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Thermoelectricity in transition metal compounds:
the role of spin disorder†

Prashun Gorai, Eric S. Toberer and Vladan Stevanović*

At room temperature and above, most magnetic materials adopt a spin-disordered (paramagnetic) state

whose electronic properties can differ significantly from their low-temperature, spin-ordered counterparts.

Yet computational searches for new functional materials usually assume some type of magnetic order.

In the present work, we demonstrate a methodology to incorporate spin disorder in computational

searches and predict the electronic properties of the paramagnetic phase. We implement this method in a

high-throughput framework to assess the potential for thermoelectric performance of 1350 transition-

metal sulfides and find that all magnetic systems we identify as promising in the spin-ordered ground state

cease to be promising in the paramagnetic phase due to disorder-induced deterioration of the charge

carrier transport properties. We also identify promising non-magnetic candidates that do not suffer from

these spin disorder effects. In addition to identifying promising materials, our results offer insights into the

apparent scarcity of magnetic systems among known thermoelectrics and highlight the importance of

including spin disorder in computational searches.

1 Introduction

One of the challenges faced by computational materials
science, especially in the context of materials design and
computationally-guided searches for novel functional materials,
is bringing theoretical predictions as close as possible to the
conditions under which materials operate in target applications.
For example, in solids containing transition metal atoms with
localized spins, magnetic (spin) disorder can significantly affect
the electronic structure properties such as density of states,
effective masses, and band gaps. Consequently, the disordered
(paramagnetic) phase can exhibit notably different carrier
transport, optoelectronic and other relevant properties com-
pared to its low-temperature ordered phase. Furthermore, for
the majority of the known magnetic materials the transition from
the low-temperature ordered phase to the high-temperature para-
magnetic phase occurs around or below room temperature1,2 as
shown in Fig. 1. Thus, the electronic properties of the paramagnetic
phase are the most relevant when targeting applications such as
thermoelectrics, photovoltaics, and catalysis where the operating
temperatures exceed typical magnetic critical temperatures.3,4

Current computational strategies aimed at searching for
novel functional materials usually rely on some choice of magnetic
order when predicting the properties of solids containing transi-
tion metals. This includes either assuming a ferromagnetic spin arrangement for all considered systems,5–7 or using the ground-

state spin configuration known from experiments or approximated
from first-principles calculations.8–10 Another common approach
enforces a completely non-spin polarized description of the
electronic subsystem, often justified by the argument that the

Fig. 1 Measured magnetic critical temperatures (Tc) of 2825 magnetic
materials (data from ref. 1 and 2). For majority (68%) of known magnetic
compounds spin disorder occurs below room temperature (R.T.).
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time- and space-average of the magnetization needs to be zero
in the paramagnetic phase.11,12 While certainly debatable, all
these choices are largely driven by the desire to reduce compu-
tational expense when calculating the electronic properties
across large chemical spaces. The increased computational
expense stems from the need to use relatively large supercells
to represent disordered states. Unlike the electronic properties,
the energetics and thermodynamics of the spin subsystem,
including order/disorder transitions, have been successfully
modeled utilizing either model Hamiltonians, such as Heisenberg
or Ising models fitted to ab initio total energies, or molecular
dynamics simulations.13–18 These methods can be implemented
for a large number of atoms in a computationally-tractable way.

In the present work, we focus on the electronic structure and
carrier transport properties of systems with localized spins in
their paramagnetic phase. We demonstrate a methodology to
incorporate spin-disorder in high-throughput computational
searches that allows more accurate predictions at T c Tc. We
begin by discussing the degree to which the electronic structure
as well as the derived carrier transport properties depend on
the spin configuration. Next, we show that the application of an
already existing method to model lattice disorder such as the
special quasi-random structure (SQS)19 provides a reliable route
for modeling the electronic structure of the paramagnetic
phase. We then demonstrate that an alternative approach in
which the relevant electronic structure properties are averaged
over a number of random spin configurations converges to the
SQS results. And finally, we implement this methodology in a
high-throughput framework to assess the potential for thermo-
electric performance of 1350 transition metal sulfides. We do
this by using previously-developed metric (bSE)20 of thermo-
electric performance. The descriptor bSE combines ab initio
calculations of the bulk modulus and electronic structure para-
meters with semi-empirical models for electron and phonon
transport to offer a reliable assessment of the intrinsic material
properties that govern the thermoelectric figure of merit (zT).

Our results indicate that the value of bSE changes signifi-
cantly between the ground-state spin configuration and the
disordered paramagnetic phase due to differences in their
electronic structures. In the studied set of materials, we find
that disorder usually negatively affects carrier transport,
increasing effective masses and/or decreasing band degeneracies.
As a result, materials which are identified as promising thermo-
electrics assuming ordered spin configurations exhibit notable
deterioration in their carrier transport properties in the
paramagnetic phase, thereby worsening their potential for
thermoelectric performance. Additionally, we identify a
number of non-magnetic candidate thermoelectric materials
(mainly for p-type carrier transport) that do not suffer from
these spin disorder-induced renormalization effects. In addi-
tion to offering suggestions for candidate materials that
deserve further experimental investigation, our findings also
provide insights into the apparent scarcity of magnetic systems
among the known thermoelectric materials and highlight the
importance of incorporating spin disorder in computational
searches.

2 Dependence of the electronic
structure on spin configuration

To illustrate the strong dependence of the electronic structure
on the spatial arrangement of spins, we show in Fig. 2 the
calculated band structures and density of states (DOS) of an
anti-ferromagnetic insulator CrN in different spin configura-
tions. The technical details of the calculations are provided at
the end under ‘‘Computational details’’. It is evident from Fig. 2
that the electronic structures corresponding to the ground
state anti-ferromagnetic, hypothetical ferromagnetic and a
non-magnetic (without spin) states are both qualitatively and
quantitatively very different. While in the anti-ferromagnetic
phase the system exhibits a finite band gap, in the ferro-
magnetic and non-magnetic states the gap is zero with very
different density of states at the Fermi energy. The experi-
mental results, on the other hand, indicate the existence of a
finite band gap both in the low-T anti-ferromagnetic and the
high-T paramagnetic phases.21–24 This highlights the need for
appropriate treatment of spin configurations when predicting
the electronic properties of materials.

The strong dependence of the electronic structure on the
spin configuration stems from electron–electron interactions
and many-body effects, and can be illustrated using a one-
dimensional Hubbard model. The 1D Hubbard model is an
extension of the classic tight-binding 1D Hamiltonian with the
addition of the Coulomb repulsion between electrons. In its
simplest form, the Coulomb interactions are taken into account

Fig. 2 DFT+U calculated band structure and density of states (DOS) of
CrN in different spin configurations. The DOS is resolved into the spin-up
and -down channels. The dotted line in the band structure of the
ferromagnetic state denotes the spin down channel.
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as an on-site energy penalty U which is incurred whenever a
lattice site is doubly occupied by a spin-up and a spin-down
electron. The 1D Hubbard model with nearest neighbor hop-
ping and the on-site U repulsion‡ is usually written in the
second quantization as:

H ¼ �t
X
j;s

c
y
j;scjþ1;s þ c

y
jþ1;scj;s

� �
þU

X
j

nj;"nj;#; (1)

where c†
j,s and cj,s represent electron creation and annihilation

operators at a site j with spin s, while nj,s are the number
operators (nj,s = c†

j,scj,s). We assume half filling i.e. one orbital
and one electron per site. So, the double occupation of a certain
site is penalized by U while hopping between adjacent sites is
favored by the energy �t.

Within this model the band gap can be computed from the
expectation values of the Hamiltonian given in eqn (1) as the
sum of the energy EN+1 � EN to add an electron to the system
(from vacuum), and an energy EN�1 � EN to remove an electron
from the system (to vacuum), i.e.,

Eg = [EN+1 � EN] + [EN�1 � EN]. (2)

Then, if one assumes ferromagnetic order, i.e. every site occupied
by a spin up electron, then adding a spin down electron to a given
site would cost U. Because the added electron is allowed to hop to
neighboring sites there will also be a negative�2t contribution as
shown schematically in Fig. 3. The energy to add an electron
would then be EN+1 � EN = U � 2t (Fig. 3). If a spin up electron is
removed from a certain site, the net EN�1 � EN = �2t is gained
because the neighboring electrons are now allowed to hop to the
vacant site. Hence, the band gap of the ferromagnetic state
becomes EFM

g = U � 4t. On the other hand, if one assumes an
anti-ferromagnetic order with anti-parallel spin alternating on
adjacent sites, adding an electron in any spin direction costs
U and removing one costs +2t as the hopping energy of the
removed electron is lost. Therefore, the band gap is EAFM

g =
U + 2t. Finally, in the fully random (paramagnetic) phase, every
site will have, on average, one spin-up and one spin-down
neighbor resulting in Epara

g E U � t.
It becomes clear from this simple example that the interplay

between electron–electron repulsion (U) and hopping (t) is
responsible for the dependence of the electronic structure on
the spin configuration. In the atomic limit (t = 0) or independent
electron approximation (U = 0), this dependence does not exist
resulting in Eg = U and Eg = 0, respectively, regardless of the spin
configuration. Furthermore, this example also illustrates the
significant differences in the density of states between the ferro-
magnetic and anti-ferromagnetic configuration – in the former
case, electrons can be removed only from spin up states (spin
down DOS close to the valence band maximum is zero) or added
only to spin down states (spin up DOS close to the conduction
band edge is zero), while in the anti-ferromagnetic configu-
ration, there is no such constraint. Consequently, DOS effective
masses and the related transport properties will also vary

depending on the spin configuration. The situation is much
more complicated in real 3D systems with multiple bands, but as
long as the band edges are formed of d- or f-atomic orbitals, the
resulting electronic structure will strongly depend on spin
configuration as demonstrated in Fig. 3.

3 Approach to modeling the electronic
structure of the paramagnetic phase

It has been previously argued that the most appropriate way to
describe the paramagnetic state of an insulator or a strongly-
correlated metal is by utilizing many-body approaches such as
the dynamical mean field theory (DMFT)25,26 that offers treat-
ment of fluctuating spins. While certainly successful in describ-
ing certain classes of strongly correlated systems that are
largely inaccessible to standard DFT, the primary limitation
of DMFT is its computational cost, which at present prevents it
from being implemented for broad material searches.

When using atomistic methods such as DFT or DFT+U,
which require initializing local moments on the atoms at the
beginning of the calculation, the most important component is
the realization of the spin configuration that best approximates
the random spin arrangement of the paramagnetic state. To date,
several approaches have been developed for this purpose.27 Within
the ab initio DFT-based molecular dynamics, Antropov et al.
introduced the adiabatic spin approximation28,29 that treats spin
dynamics explicitly. The more widely used methods are based on
the supercell approach, such as disordered local moments in
the coherent potential approximation (DLM-CPA)30,31 and spin-
wave method,32 which was introduced recently. In addition to
the computational cost, another disadvantage of methods such

Fig. 3 Schematic of the differences in the band gap (Eg) between the
ferromagnetic and anti-ferromagnetic states as described by a 1D Hubbard
model. It is the interplay between the onsite Coulombic repulsion (U) and
hopping (t) that leads to differences in the electron addition (EN+1) and
removal energy (EN�1) between the two states.

‡ The energy of an atomic orbital that enters both the tight-binding and the
Hubbard model is assumed to be zero.
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as DLM-CPA is that local structural relaxations cannot be
performed.27

Here we approximate the paramagnetic state with the
fully random spin configuration, which we model by utilizing
special quasi-random structures (SQSs).19 Strictly speaking
this corresponds to the infinite temperature limit33 and is
appropriate given the rather low values of magnetic critical
temperatures of most materials (Fig. 1). Mathematically, the
SQS represents a spin arrangement constructed on a finite
supercell that best matches a spin–spin correlation function
of a fully random spin structure. The paramagnetic state is
characterized by the vanishing of the average spin–spin corre-
lation function:34

Fah i ¼ 1

N

X
i;j2a

ei � ej ¼ 0; 8a (3)

where N is a normalization factor, a goes over the coordination
shells, and ei are the unit vectors along the spin quantization
axis on atomic site i. A supercell with magnetic moments that
satisfy eqn (3) is a suitable candidate for modeling the high-
temperature paramagnetic phase. Even though in the actual
paramagnetic state the magnetic moments are non-collinear
and dynamic, a supercell with static collinear spins is appropriate
as long as the pair-wise parallel and anti-parallel spin correlations
cancel each other,34 resulting in hFai = 0.

It has been shown that a special quasi-random structure
(SQS)19 for the magnetic moments in a supercell can be used
to model the magnetic disorder in the high-temperature
paramagnetic phase, with the constraint that the spin-up and
spin-down magnetic moments exactly cancel each other.27,34

The SQS methodology has been successfully employed to model
chemical disorder in alloys35–38 as well as the spin–spin inter-
actions and the thermodynamics of the spin disorder.16

Previous work has shown that the magnetic SQS approach
within the DFT+U scheme gives total energies and lattice
constants that are similar to the DLM-CPA method and
provides a good description of the equation of state (energy
vs. volume) and the density of states of 3d transition metal
compounds.27,34 In this work we use the magnetic SQS of the
paramagnetic phase as the input to DFT+U electronic struc-
ture calculations, which we use to obtain carrier transport
parameters such as DOS effective masses and band degenera-
cies. It is important to keep in mind that the magnetic SQS is a
‘‘frozen’’ spin picture of the magnetic disorder and does not
account for spin dynamics, which can affect carrier transport
through the electron–magnon type of interactions. These
effects are beyond the scope of this paper; the primary focus
here is on predicting the renormalization of the electronic
structure and related properties due to spin disorder.

As an alternative to SQSs, the property of interest in the
paramagnetic phase can be obtained by averaging the property
over a sufficient number of supercells with randomly-
distributed magnetic moments such that the net magnetic
moment in the supercell is zero.34 We refer to these supercells
with randomly-distributed moments as random samples (RSs).

We show that the RS total energies and relevant electronic
structure parameters converge to those of the SQS. Even though
the number of DFT calculations to be performed in the RS
approach increases, it is particularly attractive because it
bypasses the need to perform the Monte Carlo-based simulated
annealing, typically used to generate an SQS structure.39 Details
of the RS are provided at the end under ‘‘Computational
details’’.

Case examples

Here, we showcase our approach on two material systems
(CrN, MnSe) and compare and contrast the energies and the
relevant electronic structure parameters of different ordered
spin configurations and the high-T paramagnetic phase modeled
using a magnetic SQS. Both systems order anti-ferromagnetically
below the Néel temperatures of B280 K and B130 K for CrN and
MnSe, respectively.11,34,40 Fig. 4 and 5 show the calculated total
energies and electronic structure parameters for the ground-
state anti-ferromagnetic (AFM) phase, hypothetical ferro-
magnetic (FM) phase (dashed line), and the paramagnetic state
approximated by a spin SQS structure. In addition, the dis-
tribution of the results for 20 random samples (RS) is plotted
as a histogram. Our calculations correctly identify the known
anti-ferromagnetic ground state as the lowest-energy spin state
for both systems. The energy per atom increases from the anti-
ferromagnetic to the SQS to the ferromagnetic state, confirming
the hypothetical nature of the ferromagnetic state for these two
systems (energy above disordering). The energy distribution of
random samples averages to within 1 meV per magnetic atom
from the SQS.

Next, we analyze how the electronic structure parameters
that enter bSE, the descriptor for thermoelectric performance,
vary between different spin states. These include density of
states effective mass (mDOS*) and band degeneracy (Nb) for each
band edge. Nb counts the number of carrier pockets or valleys
close to the valence and conduction band edge. While DFT and
DFT+U are known to underestimate the band gaps, mDOS* and
Nb are reproduced with sufficient accuracy to correctly identify
the known thermoelectric materials using the metric bSE.20,41

We disqualify the ferromagnetic states from further discus-
sion because their energies lie above the energy of the SQS, and
they exhibit zero band gaps (Fig. 4 and 5). When the electronic
structure of the anti-ferromagnetically ordered state is com-
pared with that of the SQS and the RS the following trends
emerge: (1) in the case of CrN (Fig. 4) the disorder increases
mDOS*, more so for the conduction than for the valence band,
and decreases Nb, more for the valence than for the conduction
band, and (2) the results for MnSe follow similar trends with
the largest effect of disorder being almost an order of magnitude
increase in the valence band mDOS* with band degeneracies
being fairly similar to those of the AFM state with only a slight
increase (decrease) between different spin configurations for the
valence (conduction) bands.

It is important to note that the SQS and average of random
samples (hRSi) are sufficiently close to each other such that
either approach can be used for the purpose of materials
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screening. Judging from these two cases, it appears that spin
disorder deteriorates the charge transport properties – by
increasing effective masses or decreasing band degeneracies
or both. Based on the 1D Hubbard model from Section 2,
disorder in the anti-ferromagnetic state will limit the other-
wise perfect hopping between adjacent sites and lead to
heavier masses. The trends in Nb are much less intuitive.
Effects of local symmetry breaking, both translational and
point group, can lift the energy degeneracy of different valleys,
while establishing higher global symmetry could imply an

increase in band degeneracy. The balance of these two effects
is what determines the final values.

4 Application: carrier transport and
thermoelectric performance of
transition-metal sulfides

We employ the described procedure to assess the charge trans-
port properties and potential for thermoelectric performance of

Fig. 5 Calculated (a) energies above ground-state DE, (b) band gaps, (c) density of states effective masses mDOS*, and (d) band degeneracies Nb of
ferromagnetic (FM), anti-ferromagnetic (AFM), special quasi-random structure (SQS), random samples (RS), and average of random samples (hRSi) for
MnSe. The random samples are shown as a histogram. mDOS* and Nb are shown for valence and conduction bands.

Fig. 4 Calculated (a) energies above ground-state DE, (b) band gaps, (c) density of states effective masses mDOS*, and (d) band degeneracies Nb of
ferromagnetic (FM), anti-ferromagnetic (AFM), special quasi-random structure (SQS), random samples (RS), and average of random samples (hRSi) for
CrN. The random samples are shown as a histogram. mDOS* and Nb are shown for valence and conduction bands.
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transition-metal sulfides in their paramagnetic phase. In general,
materials with a large figure of merit zT are desired for thermo-
electric applications. zT is expressed as,

zT ¼ a2sT
ke þ kLð Þ; (4)

where a is the Seebeck coefficient, s the electronic conductivity,
and ke and kL the electronic and lattice components of thermal
conductivity.3 Consideration of the Boltzmann transport equa-
tions for a, s and ke in the relaxation time approximation42 yields
an expression

zT ¼ ub
ðvbþ 1Þ; (5)

where u and v depend on charge carrier chemical potential (Z) and
carrier scattering mechanisms, and b is a material-dependent
parameter (known as the quality factor). Therefore, maximizing zT
requires simultaneously optimizing the intrinsic material proper-
ties, contained within b, as well as doping. The parameter b is
defined as:

b ¼ 2e

�h3
kB

e

� �2
kB

2p

� �3=2m0mDOS
�3=2

kL
T5=2 (6)

where m0 is the intrinsic charge carrier mobility, mDOS* the density
of states (DOS) effective mass, kL the lattice thermal conductivity,
kB the Boltzmann constant, e the electronic charge and �h the
reduced Planck constant. For optimally doped materials that
maximize zT, the b value calculated from measured room tem-
perature m0, mDOS* and kL is found to be a good descriptor of the
maximum achievable zT, as demonstrated in ref. 20. To address
the challenges associated with direct calculation of the transport
properties entering eqn (6), we have recently developed semi-
empirical models for m0 and kL

20 by combining first-principles
calculations and a large body of measured room temperature m0

and kL for a range of materials. Using these semi-empirical
models, b (now referred to as bSE) can be evaluated from first-
principles calculations and in a high-throughput fashion.

The model for mobility is motivated by the classic electron–
phonon scattering models,

m0 = A0(B)s(mb*)�t, (7)

where B is the bulk modulus, mb* the band effective mass, and
A0, s, and t are fitting parameters. Similarly, the lattice thermal
conductivity (kL) is derived from the Debye–Callaway model as

kL ¼ A1

�Mvs
3

V2=3n1=3
þ A2

vs

V2=3
1� 1

n2=3

� �
(8)

where %M is the average atomic mass, V the average volume per
atom, vs the speed of sound, and n the number of atoms in the
primitive cell. A1 and A2 are fitting constants in the model.
To a first approximation, vs depends on B and density d

vs ¼
ffiffiffiffiffiffiffiffiffi
B=d

p� �
. In the paramagnetic phase, phenomena such

as magnon–phonon scattering can lower the lattice thermal
conductivity but for the present purposes can be assumed to be
a second-order effect that will be masked by large changes in

the charge transport properties. We assume that kL remains
largely unchanged between the ordered magnetic and disor-
dered paramagnetic phase.

Therefore, to evaluate bSE one needs to compute mDOS*,
band effective mass (mb*), and bulk modulus (B). Other para-
meters entering bSE are also directly accessible from these
calculations. The band effective mass (mb*) is evaluated
from mDOS* and the band degeneracy (Nb), using the relation
mDOS* = Nb

2/3mb*. Nb is the total number of bands in all charge
carrier pockets close to the band edge across the entire first
Brillouin zone. Nb is calculated from the electronic structure
using our previously-developed algorithm.20 In the context of
evaluating bSE, the electronic structure parameters that are
of primary interest are mDOS* and Nb. Although bSE does not
explicitly depend on the value of the bandgap (Eg), it is an
important electronic structure parameter that governs the onset
of the bipolar heat transport in thermoelectric materials. In the
case examples, we examined the changes in total energies and
electronic structure properties (Eg, mDOS*, Nb) in going from the
ground state to the paramagnetic phase. Now we apply the same
procedure to compute bSE for 1350 transition-metal sulfides.

The 1350 structures from the Inorganic Crystal Structure
Database (ICSD)43 contain 3d-block transition metals (excluding
only Tc, Ru, Rh) and less than 50 atoms in the primitive cell.
In order to calculate mDOS* and Nb, a system should have a finite
band gap. Therefore, for every structure we first perform a
limited search for the lowest-energy spin configuration on the
ICSD primitive unit cell and compute bSE for only those struc-
tures that have a finite DFT+U band gap in their lowest-energy
spin configuration. Out of the 1350, only 600 structures have
a non-zero DFT+U band gap. We then calculate bSE for these
600 materials in their lowest-energy spin configuration. The
procedure adopted for finding the lowest-energy spin configu-
ration is discussed in section ‘‘Computational details’’. The data
for these 600 sulfides are available in our open-access database
(wwww.tedesignlab.org)44 as well as in the ESI† (Table S1).
We find that a large fraction of these 600 materials are non-
magnetic, i.e. the spin density is equal to zero implying a low-
spin state of the transition metals.

Fig. 6 shows the variation in bSE with the calculated band
effective mass (mb*) and lattice thermal conductivity (kL) for the
600 sulfides with non-zero band gaps. The bubble area scales
with the value of bSE for conduction (Fig. 6a) and valence
(Fig. 6c) band transport i.e. for assumed p- and n-type materials,
respectively. Candidate materials that are magnetic (non-zero
magnetic moment) in their lowest-energy state and are predicted
to exhibit good thermoelectric performance are labelled in bold
in Fig. 6(a) and (c). The candidate materials are AgFeS2, HgCr2S4,
ZnCr2S4, Ag2FeSnS4, NiGa2S4 and NiS. These candidate materials
are assessed for their thermoelectric performance in their
paramagnetic state, the relevant state at the typical operational
temperatures in thermoelectrics.

To model the paramagnetic phase of the candidates,
we utilized 5 random samples (RSs) and found sufficiently
converged values for total energies and electronic structure
parameters, which are presented in Table 1 for both the
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lowest-energy and the paramagnetic state. Assuming that
the lattice thermal conductivity remains unchanged from the
lowest-energy state, bSE in the paramagnetic state can be
evaluated. Fig. 6(b) and (d) show the equivalent of Fig. 6(a)
and (c), respectively, with new bSE values in paramagnetic state
for the 6 candidates. We find that for all 6 candidates the
predicted thermoelectric performance in the paramagnetic
phase is far inferior to that in their lowest-energy state, and
as a result the corresponding bubbles in Fig. 6(b) and (d) are
small. The ratio of the electronic properties and bSE in the
paramagnetic to lowest-energy state are visualized on a parallel
coordinate plot in Fig. 7. A value of 1 signifies no change in the

property in going from the lowest-energy to the high-T para-
magnetic phase. The band gap and degeneracy appear to
increase or decrease unsystematically while mDOS* for both
the conduction and valence band either remains unchanged
or increases in the paramagnetic phase (with the exception of
NiGa2S4 in the VB).

The value of bSE for candidates that are non-magnetic in
their lowest-energy state, represented by large bubbles and
labelled in italics in Fig. 6(a) and (c), remain unchanged in
their high-T state. The electronic structure properties and
modeled lattice thermal conductivities along with the bSE values
of 16 non-magnetic candidates are presented in Table 2. Most of
these candidates are predicted to be better for the valence band
or p-type transport. For reference, bSE values for PbTe are
B15 and B17 for the assumed p- and n-type transport,
respectively. The range of bSE of the non-magnetic systems
exceeds or approaches that of PbTe for GePtS, Ag2S, Ag2GePbS4,
CuNbRb2S4 and K3Ag3Nb2S4 for the p-type (valence band)
transport. The conduction band bSE for all of the studied
transition-metal sulfides are below that of PbTe. This is mainly
due to the presence of the transition metal d-states close to the
conduction band edge and relatively high kL for the materials
where this is not the case. For valence band transport, the
presence of Cu and Ag in their +1 nominal oxidation state in
high bSE materials helps in increasing the valence band edge
dispersion due to repulsion between filled (Cu,Ag)-d and S-p
orbitals, and thereby lowering the band effective masses and
contributing beneficially to p-type transport. Another interesting
feature of the dataset in Table 2 is that all but two compounds
contain a group �11 transition metal (Cu, Ag, Au) in combi-
nation with V and Nb predominantly in the +5 formal oxidation
state with empty d-orbitals contributing to the conduction band.
This supports the previous discussion about the apparent

Fig. 6 Calculated bSE as a function of band mass (mb*) and lattice thermal conductivity (kL) of 600 transition-metal sulfides reported in the ICSD,
represented by the bubble area for conduction (a and b) and valence (c and d) band transport. Candidate materials that are magnetic in their lowest-
energy state are labelled (bold) in the lowest-energy state (a and c) and in the paramagnetic state (b and d). The value of bSE of the candidates decreases
significantly from the lowest-energy to the paramagnetic state. Candidates that are non-magnetic are labelled in italics. The value of bSE remains
unchanged for non-magnetic candidates.

Table 1 Band gaps (Eg) in eV, valence (VB) and conduction band (CB) DOS
effective masses (mDOS*), band degeneracies (Nb), and bSE values in the
lowest-energy (GS) and in the paramagnetic (para) state of candidates that
are magnetic in GS and labelled in bold in Fig. 6

Candidate Eg

mDOS* Nb bSE
VB, CB VB, CB VB, CB

AgFeS2 (GS) 1.1 1.54, 7.01 10, 4 16.5, 1.8
(para) 0.7 7.08, 10.93 2, 3 0.7, 0.9

Cr2HgS4 (GS) 0.4 2.44, 0.02 1.5, 4.5 1.0, 76.3
(para) 1.1 3.15, 0.93 3, 1 1.0, 2.2

Cr2ZnS4 (GS) 1.0 3.30, 0.10 1.5, 6 0.7, 48.0
(para) 1.3 3.35, 1.15 3, 1 0.7, 1.8

Ag2FeSnS4 (GS) 0.7 0.86, 0.03 1, 1.5 1.0, 13.1
(para) 1.0 5.08, 0.14 2, 1 0.9, 2.9

NiGa2S4 (GS) 0.9 5.77, 0.38 2, 5.5 1.4, 32.0
(para) 0.8 2.08, 4.56 0.5, 1.5 0.4, 1.1

NiS (GS) 0.5 0.90, 3.17 2, 12 1.8, 10.7
(para) 0.1 1.90, 5.66 2, 2 1.2, 0.6
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asymmetry between the predicted p- and n-type bSE values and
potentially raises a concern about electron trapping i.e. polaron
formation. Using cuprous oxide (Cu2O) as a model system,
hole polarons are not expected to occur for p-type transport in
these materials. Our results suggest that among the transition
metal sulfides, the following 10 systems: Ag2GePbS4, Ag3CuS2,
CuNbRb2S4, Cu3VS4, K3Ag3Nb2S4, Cu2RbVS4 AgRb2VS4, Rb2AgNbS4,
AgCuS, and Ag2S with their bSE 4 10 could be potentially
interesting candidates for p-type thermoelectrics.

The absence of any magnetic candidates in the para-
magnetic phase among the large bSE transition-metal sulfides
considered in this study might be surprising at first. However,
this observation resonates with the fact that most known
thermoelectric materials that contain transition metals such
as iron silicides (FeSi, FeSi2),45,46 half Heuslers (XNiSn, X = Ti,
Zr, Hf),47,48 skutterudites (Co4Sb12),49 and layered oxides
(NaCoO2)50 are non-magnetic in their stoichiometric bulk form.

This is supported by our calculations which result in zero-spin for
the transition metals in these systems. Highly off-stoichiometric
oxides such as NaCo1�xO2

50 and rare-earth doped skutterudites
such as PrxCo4Sb12

51 do exhibit magnetic behaviour; however,
such cases are beyond the scope of this work, which is limited to
stoichiometric and chemically-ordered systems. The only example
of a good high-temperature thermoelectric material in a para-
magnetic phase is Yb14MnSb11, which orders ferromagnetically
in the ground state and disorders above 50 K.52 A plausible
explanation for why spin disorder at high temperature does not
degrade charge transport in Yb14MnSb11 is that like other Zintl
compounds, the valence and conduction band edges are
formed from Sb non-bonding and Sb–Sb anti-bonding orbitals,
respectively,53 and there is no Mn d-orbital contribution to the
band edges. In addition, due to the large separation between
magnetic Mn atoms (approx. 10), this system approaches the
atomic limit in which hopping between sites is suppressed and
the spin disorder likely has negligible effect on the electronic
structure.

5 Conclusions

In this work, we have demonstrated the importance of including
spin disorder in computational materials searches and proposed
a computationally-tractable methodology based on the special
quasi-random structure to model the paramagnetic phase. We
implement this methodology in a high-throughput framework
for transition-metal sulfide thermoelectrics. From the materials
design point of view, we can conclude that transition metal-
containing candidates that are non-magnetic will not suffer from
spin disorder-induced degradation of charge transport and there-
fore, retain the good thermoelectric performance predicted for
the ground-state structure. Magnetic candidates are likely to
experience deterioration of thermoelectric performance at the
relevant high temperatures. While in principle, it is not forbidden

Fig. 7 Parallel coordinate plot of the ratio of different electronic properties in the paramagnetic to lowest-energy state for the 6 candidates shown in
Table 1: calculated band gap (Eg) in eV, valence and conduction band density of states effective mass mDOS*, and band degeneracy Nb. The ratio of the
value of bSE in the paramagnetic to ground state for valence and conduction band transport are shown on the last two axes.

Table 2 Band gaps (Eg) in eV, valence (VB) and conduction band (CB) DOS
effective masses (mDOS*), band degeneracies (Nb), kL in W m�1 K�1, and bSE

values in the ground state of candidates that are non-magnetic

Candidate Eg

mDOS* Nb

kL

bSE

VB, CB VB, CB VB, CB

Ag2GePbS4 1.57 1.26, 1.26 6, 2 2.05 16.2, 3.5
Ag3CuS2 0.39 1.44, 0.06 4, 1 1.18 11.4, 11.1
CuNbRb2S4 2.36 7.10, 4.10 13, 3 1.30 14.9, 2.6
Ag3AuS2 0.61 0.66, 0.05 2, 1 2.50 7.2, 13.0
Cu3VS4 1.36 1.83, 5.10 7, 2 4.60 10.0, 1.0
K3Ag3Nb2S4 2.34 3.70, 7.72 8, 5 0.85 13.6, 4.5
Cu2RbVS4 1.45 3.10, 9.70 7, 3 1.60 10.3, 1.6
Cu3NbS4 2.0 2.10, 2.60 7, 3 3.90 10.1, 2.6
AgRb2VS4 1.70 3.50, 7.94 8, 4 1.22 11.8, 2.7
Ag2CdGeS4 1.22 2.35, 0.04 3, 1 4.07 3.8, 9.5
Rb2AgNbS4 2.50 4.32, 6.07 8, 2 1.09 10.6, 1.3
Fe2GeS4 1.50 4.45, 2.26 9, 2 9.55 9.7, 1.8
Ag7NbVS6 1.00 6.50, 0.05 4, 1 1.75 4.1, 11.5
AgCuS 0.64 1.25, 0.53 4, 1 1.25 10.4, 2.5
Ag2S 1.37 2.10, 0.44 10, 1 0.93 26.2, 2.7
GePtS 0.63 0.49, 0.16 9, 2 15.13 34.2, 8.0
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to expect candidates that exhibit similar or better thermoelectric
performance in the paramagnetic phase, the candidates are
expected to be anomalies and therefore, difficult to ‘‘find’’. Based
on the presented results, it appears that the likelihood of finding
good thermoelectric materials among non-magnetic transition
metal compounds is higher.

6 Computational details
Creating magnetic SQSs and random samples

The 50–50 binary alloy SQS supercells were generated with the
ATAT software package.54 Instead of using the SQS to model
chemical disorder, the 50–50 alloy structure is used to setup the
spin-up and spin-down moments on the magnetic atoms such
that the net magnetic moment is zero. For CrN and MnSe, we
use 48-atom SQS supercells with hFai = 0 for the first seven
coordination shells with small non-zero value on the fifth and
seventh shell (similar to those used in ref. 34). To check for
finite-size effects, we performed the calculations with 64-atom
SQS supercells and found that the results are very similar to
those obtained with 48-atom supercells. To generate random
samples (RSs), supercells with the same number of atoms as
the SQS structure were created and the spin-up and spin-down
moments were assigned randomly using a random number
generator, while keeping the net magnetic moment equal to
zero. For each of the case examples, we used 20 different RSs.
For thermoelectric screening, 5 RSs were found to give sufficient
convergence in the parameters of interest.

DFT+U parameters

DFT calculations to compute total energies, volumes, bulk
modulus (B) and electronic structure parameters (Eg, mDOS*, Nb)
were performed with the plane-wave VASP code,55 with the
exchange correlation in the Perdew–Burke–Ernzerhof (PBE)
functional form within the projector augmented wave (PAW)
formalism. For structure relaxations, a procedure similar to
that employed in ref. 10 was used, with plane wave cutoffs
of 340–400 eV. A suitable on-site correction in the form of
Hubbard U in the rotationally invariant form, introduced by
Dudarev and coworkers,56 was applied for transition metals
following the methodology in ref. 10 (U = 3 eV for all transition
metals, U = 5 eV for Cu and Ag, no U correction for Zn).

To determine the GS ordered magnetic structure, we
performed a limited search by enumerating over all possible
magnetic configurations on a primitive unit cell. In the case of
CrN and MnSe, we performed this search on a (111) supercell
containing twice the number of atoms in the primitive cell,
which is required to realize the known AFM GS. Because the
number of magnetic configurations scales as 2N with the
number of magnetic atoms (N), we limited the total number
of enumerations to a maximum of 32, corresponding to all
magnetic configurations on a structure containing 6 or less
magnetic atoms per unit cell. For example, Fe3O4 contains 6 Fe
atoms in the primitive cell, where one of the 32 configurations
considered corresponds to the known ferrimagnetic order.

Calculation of mDOS* and Nb was undertaken on a dense
k-point grid with a fixed number of k-points per atom, as
determined by the equation Natoms � Nkpts = 8000, where Natoms

is the number of atoms in the primitive cell and Nkpts the number
of k-points. B is calculated by fitting the Birch–Murnaghan
equation of state57 to a set of total energies computed at different
volumes. mDOS* is determined from the electronic DOS within a
parabolic band approximation, such that the parabolic band
reproduces the same number of states as the computed DOS
within a 100 meV (adjustable) energy window from the relevant
band edge.
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