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Memristor — New Research Frontier

Brain-Inspired Computing

Using memristors as synapse to build computers like nature builds brains
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Memristor — Complex Switching Process

Field dominating

Thermal dominating [1]

lonic

channel motion

Monlinear Bistable Threshold
-V t
g
i L
e.g., TiOx { e.g., TaOx
Voltage Voltage Voltage Voltage
Nonlinear Linear Bistable Threshold
switching
Complex switching behavior - governed by temporally and spatially intertwined
electrical and thermal processes of electrons , holes, and mobile vacancies:
" Field drift 7 NO existing models h tured all th
. e . existing models have captured all these processes
=  Fick diffusion & P P

-mmms) | and their couplings for electrons, holes, and mobile
vacancies simultaneously in 3D device structures !

= Soret effect
= Joule heating -
= High-order effects

3 [1]J.]). Yang, D. B. Strukov, and D. R. Stewart, Nature Nanotechnology 8, 13 (2013
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Fully-Coupled Transport Model

We solve, simultaneously, the five coupled differential equations:

Poisson (P):
Electron (E):
Hole (H):

Vacancy (V):

Temperature (T):

VeeV(p)=—q(p—-n+C+z,N,) — include all charge species
on -

q 6t q net

qa_p: Ves,—qr. L tlme-glependent con’Flnwty
ot equations for all carriers

q@NV _ VeJ, B
ot

%(CLT)— Ve(x,VI')=H

Auxiliary relations:

Field drift Fick diffusion

R T / _¥ Soret effect
Jn=lqnu, E+—qD VonlHk,nu VT

- -

Jp = qpupE_quvp _kBp‘LtpVT

Joule heating due  Jv =|qN,u, E-gD,VN)\=\qD,S, N, VT

to all carriers
4

S—H=(J,+J,+Jv)eE+R, (E, +3k,T)

/ |



Vacancy Mobility Model

Rigid Point lon Model (RPI) Vacancy activation energy

_ g Electric field
a _ aE
Vacancy velocity Vv =2-f-a-exp (_kT ) - sinh (k_T

— f.q2. “Ea
Vacancy diffusion Dy=f-a exp(kT)

10 . .
T=300Kto 1000 K
o in 100 K interval = \acancy motion exponentially
depends on temperature, and

T . field when the field exceeds a
E10 critical value
>
E -10{
g 10
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Charon Device Simulator

The fully-coupled equations
Sandia TCAD are implemented in Charon.

code

=== JlParaview

Data analysis and
visualization
Gpi()t‘ce suite: \ http://www.paraview.org/
= Discretization (FE, FV)

®" Nonlinear & linear solvers
= MPI parallel

= Automatic differentiation

{Many more... /

http://trilinos.org/

Cubit for geometry
and mesh creation

https://cubit.sandia.gov/
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Experimental Resistance

= ; Ta©) TaO, TaO,
Pt (20 nm)1
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= Experimental ON-resistance decreases with time and increasing voltage
= Experimental OFF-resistance increases with time and increasing voltage

[2] Patrick R. Mickel et al., A physical model of switching dynamics in tantalum oxide . o
7 memristive devices, APL 102, 223502 (2013). / o




Modeling Goal

O Demonstrate qualitatively the resistance increases with time and
increasing voltage during OFF switching in a TaOx memristor

O Demonstrate qualitatively the resistance decreases with time and
increasing voltage during ON switching in a TaOx memristor

 Demonstrate qualitatively the current-voltage hysteresis under
triangular voltage sweep in a TaOx memristor




TaOx Device Structure

T

= Solve P+E+V+T equations
= Vis limited to Ta and CF

50 nm

= Solve P+E+T equations
= No mobile vacancies
= Ohmic contact for electron

10 nm

20 nm

300K,0V

[2] Patrick R. Mickel et al., A physical model of switching dynamics in tantalum oxide :
°  memristive devices, APL 102, 223502 (2013).
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OFF-Switching Resistance Evolution
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= Resistance increases with time and increasing voltage during OFF-
switching, consistent with experimental observation
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What Happens During OFF-Switching
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OFF-Switching:

Initial temperature
increase occurs on the
order of 100 ps, and
initial heating is broad in
space

Vacancies near the peak
temp. start to move
around ps, and move
away from CF into Ta

CF first has a density gap
formed, and eventually is
depleted of vacancies,
resulting in OFF state

As CF becomes more
resistive, heating is more
localized in CF
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ON-Switching Resistance Evolution
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During ON-switching,
vacancy diffusion is
increased with vacancy
density to avoid unphysical
piling-up:

Drpi
Ny

Nmax

DV:
1—

= ON-resistance decreases with time for a given voltage, and decreases faster
with time for higher voltage, consistent with experimental observation
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What Happens During ON-Switching

1.0V

ON-Switching:

Vacancy Density Electron Density

25 - (x5x102°cm??) SO SEEUMl = Starting with an OFF-
%) &2

state, temp. increases on
the order of 100 ps

= \acancies move from Ta
into CF to fill in the gap
according to RPI model

= As CF becomes more
conductive, heating is

~ Electron Density

’ Temperature — Vacancy Density more spread in space
& | (x 300 K) — Temperature
CF Ta Pt
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Current-Voltage Hysteresis

Current (A)
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Current-voltage hysteresis is NOT observed for the 1 V/s voltage ramping

Current-voltage hysteresis is clearly observed for the 1.5 V/s and 2 V/s cases, and
shows qualitative agreement with experimental result

14 [3] Patrick. R. Mickel et al., Adv. Mater. 26, 4486-4490 (2014).




What Happens During Voltage Sweep
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What Happens During Voltage Sweep
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Conclusion

VeeV(p)=—q(p—-n+C+z,N,)

qal= \% .J"_anet

Developed a fully- o
coupled electrical T =V T R Capture all important
and thermal model q O =V oy processes in memristor

%(CLT)— Ve, VT)=H

OFF-resistance increases
with time and voltage

Applied the model = Qualitative agreement

to simulate a TaOx ON-resistance decreases with experiment
: with time and voltage = Both field and thermal
memristor are important

Current-voltage hysteresis

Calibration and quantitative comparison with
experimental data are a work in progress
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