 | 0.6318 | 0.2073 | 0.2034 |  |  |
| 220 | 1.0109 | 0.8429 | 0.6410 | 0.2019 | 0.1981 |  |  |
| 221 | 1.0111 | 0.8467 | 0.6481 | 0.1987 | 0.1948 |  |  |
| 222 | 1.0113 | 0.8506 | 0.6573 | 0.1933 | 0.1895 |  |  |
| 223 |        |        |        |        |        |  |  |
| 224 | 1.0116 | 0.8582 | 0.6693 | 0.1889 | 0.1813 |  |  |
| 225 | 1.0117 | 0.8621 | 0.6713 | 0.1907 | 0.1869 |  |  |
| 226 | 1.0120 | 0.8659 | 0.6863 | 0.1796 | 0.1758 |  |  |
| 227 | 1.0121 | 0.8697 | 0.6882 | 0.1815 | 0.1777 |  |  |
| 228 |        |        |        |        |        |  |  |
| 229 | 1.0126 | 0.8774 | 0.7086 | 0.1688 | 0.1611 |  |  |
| 230 | 1.0127 | 0.8812 | 0.7111 | 0.1701 | 0.1663 |  |  |
| 231 | 1.0130 | 0.8851 | 0.7239 | 0.1612 | 0.1573 |  |  |
| 232 | 1.0132 | 0.8889 | 0.7318 | 0.1571 | 0.1532 |  |  |
| 233 | 1.0146 | 0.8927 | 0.7776 | 0.1151 | 0.1113 |  |  |
| 234 |        |        |        |        |        |  |  |
| 235 | 1.0147 | 0.9004 | 0.7839 | 0.1165 | 0.1089 |  |  |
| 236 | 1.0154 | 0.9042 | 0.8040 | 0.1002 | 0.0964 |  |  |
| 237 | 1.0156 | 0.9080 | 0.8101 | 0.0979 | 0.0941 |  |  |
| 238 | 1.0160 | 0.9119 | 0.8224 | 0.0895 | 0.0857 |  |  |
| 239 | 1.0165 | 0.9157 | 0.8379 | 0.0779 | 0.0740 |  |  |
| 240 | 1.0168 | 0.9195 | 0.8457 | 0.0739 | 0.0701 |  |  |
| 241 | 1.0180 | 0.9234 | 0.8746 | 0.0488 | 0.0450 |  |  |
| 242 | 1.0192 | 0.9272 | 0.9004 | 0.0268 | 0.0229 |  |  |
| 243 | 1.0194 | 0.9310 | 0.9041 | 0.0269 | 0.0231 |  |  |
| 244 | 1.0200 | 0.9349 | 0.9152 | 0.0197 | 0.0159 |  |  |
| 245 | 1.0228 | 0.9387 | 0.9536 | 0.0149 | 0.0187 |  |  |
| 246 | 1.0230 | 0.9425 | 0.9558 | 0.0133 | 0.0171 |  |  |
| 247 | 1.0235 | 0.9464 | 0.9612 | 0.0149 | 0.0187 |  |  |
| 248 | 1.0248 | 0.9502 | 0.9719 | 0.0218 | 0.0256 |  |  |
| 249 | 1.0254 | 0.9540 | 0.9757 | 0.0217 | 0.0255 |  |  |
| 250 | 1.0259 | 0.9579 | 0.9787 | 0.0208 | 0.0247 |  |  |
| 251 | 1.0260 | 0.9617 | 0.9790 | 0.0173 | 0.0211 |  |  |

|             |        |        |        |        |        |  |  |
|-------------|--------|--------|--------|--------|--------|--|--|
| 252         | 1.0262 | 0.9655 | 0.9802 | 0.0147 | 0.0185 |  |  |
| 253         | 1.0276 | 0.9693 | 0.9866 | 0.0173 | 0.0211 |  |  |
| 254         | 1.0283 | 0.9732 | 0.9891 | 0.0159 | 0.0197 |  |  |
| 255         | 1.0297 | 0.9770 | 0.9928 | 0.0157 | 0.0196 |  |  |
| 256         | 1.0299 | 0.9808 | 0.9932 | 0.0124 | 0.0162 |  |  |
| 257         | 1.0302 | 0.9847 | 0.9939 | 0.0092 | 0.0130 |  |  |
| 258         | 1.0307 | 0.9885 | 0.9948 | 0.0063 | 0.0101 |  |  |
| 259         | 1.0314 | 0.9923 | 0.9958 | 0.0035 | 0.0073 |  |  |
| 260         | 1.0320 | 0.9962 | 0.9966 | 0.0004 | 0.0043 |  |  |
| 261         | 1.0324 | 1.0000 | 0.9970 | 0.0030 | 0.0008 |  |  |
| $\bar{x}_i$ | 1.0077 |        |        |        |        |  |  |
| $\sigma$    | 0.0090 |        |        |        |        |  |  |

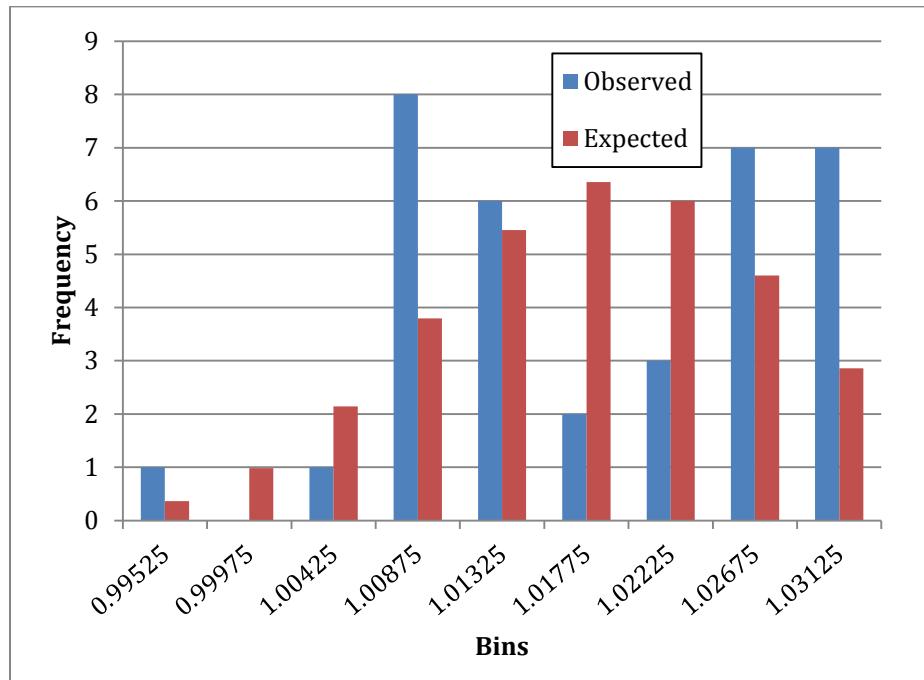
**Table 10 Lilliefors Normality Test Results for Entire Data Set**

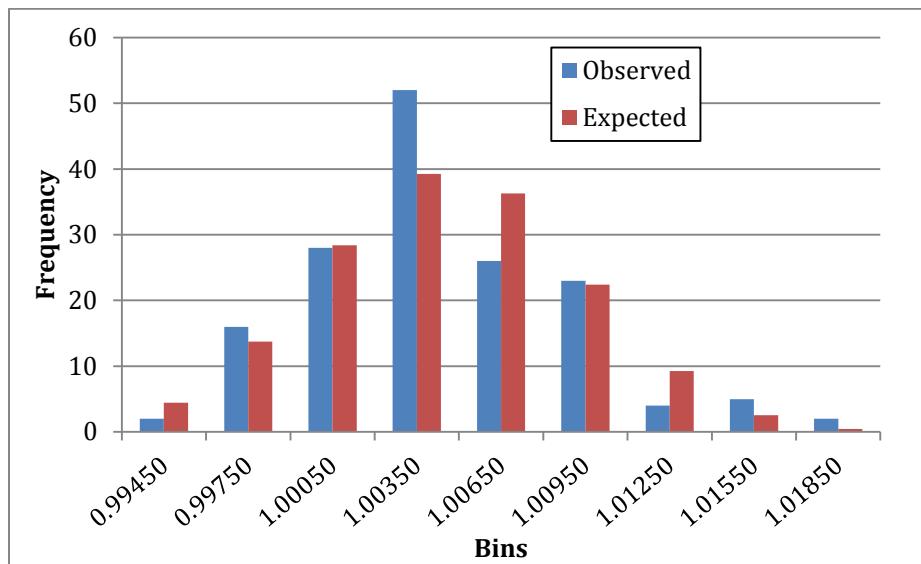
| Observation # | $x_i$   | $z_i$  | $F^*(z_i)$ | $G(z_i)$ | $ F^*(z_i) - G(z_i) $ | $ F^*(z_i) - G(z_{i-1}) $ | $T^*$  | $w_{95}(261)$ |
|---------------|---------|--------|------------|----------|-----------------------|---------------------------|--------|---------------|
| 1             | 0.99224 | -1.861 | 0.03137    | 0.0038   | 0.0275                | 0.0314                    | 0.1266 | 0.054842      |
| 2             | 0.99345 | -1.700 | 0.04456    | 0.0077   | 0.0369                | 0.0407                    |        |               |
| 3             | 0.99365 | -1.674 | 0.04712    | 0.0115   | 0.0356                | 0.0395                    |        |               |
| 4             | 0.99436 | -1.579 | 0.05717    | 0.0153   | 0.0418                | 0.0457                    |        |               |
| 5             | 0.99444 | -1.568 | 0.05840    | 0.0192   | 0.0392                | 0.0431                    |        |               |
| 6             | 0.99547 | -1.431 | 0.07616    | 0.0230   | 0.0532                | 0.0570                    |        |               |
| 7             | 0.99611 | -1.346 | 0.08911    | 0.0268   | 0.0623                | 0.0661                    |        |               |
| 8             | 0.99665 | -1.274 | 0.10125    | 0.0307   | 0.0706                | 0.0744                    |        |               |
| 9             | 0.99669 | -1.269 | 0.10219    | 0.0345   | 0.0677                | 0.0715                    |        |               |
| 10            | 0.99687 | -1.245 | 0.10653    | 0.0383   | 0.0682                | 0.0720                    |        |               |
| 11            | 0.99694 | -1.236 | 0.10831    | 0.0421   | 0.0662                | 0.0700                    |        |               |
| 12            | 0.99696 | -1.233 | 0.10874    | 0.0460   | 0.0628                | 0.0666                    |        |               |
| 13            | 0.99708 | -1.217 | 0.11175    | 0.0498   | 0.0619                | 0.0658                    |        |               |
| 14            | 0.99709 | -1.216 | 0.11200    | 0.0536   | 0.0584                | 0.0622                    |        |               |
| 15            | 0.99735 | -1.181 | 0.11873    | 0.0575   | 0.0613                | 0.0651                    |        |               |
| 16            | 0.99742 | -1.172 | 0.12058    | 0.0613   | 0.0593                | 0.0631                    |        |               |
| 17            | 0.99800 | -1.095 | 0.13677    | 0.0651   | 0.0716                | 0.0755                    |        |               |
| 18            | 0.99811 | -1.080 | 0.14001    | 0.0690   | 0.0710                | 0.0749                    |        |               |
| 19            | 0.99834 | -1.050 | 0.14693    | 0.0728   | 0.0741                | 0.0780                    |        |               |
| 20            | 0.99841 | -1.040 | 0.14908    | 0.0766   | 0.0725                | 0.0763                    |        |               |
| 21            | 0.99864 | -1.010 | 0.15630    | 0.0805   | 0.0758                | 0.0797                    |        |               |
| 22            | 0.99866 | -1.007 | 0.15694    | 0.0843   | 0.0726                | 0.0765                    |        |               |
| 23            | 0.99866 | -1.007 | 0.15694    | 0.0881   | 0.0688                | 0.0726                    |        |               |
| 24            | 0.99871 | -1.000 | 0.15854    | 0.0920   | 0.0666                | 0.0704                    |        |               |
| 25            | 0.99878 | -0.991 | 0.16080    | 0.0958   | 0.0650                | 0.0688                    |        |               |
| 26            | 0.99882 | -0.986 | 0.16211    | 0.0996   | 0.0625                | 0.0663                    |        |               |
| 27            | 0.99885 | -0.982 | 0.16309    | 0.1034   | 0.0596                | 0.0635                    |        |               |
| 28            | 0.99885 | -0.982 | 0.16309    | 0.1073   | 0.0558                | 0.0596                    |        |               |
| 29            | 0.99894 | -0.970 | 0.16603    | 0.1111   | 0.0549                | 0.0588                    |        |               |
| 30            | 0.99895 | -0.968 | 0.16639    | 0.1149   | 0.0514                | 0.0553                    |        |               |
| 31            | 0.99904 | -0.957 | 0.16939    | 0.1188   | 0.0506                | 0.0545                    |        |               |
| 32            | 0.99919 | -0.937 | 0.17448    | 0.1226   | 0.0519                | 0.0557                    |        |               |
| 33            | 0.99923 | -0.931 | 0.17585    | 0.1264   | 0.0494                | 0.0532                    |        |               |
| 34            | 0.99938 | -0.911 | 0.18106    | 0.1303   | 0.0508                | 0.0546                    |        |               |
| 35            | 0.99941 | -0.907 | 0.18211    | 0.1341   | 0.0480                | 0.0518                    |        |               |
| 36            | 0.99945 | -0.902 | 0.18352    | 0.1379   | 0.0456                | 0.0494                    |        |               |
| 37            | 0.99963 | -0.878 | 0.18995    | 0.1418   | 0.0482                | 0.0520                    |        |               |
| 38            | 0.99964 | -0.877 | 0.19032    | 0.1456   | 0.0447                | 0.0486                    |        |               |
| 39            | 0.99964 | -0.877 | 0.19032    | 0.1494   | 0.0409                | 0.0447                    |        |               |
| 40            | 0.99992 | -0.839 | 0.20060    | 0.1533   | 0.0473                | 0.0512                    |        |               |
| 41            | 1.00014 | -0.810 | 0.20891    | 0.1571   | 0.0518                | 0.0557                    |        |               |
| 42            | 1.00015 | -0.809 | 0.20929    | 0.1609   | 0.0484                | 0.0522                    |        |               |
| 43            | 1.00020 | -0.802 | 0.21121    | 0.1648   | 0.0465                | 0.0503                    |        |               |
| 44            | 1.00025 | -0.796 | 0.21314    | 0.1686   | 0.0446                | 0.0484                    |        |               |
| 45            | 1.00032 | -0.786 | 0.21586    | 0.1724   | 0.0434                | 0.0473                    |        |               |
| 46            | 1.00038 | -0.778 | 0.21821    | 0.1762   | 0.0420                | 0.0458                    |        |               |
| 47            | 1.00046 | -0.768 | 0.22136    | 0.1801   | 0.0413                | 0.0451                    |        |               |
| 48            | 1.00057 | -0.753 | 0.22573    | 0.1839   | 0.0418                | 0.0457                    |        |               |
| 49            | 1.00064 | -0.744 | 0.22854    | 0.1877   | 0.0408                | 0.0446                    |        |               |
| 50            | 1.00068 | -0.738 | 0.23015    | 0.1916   | 0.0386                | 0.0424                    |        |               |
| 51            | 1.00074 | -0.730 | 0.23258    | 0.1954   | 0.0372                | 0.0410                    |        |               |
| 52            | 1.00080 | -0.722 | 0.23503    | 0.1992   | 0.0358                | 0.0396                    |        |               |
| 53            | 1.00084 | -0.717 | 0.23667    | 0.2031   | 0.0336                | 0.0374                    |        |               |
| 54            | 1.00085 | -0.716 | 0.23708    | 0.2069   | 0.0302                | 0.0340                    |        |               |
| 55            | 1.00092 | -0.706 | 0.23997    | 0.2107   | 0.0292                | 0.0331                    |        |               |
| 56            | 1.00096 | -0.701 | 0.24162    | 0.2146   | 0.0271                | 0.0309                    |        |               |
| 57            | 1.00102 | -0.693 | 0.24412    | 0.2184   | 0.0257                | 0.0296                    |        |               |
| 58            | 1.00108 | -0.685 | 0.24663    | 0.2222   | 0.0244                | 0.0282                    |        |               |
| 59            | 1.00113 | -0.679 | 0.24871    | 0.2261   | 0.0227                | 0.0265                    |        |               |

|     |         |        |         |        |        |        |  |  |
|-----|---------|--------|---------|--------|--------|--------|--|--|
| 60  | 1.00122 | -0.666 | 0.25255 | 0.2299 | 0.0227 | 0.0265 |  |  |
| 61  | 1.00129 | -0.657 | 0.25553 | 0.2337 | 0.0218 | 0.0256 |  |  |
| 62  | 1.00129 | -0.657 | 0.25553 | 0.2375 | 0.0180 | 0.0218 |  |  |
| 63  | 1.00133 | -0.652 | 0.25725 | 0.2414 | 0.0159 | 0.0197 |  |  |
| 64  | 1.00139 | -0.643 | 0.25997 | 0.2452 | 0.0148 | 0.0186 |  |  |
| 65  | 1.00145 | -0.636 | 0.26242 | 0.2490 | 0.0134 | 0.0172 |  |  |
| 66  | 1.00160 | -0.616 | 0.26894 | 0.2529 | 0.0161 | 0.0199 |  |  |
| 67  | 1.00165 | -0.609 | 0.27134 | 0.2567 | 0.0146 | 0.0185 |  |  |
| 68  | 1.00173 | -0.599 | 0.27471 | 0.2605 | 0.0142 | 0.0180 |  |  |
| 69  | 1.00175 | -0.596 | 0.27566 | 0.2644 | 0.0113 | 0.0151 |  |  |
| 70  | 1.00179 | -0.591 | 0.27738 | 0.2682 | 0.0092 | 0.0130 |  |  |
| 71  | 1.00186 | -0.581 | 0.28051 | 0.2720 | 0.0085 | 0.0123 |  |  |
| 72  | 1.00188 | -0.579 | 0.28141 | 0.2759 | 0.0055 | 0.0094 |  |  |
| 73  | 1.00190 | -0.576 | 0.28224 | 0.2797 | 0.0026 | 0.0064 |  |  |
| 74  | 1.00192 | -0.574 | 0.28313 | 0.2835 | 0.0004 | 0.0034 |  |  |
| 75  | 1.00195 | -0.569 | 0.28473 | 0.2874 | 0.0026 | 0.0012 |  |  |
| 76  | 1.00203 | -0.559 | 0.28818 | 0.2912 | 0.0030 | 0.0008 |  |  |
| 77  | 1.00209 | -0.551 | 0.29091 | 0.2950 | 0.0041 | 0.0003 |  |  |
| 78  | 1.00209 | -0.551 | 0.29091 | 0.2989 | 0.0079 | 0.0041 |  |  |
| 79  | 1.00216 | -0.541 | 0.29411 | 0.3027 | 0.0086 | 0.0047 |  |  |
| 80  | 1.00218 | -0.538 | 0.29525 | 0.3065 | 0.0113 | 0.0074 |  |  |
| 81  | 1.00228 | -0.525 | 0.29964 | 0.3103 | 0.0107 | 0.0069 |  |  |
| 82  | 1.00236 | -0.515 | 0.30335 | 0.3142 | 0.0108 | 0.0070 |  |  |
| 83  | 1.00247 | -0.500 | 0.30848 | 0.3180 | 0.0095 | 0.0057 |  |  |
| 84  | 1.00248 | -0.499 | 0.30895 | 0.3218 | 0.0129 | 0.0091 |  |  |
| 85  | 1.00250 | -0.496 | 0.30989 | 0.3257 | 0.0158 | 0.0120 |  |  |
| 86  | 1.00251 | -0.495 | 0.31036 | 0.3295 | 0.0191 | 0.0153 |  |  |
| 87  | 1.00252 | -0.494 | 0.31083 | 0.3333 | 0.0225 | 0.0187 |  |  |
| 88  | 1.00266 | -0.475 | 0.31743 | 0.3372 | 0.0197 | 0.0159 |  |  |
| 89  | 1.00267 | -0.474 | 0.31791 | 0.3410 | 0.0231 | 0.0193 |  |  |
| 90  | 1.00271 | -0.468 | 0.31981 | 0.3448 | 0.0250 | 0.0212 |  |  |
| 91  | 1.00271 | -0.468 | 0.31981 | 0.3487 | 0.0288 | 0.0250 |  |  |
| 92  | 1.00279 | -0.458 | 0.32345 | 0.3525 | 0.0290 | 0.0252 |  |  |
| 93  | 1.00283 | -0.452 | 0.32554 | 0.3563 | 0.0308 | 0.0270 |  |  |
| 94  | 1.00284 | -0.451 | 0.32595 | 0.3602 | 0.0342 | 0.0304 |  |  |
| 95  | 1.00286 | -0.448 | 0.32698 | 0.3640 | 0.0370 | 0.0332 |  |  |
| 96  | 1.00288 | -0.446 | 0.32794 | 0.3678 | 0.0399 | 0.0360 |  |  |
| 97  | 1.00289 | -0.444 | 0.32842 | 0.3716 | 0.0432 | 0.0394 |  |  |
| 98  | 1.00297 | -0.434 | 0.33228 | 0.3755 | 0.0432 | 0.0394 |  |  |
| 99  | 1.00313 | -0.413 | 0.33997 | 0.3793 | 0.0393 | 0.0355 |  |  |
| 100 | 1.00313 | -0.413 | 0.33997 | 0.3831 | 0.0432 | 0.0393 |  |  |
| 101 | 1.00314 | -0.411 | 0.34053 | 0.3870 | 0.0464 | 0.0426 |  |  |
| 102 | 1.00322 | -0.400 | 0.34444 | 0.3908 | 0.0464 | 0.0425 |  |  |
| 103 | 1.00335 | -0.383 | 0.35083 | 0.3946 | 0.0438 | 0.0400 |  |  |
| 104 | 1.00342 | -0.374 | 0.35429 | 0.3985 | 0.0442 | 0.0403 |  |  |
| 105 | 1.00349 | -0.364 | 0.35776 | 0.4023 | 0.0445 | 0.0407 |  |  |
| 106 | 1.00361 | -0.349 | 0.36374 | 0.4061 | 0.0424 | 0.0386 |  |  |
| 107 | 1.00366 | -0.342 | 0.36624 | 0.4100 | 0.0437 | 0.0399 |  |  |
| 108 | 1.00371 | -0.335 | 0.36874 | 0.4138 | 0.0450 | 0.0412 |  |  |
| 109 | 1.00375 | -0.330 | 0.37075 | 0.4176 | 0.0469 | 0.0430 |  |  |
| 110 | 1.00381 | -0.322 | 0.37377 | 0.4215 | 0.0477 | 0.0439 |  |  |
| 111 | 1.00381 | -0.322 | 0.37377 | 0.4253 | 0.0515 | 0.0477 |  |  |
| 112 | 1.00388 | -0.313 | 0.37709 | 0.4291 | 0.0520 | 0.0482 |  |  |
| 113 | 1.00393 | -0.306 | 0.37984 | 0.4330 | 0.0531 | 0.0493 |  |  |
| 114 | 1.00395 | -0.303 | 0.38085 | 0.4368 | 0.0559 | 0.0521 |  |  |
| 115 | 1.00397 | -0.301 | 0.38186 | 0.4406 | 0.0588 | 0.0549 |  |  |
| 116 | 1.00401 | -0.295 | 0.38389 | 0.4444 | 0.0606 | 0.0567 |  |  |
| 117 | 1.00403 | -0.293 | 0.38491 | 0.4483 | 0.0634 | 0.0595 |  |  |
| 118 | 1.00407 | -0.287 | 0.38695 | 0.4521 | 0.0652 | 0.0613 |  |  |
| 119 | 1.00411 | -0.282 | 0.38898 | 0.4559 | 0.0670 | 0.0631 |  |  |
| 120 | 1.00415 | -0.277 | 0.39103 | 0.4598 | 0.0687 | 0.0649 |  |  |
| 121 | 1.00418 | -0.273 | 0.39256 | 0.4636 | 0.0710 | 0.0672 |  |  |
| 122 | 1.00421 | -0.269 | 0.39409 | 0.4674 | 0.0733 | 0.0695 |  |  |
| 123 | 1.00424 | -0.265 | 0.39563 | 0.4713 | 0.0756 | 0.0718 |  |  |


|     |         |        |         |        |        |        |  |  |
|-----|---------|--------|---------|--------|--------|--------|--|--|
| 124 | 1.00430 | -0.257 | 0.39871 | 0.4751 | 0.0764 | 0.0726 |  |  |
| 125 | 1.00431 | -0.255 | 0.39922 | 0.4789 | 0.0797 | 0.0759 |  |  |
| 126 | 1.00441 | -0.242 | 0.40437 | 0.4828 | 0.0784 | 0.0746 |  |  |
| 127 | 1.00442 | -0.241 | 0.40488 | 0.4866 | 0.0817 | 0.0779 |  |  |
| 128 | 1.00443 | -0.239 | 0.40540 | 0.4904 | 0.0850 | 0.0812 |  |  |
| 129 | 1.00444 | -0.238 | 0.40592 | 0.4943 | 0.0883 | 0.0845 |  |  |
| 130 | 1.00446 | -0.235 | 0.40695 | 0.4981 | 0.0911 | 0.0873 |  |  |
| 131 | 1.00450 | -0.230 | 0.40901 | 0.5019 | 0.0929 | 0.0891 |  |  |
| 132 | 1.00451 | -0.229 | 0.40953 | 0.5057 | 0.0962 | 0.0924 |  |  |
| 133 | 1.00454 | -0.225 | 0.41108 | 0.5096 | 0.0985 | 0.0947 |  |  |
| 134 | 1.00468 | -0.206 | 0.41834 | 0.5134 | 0.0951 | 0.0912 |  |  |
| 135 | 1.00476 | -0.196 | 0.42250 | 0.5172 | 0.0947 | 0.0909 |  |  |
| 136 | 1.00481 | -0.189 | 0.42511 | 0.5211 | 0.0960 | 0.0921 |  |  |
| 137 | 1.00485 | -0.184 | 0.42719 | 0.5249 | 0.0977 | 0.0939 |  |  |
| 138 | 1.00497 | -0.168 | 0.43347 | 0.5287 | 0.0953 | 0.0914 |  |  |
| 139 | 1.00499 | -0.165 | 0.43467 | 0.5326 | 0.0979 | 0.0941 |  |  |
| 140 | 1.00500 | -0.164 | 0.43504 | 0.5364 | 0.1014 | 0.0975 |  |  |
| 141 | 1.00502 | -0.161 | 0.43608 | 0.5402 | 0.1041 | 0.1003 |  |  |
| 142 | 1.00514 | -0.145 | 0.44238 | 0.5441 | 0.1017 | 0.0979 |  |  |
| 143 | 1.00520 | -0.137 | 0.44553 | 0.5479 | 0.1024 | 0.0985 |  |  |
| 144 | 1.00524 | -0.132 | 0.44763 | 0.5517 | 0.1041 | 0.1003 |  |  |
| 145 | 1.00539 | -0.112 | 0.45554 | 0.5556 | 0.1000 | 0.0962 |  |  |
| 146 | 1.00543 | -0.106 | 0.45765 | 0.5594 | 0.1017 | 0.0979 |  |  |
| 147 | 1.00549 | -0.098 | 0.46081 | 0.5632 | 0.1024 | 0.0986 |  |  |
| 148 | 1.00549 | -0.098 | 0.46081 | 0.5670 | 0.1062 | 0.1024 |  |  |
| 149 | 1.00558 | -0.086 | 0.46557 | 0.5709 | 0.1053 | 0.1015 |  |  |
| 150 | 1.00560 | -0.084 | 0.46663 | 0.5747 | 0.1081 | 0.1043 |  |  |
| 151 | 1.00579 | -0.059 | 0.47668 | 0.5785 | 0.1019 | 0.0980 |  |  |
| 152 | 1.00594 | -0.039 | 0.48463 | 0.5824 | 0.0977 | 0.0939 |  |  |
| 153 | 1.00594 | -0.039 | 0.48463 | 0.5862 | 0.1016 | 0.0977 |  |  |
| 154 | 1.00595 | -0.037 | 0.48516 | 0.5900 | 0.1049 | 0.1010 |  |  |
| 155 | 1.00600 | -0.031 | 0.48782 | 0.5939 | 0.1061 | 0.1022 |  |  |
| 156 | 1.00631 | 0.011  | 0.50429 | 0.5977 | 0.0934 | 0.0896 |  |  |
| 157 | 1.00636 | 0.017  | 0.50692 | 0.6015 | 0.0946 | 0.0908 |  |  |
| 158 | 1.00636 | 0.017  | 0.50692 | 0.6054 | 0.0984 | 0.0946 |  |  |
| 159 | 1.00638 | 0.020  | 0.50798 | 0.6092 | 0.1012 | 0.0974 |  |  |
| 160 | 1.00642 | 0.025  | 0.51010 | 0.6130 | 0.1029 | 0.0991 |  |  |
| 161 | 1.00647 | 0.032  | 0.51275 | 0.6169 | 0.1041 | 0.1003 |  |  |
| 162 | 1.00652 | 0.039  | 0.51541 | 0.6207 | 0.1053 | 0.1015 |  |  |
| 163 | 1.00653 | 0.040  | 0.51594 | 0.6245 | 0.1086 | 0.1048 |  |  |
| 164 | 1.00672 | 0.065  | 0.52600 | 0.6284 | 0.1023 | 0.0985 |  |  |
| 165 | 1.00675 | 0.069  | 0.52759 | 0.6322 | 0.1046 | 0.1008 |  |  |
| 166 | 1.00682 | 0.079  | 0.53130 | 0.6360 | 0.1047 | 0.1009 |  |  |
| 167 | 1.00684 | 0.081  | 0.53235 | 0.6398 | 0.1075 | 0.1037 |  |  |
| 168 | 1.00686 | 0.083  | 0.53319 | 0.6437 | 0.1105 | 0.1067 |  |  |
| 169 | 1.00693 | 0.093  | 0.53711 | 0.6475 | 0.1104 | 0.1066 |  |  |
| 170 | 1.00696 | 0.097  | 0.53870 | 0.6513 | 0.1126 | 0.1088 |  |  |
| 171 | 1.00697 | 0.098  | 0.53923 | 0.6552 | 0.1159 | 0.1121 |  |  |
| 172 | 1.00712 | 0.118  | 0.54714 | 0.6590 | 0.1119 | 0.1080 |  |  |
| 173 | 1.00736 | 0.150  | 0.55980 | 0.6628 | 0.1030 | 0.0992 |  |  |
| 174 | 1.00739 | 0.154  | 0.56133 | 0.6667 | 0.1053 | 0.1015 |  |  |
| 175 | 1.00755 | 0.176  | 0.56971 | 0.6705 | 0.1008 | 0.0970 |  |  |
| 176 | 1.00759 | 0.181  | 0.57180 | 0.6743 | 0.1025 | 0.0987 |  |  |
| 177 | 1.00767 | 0.192  | 0.57597 | 0.6782 | 0.1022 | 0.0984 |  |  |
| 178 | 1.00768 | 0.193  | 0.57649 | 0.6820 | 0.1055 | 0.1017 |  |  |
| 179 | 1.00785 | 0.216  | 0.58533 | 0.6858 | 0.1005 | 0.0967 |  |  |
| 180 | 1.00789 | 0.221  | 0.58740 | 0.6897 | 0.1023 | 0.0984 |  |  |
| 181 | 1.00794 | 0.228  | 0.58999 | 0.6935 | 0.1035 | 0.0997 |  |  |
| 182 | 1.00802 | 0.238  | 0.59412 | 0.6973 | 0.1032 | 0.0994 |  |  |
| 183 | 1.00806 | 0.243  | 0.59618 | 0.7011 | 0.1050 | 0.1011 |  |  |
| 184 | 1.00824 | 0.267  | 0.60543 | 0.7050 | 0.0996 | 0.0957 |  |  |
| 185 | 1.00826 | 0.270  | 0.60645 | 0.7088 | 0.1024 | 0.0985 |  |  |
| 186 | 1.00853 | 0.306  | 0.62021 | 0.7126 | 0.0924 | 0.0886 |  |  |
| 187 | 1.00871 | 0.330  | 0.62921 | 0.7165 | 0.0873 | 0.0834 |  |  |

|     |         |       |         |        |        |        |  |  |
|-----|---------|-------|---------|--------|--------|--------|--|--|
| 188 | 1.00882 | 0.345 | 0.63479 | 0.7203 | 0.0855 | 0.0817 |  |  |
| 189 | 1.00885 | 0.349 | 0.63629 | 0.7241 | 0.0878 | 0.0840 |  |  |
| 190 | 1.00887 | 0.351 | 0.63729 | 0.7280 | 0.0907 | 0.0868 |  |  |
| 191 | 1.00896 | 0.363 | 0.64177 | 0.7318 | 0.0900 | 0.0862 |  |  |
| 192 | 1.00899 | 0.367 | 0.64326 | 0.7356 | 0.0924 | 0.0885 |  |  |
| 193 | 1.00910 | 0.382 | 0.64870 | 0.7395 | 0.0908 | 0.0869 |  |  |
| 194 | 1.00911 | 0.383 | 0.64920 | 0.7433 | 0.0941 | 0.0903 |  |  |
| 195 | 1.00912 | 0.385 | 0.64969 | 0.7471 | 0.0974 | 0.0936 |  |  |
| 196 | 1.00915 | 0.389 | 0.65129 | 0.7510 | 0.0997 | 0.0958 |  |  |
| 197 | 1.00917 | 0.391 | 0.65215 | 0.7548 | 0.1026 | 0.0988 |  |  |
| 198 | 1.00926 | 0.403 | 0.65656 | 0.7586 | 0.1021 | 0.0982 |  |  |
| 199 | 1.00930 | 0.408 | 0.65852 | 0.7625 | 0.1039 | 0.1001 |  |  |
| 200 | 1.00940 | 0.422 | 0.66339 | 0.7663 | 0.1029 | 0.0991 |  |  |
| 201 | 1.00944 | 0.427 | 0.66533 | 0.7701 | 0.1048 | 0.1010 |  |  |
| 202 | 1.00947 | 0.432 | 0.66701 | 0.7739 | 0.1069 | 0.1031 |  |  |
| 203 | 1.00957 | 0.444 | 0.67160 | 0.7778 | 0.1062 | 0.1023 |  |  |
| 204 | 1.00960 | 0.448 | 0.67304 | 0.7816 | 0.1086 | 0.1047 |  |  |
| 205 | 1.00960 | 0.449 | 0.67327 | 0.7854 | 0.1122 | 0.1083 |  |  |
| 206 | 1.00963 | 0.452 | 0.67448 | 0.7893 | 0.1148 | 0.1110 |  |  |
| 207 | 1.00967 | 0.458 | 0.67640 | 0.7931 | 0.1167 | 0.1129 |  |  |
| 208 | 1.00968 | 0.459 | 0.67687 | 0.7969 | 0.1201 | 0.1162 |  |  |
| 209 | 1.00977 | 0.471 | 0.68116 | 0.8008 | 0.1196 | 0.1158 |  |  |
| 210 | 1.00989 | 0.487 | 0.68684 | 0.8046 | 0.1178 | 0.1139 |  |  |
| 211 | 1.00990 | 0.488 | 0.68731 | 0.8084 | 0.1211 | 0.1173 |  |  |
| 212 | 1.01001 | 0.503 | 0.69248 | 0.8123 | 0.1198 | 0.1160 |  |  |
| 213 | 1.01002 | 0.504 | 0.69294 | 0.8161 | 0.1231 | 0.1193 |  |  |
| 214 | 1.01003 | 0.506 | 0.69346 | 0.8199 | 0.1265 | 0.1226 |  |  |
| 215 | 1.01011 | 0.516 | 0.69714 | 0.8238 | 0.1266 | 0.1228 |  |  |
| 216 | 1.01040 | 0.555 | 0.71062 | 0.8276 | 0.1170 | 0.1131 |  |  |
| 217 | 1.01055 | 0.574 | 0.71709 | 0.8314 | 0.1143 | 0.1105 |  |  |
| 218 | 1.01055 | 0.575 | 0.71723 | 0.8352 | 0.1180 | 0.1142 |  |  |
| 219 | 1.01071 | 0.596 | 0.72441 | 0.8391 | 0.1147 | 0.1108 |  |  |
| 220 | 1.01093 | 0.625 | 0.73407 | 0.8429 | 0.1088 | 0.1050 |  |  |
| 221 | 1.01110 | 0.648 | 0.74147 | 0.8467 | 0.1053 | 0.1014 |  |  |
| 222 | 1.01132 | 0.678 | 0.75102 | 0.8506 | 0.0996 | 0.0957 |  |  |
| 223 | 1.01155 | 0.708 | 0.76045 | 0.8544 | 0.0940 | 0.0901 |  |  |
| 224 | 1.01162 | 0.717 | 0.76333 | 0.8582 | 0.0949 | 0.0911 |  |  |
| 225 | 1.01167 | 0.724 | 0.76538 | 0.8621 | 0.0967 | 0.0929 |  |  |
| 226 | 1.01204 | 0.774 | 0.78040 | 0.8659 | 0.0855 | 0.0817 |  |  |
| 227 | 1.01209 | 0.780 | 0.78236 | 0.8697 | 0.0874 | 0.0835 |  |  |
| 228 | 1.01257 | 0.844 | 0.80056 | 0.8736 | 0.0730 | 0.0692 |  |  |
| 229 | 1.01262 | 0.850 | 0.80237 | 0.8774 | 0.0750 | 0.0712 |  |  |
| 230 | 1.01269 | 0.859 | 0.80477 | 0.8812 | 0.0765 | 0.0726 |  |  |
| 231 | 1.01303 | 0.904 | 0.81702 | 0.8851 | 0.0680 | 0.0642 |  |  |
| 232 | 1.01324 | 0.933 | 0.82449 | 0.8889 | 0.0644 | 0.0606 |  |  |
| 233 | 1.01455 | 1.107 | 0.86582 | 0.8927 | 0.0269 | 0.0231 |  |  |
| 234 | 1.01470 | 1.127 | 0.87008 | 0.8966 | 0.0265 | 0.0226 |  |  |
| 235 | 1.01474 | 1.132 | 0.87121 | 0.9004 | 0.0292 | 0.0253 |  |  |
| 236 | 1.01538 | 1.217 | 0.88812 | 0.9042 | 0.0161 | 0.0123 |  |  |
| 237 | 1.01558 | 1.243 | 0.89311 | 0.9080 | 0.0149 | 0.0111 |  |  |
| 238 | 1.01599 | 1.298 | 0.90292 | 0.9119 | 0.0090 | 0.0051 |  |  |
| 239 | 1.01654 | 1.372 | 0.91489 | 0.9157 | 0.0008 | 0.0030 |  |  |
| 240 | 1.01683 | 1.410 | 0.92074 | 0.9195 | 0.0012 | 0.0050 |  |  |
| 241 | 1.01800 | 1.566 | 0.94129 | 0.9234 | 0.0179 | 0.0218 |  |  |
| 242 | 1.01922 | 1.728 | 0.95801 | 0.9272 | 0.0308 | 0.0346 |  |  |
| 243 | 1.01941 | 1.754 | 0.96026 | 0.9310 | 0.0292 | 0.0331 |  |  |
| 244 | 1.02002 | 1.835 | 0.96674 | 0.9349 | 0.0319 | 0.0357 |  |  |
| 245 | 1.02278 | 2.202 | 0.98619 | 0.9387 | 0.0475 | 0.0513 |  |  |
| 246 | 1.02299 | 2.230 | 0.98714 | 0.9425 | 0.0446 | 0.0484 |  |  |
| 247 | 1.02354 | 2.303 | 0.98938 | 0.9464 | 0.0430 | 0.0469 |  |  |
| 248 | 1.02484 | 2.477 | 0.99336 | 0.9502 | 0.0432 | 0.0470 |  |  |
| 249 | 1.02540 | 2.550 | 0.99460 | 0.9540 | 0.0406 | 0.0444 |  |  |
| 250 | 1.02590 | 2.616 | 0.99553 | 0.9579 | 0.0377 | 0.0415 |  |  |
| 251 | 1.02595 | 2.624 | 0.99562 | 0.9617 | 0.0339 | 0.0378 |  |  |


|             |         |       |         |        |        |        |  |  |
|-------------|---------|-------|---------|--------|--------|--------|--|--|
| 252         | 1.02617 | 2.652 | 0.99597 | 0.9655 | 0.0305 | 0.0343 |  |  |
| 253         | 1.02758 | 2.840 | 0.99770 | 0.9693 | 0.0284 | 0.0322 |  |  |
| 254         | 1.02828 | 2.934 | 0.99829 | 0.9732 | 0.0251 | 0.0289 |  |  |
| 255         | 1.02965 | 3.116 | 0.99908 | 0.9770 | 0.0221 | 0.0259 |  |  |
| 256         | 1.02986 | 3.144 | 0.99917 | 0.9808 | 0.0183 | 0.0222 |  |  |
| 257         | 1.03018 | 3.186 | 0.99929 | 0.9847 | 0.0146 | 0.0185 |  |  |
| 258         | 1.03071 | 3.257 | 0.99946 | 0.9885 | 0.0110 | 0.0148 |  |  |
| 259         | 1.03137 | 3.345 | 0.99961 | 0.9923 | 0.0073 | 0.0111 |  |  |
| 260         | 1.03201 | 3.430 | 0.99971 | 0.9962 | 0.0035 | 0.0074 |  |  |
| 261         | 1.03238 | 3.479 | 0.99975 | 1.0000 | 0.0002 | 0.0036 |  |  |
| $\bar{x}_i$ | 1.0062  |       |         |        |        |        |  |  |
| $\sigma$    | 0.0075  |       |         |        |        |        |  |  |


To support the Section 6.2 evaluation of individual material form subsets (i.e., metal, oxide, and solution subsets), each of the three material form subsets was evaluated separately using the three normality tests described in Section 3.4.1. All three material form subsets failed the Chi Square test, while the solution subset also failed the Lilliefors test (the sample size for the oxide subset was too small to perform the Lilliefors test). The detailed results are not reproduced herein, but the Chi Square test histograms are presented below, in Figures 5 through 7.

**Figure 5 Histogram of Metal Calculation Results**

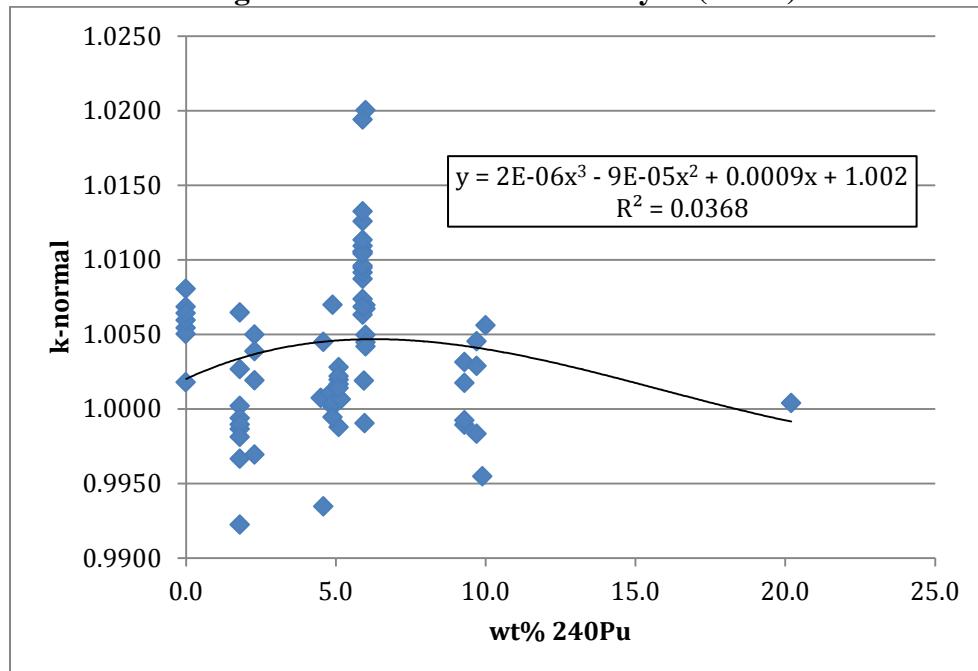


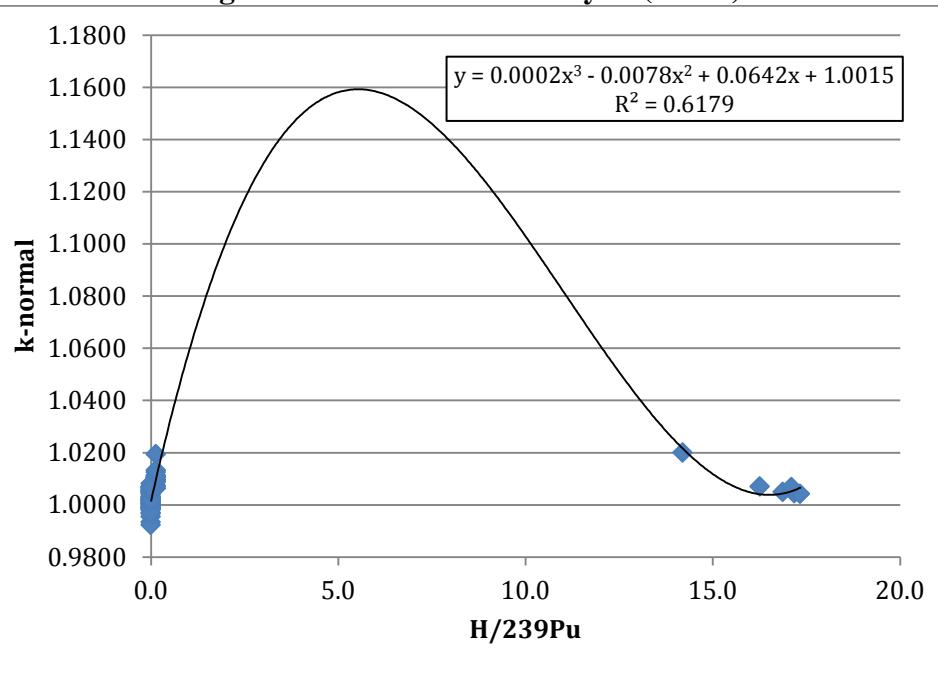
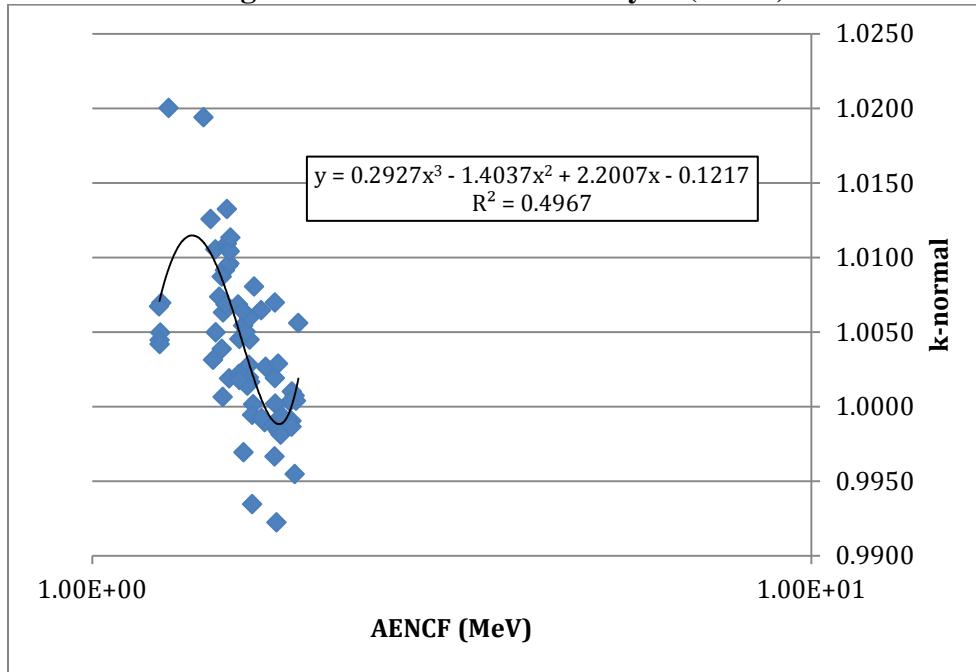
**Figure 6 Histogram of Oxide Calculation Results**

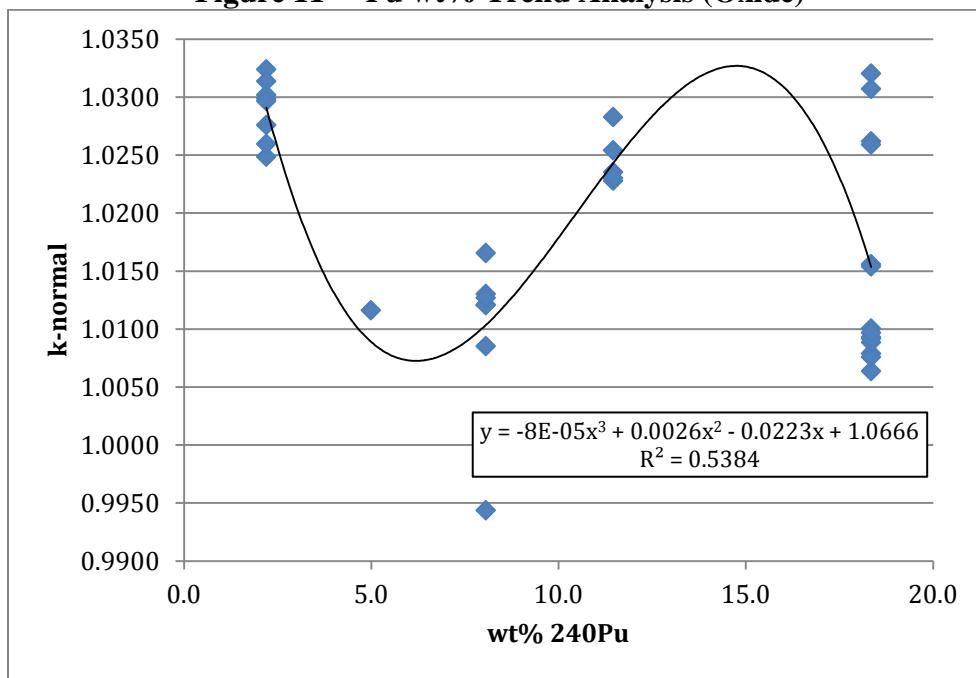
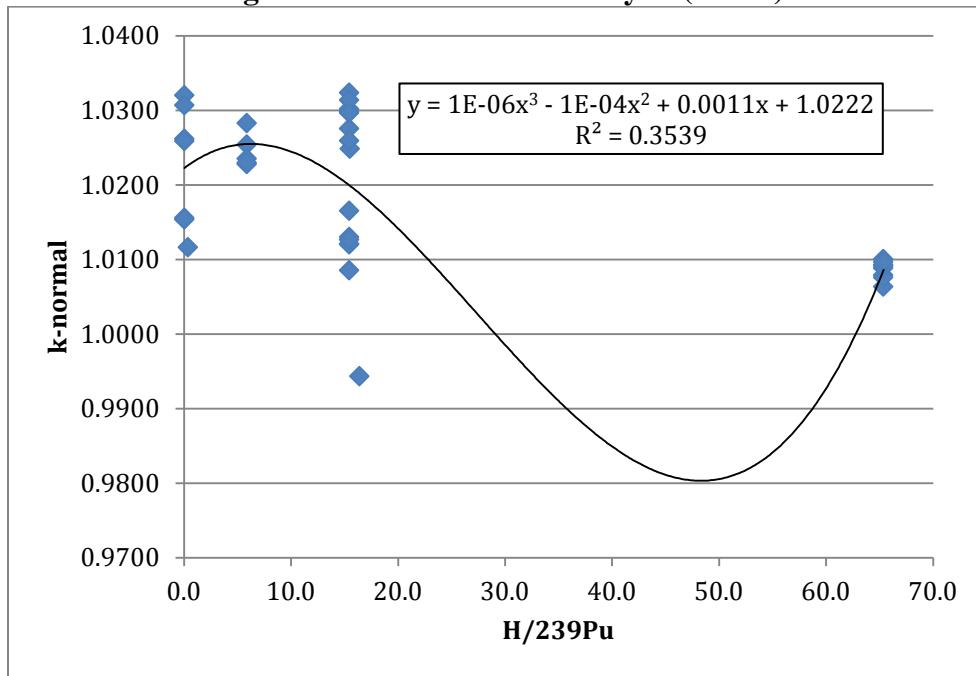


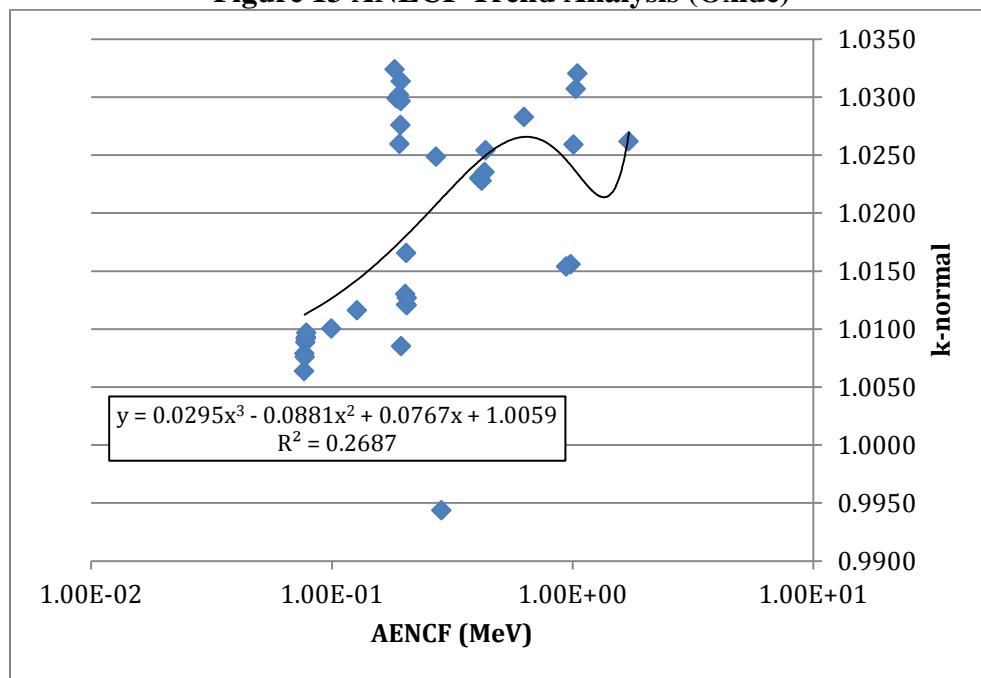
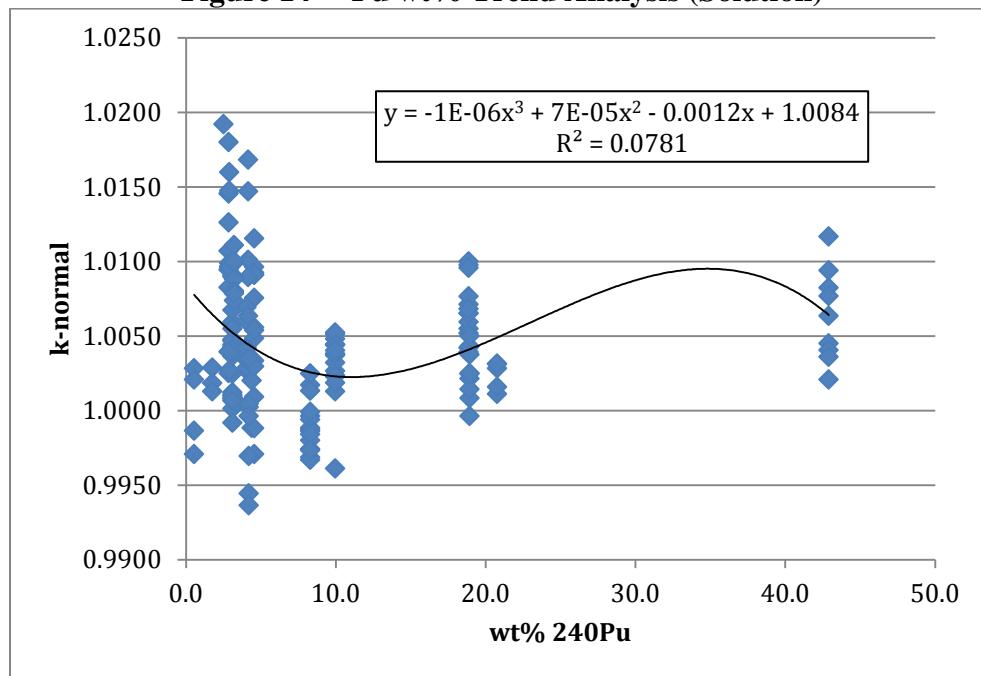
**Figure 7 Histogram of Solution Calculation Results**

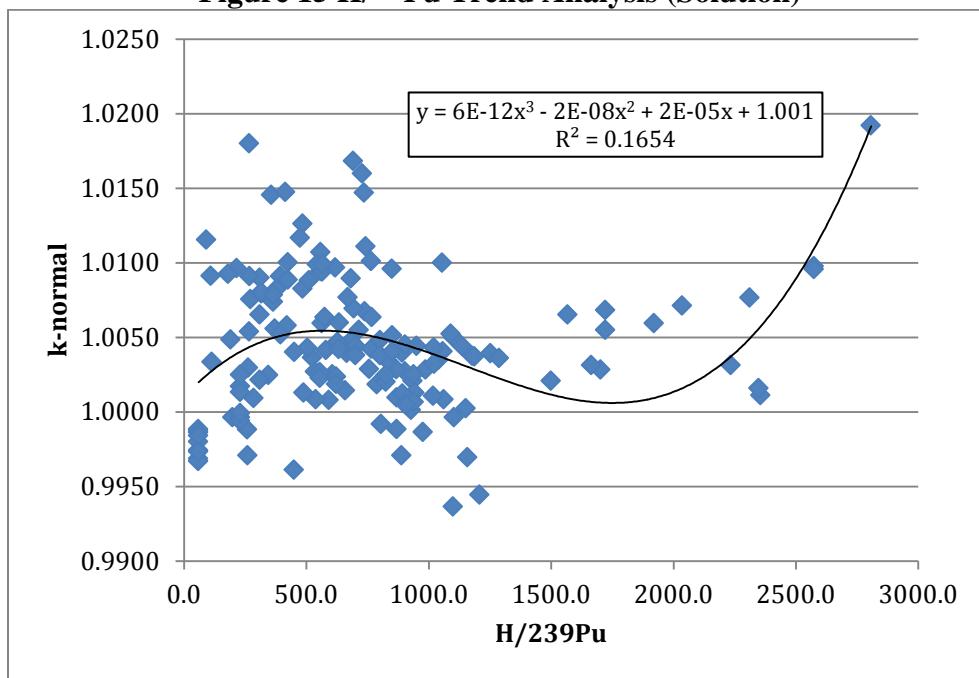
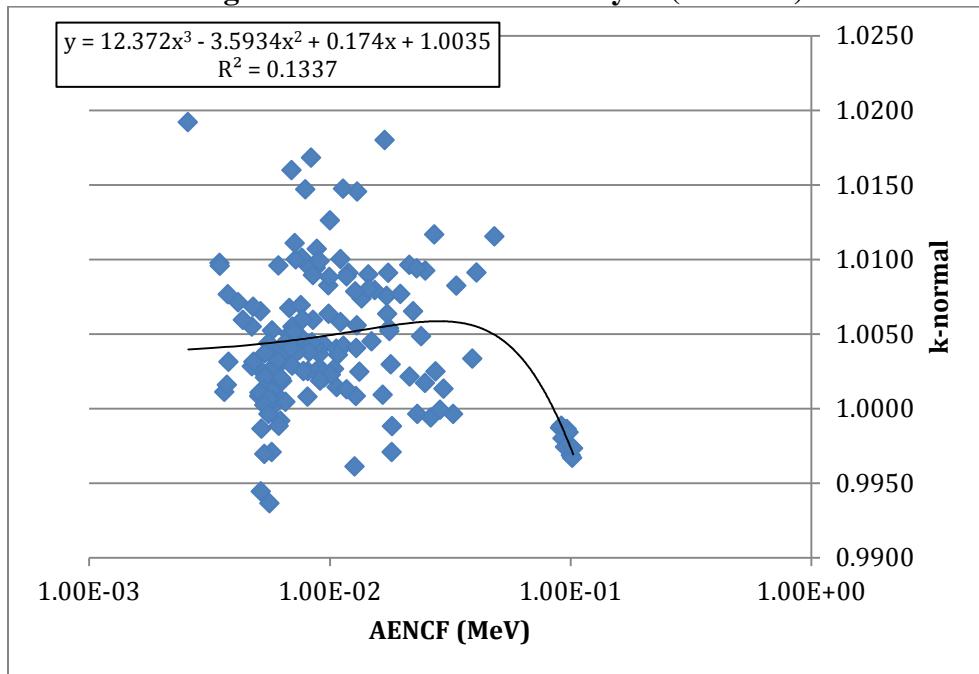
Based on the failure of any of the material form subsets to pass all three normality tests, and supported by visual inspection of the histograms above, it is concluded that these three material form subsets cannot be confirmed to come from a normal distribution.


#### APPENDIX 4: MATERIAL FORM SUBSET TRENDING ANALYSIS



In Section 4.4, the complete benchmark critical experiment data set was analyzed to determine if any trends existed between the calculated  $k_{\text{eff}}$  results and three important nuclear parameters:  $^{240}\text{Pu}$  content, moderation ratio, and ANECF. In this appendix, the results of similar trending analyses applied to three individual material form subsets (i.e., metal, oxide, or solution) are presented.



Graphs of the benchmark results versus these parameters for each of the three material form subsets are presented as Figures 8 through 16. For each combination of material form subset and nuclear trending parameter, the attempted data fit resulting in the highest coefficient of determination value ( $R^2$ ) is also depicted on the associated graph.



The highest  $R^2$  value determined was 0.62, obtained for an attempted fit between the metal data and moderation ratio. Based on this low maximum  $R^2$  value, along with visual inspections of Figures 8 through 16, it is concluded that the individual material form subsets do not correlate with any of the three nuclear parameters investigated.



**Figure 8  $^{240}\text{Pu}$  wt% Trend Analysis (Metal)**



**Figure 9 H/<sup>239</sup>Pu Trend Analysis (Metal)****Figure 10 ANECF Trend Analysis (Metal)**

**Figure 11  $^{240}\text{Pu}$  wt% Trend Analysis (Oxide)****Figure 12 H/ $^{239}\text{Pu}$  Trend Analysis (Oxide)**

**Figure 13 ANECF Trend Analysis (Oxide)****Figure 14  $^{240}\text{Pu}$  wt% Trend Analysis (Solution)**

**Figure 15 H/<sup>239</sup>Pu Trend Analysis (Solution)****Figure 16 ANECF Trend Analysis (Solution)**

## APPENDIX 5: MATERIAL FORM SUBSET USL DETERMINATION

The complete benchmark data set includes 68 metal cases, 35 oxide cases, and 158 solution cases. In this appendix, non-parametric USLs are individually derived for each of these three material form subsets. These individual USLs are for demonstration purposes only and are not intended for use by analysts. They are used in Section 6.2 to defend the use of an overall data set USL.

### *Metal Systems*

For a sample size of 68,  $\beta$  becomes:

$$\beta = 1 - 0.95^{68} = 0.9694$$

which yields a NPM of zero. The USL is then calculated using the lowest calculated  $k_{\text{normal}}$  from the benchmark evaluation metal subset (PU-MET-FAST-039-001):

$$\text{USL} = 0.9922 - 0.0022 - 0.0 - \text{MoS} - \text{AoA} = 0.9900 - \text{MoS} - \text{AoA}$$

### *Oxide Systems*

For a sample size of 35,  $\beta$  becomes:

$$\beta = 1 - 0.95^{35} = 0.8339$$

which yields a NPM of 0.01. The USL is then calculated using the lowest calculated  $k_{\text{normal}}$  from the benchmark evaluation oxide subset (PU-COMP-MIXED-001-004):

$$\text{USL} = 0.9944 - 0.0066 - 0.01 - \text{MoS} - \text{AoA} = 0.9778 - \text{MoS} - \text{AoA}$$

### *Solution Systems*

For a sample size of 158,  $\beta$  becomes:

$$\beta = 1 - 0.95^{158} = 0.9997$$

which yields a NPM of zero. The USL is then calculated using the lowest calculated  $k_{\text{normal}}$  from the benchmark evaluation solution subset (PU-SOL-THERM-011-184):

$$\text{USL} = 0.9937 - 0.0052 - 0.0 - \text{MoS} - \text{AoA} = 0.9884 - \text{MoS} - \text{AoA}$$