
Evolving Decision Trees to Detect Anomalies in
Recurrent ICS Networks

Jasenko Hosic, Jereme Lamps, Derek H. Hart
Sandia National Laboratories

Albuquerque, New Mexico 87123
Email: jhosic@sandia.gov, jlamps@sandia.gov, derhart@sandia.gov

Abstract—Researchers have previously attempted to apply
machine learning techniques to network anomaly detection prob-
lems. Due to the staggering amount of variety that can occur in
normal networks, as well as the difficulty in capturing realistic
data sets for supervised learning or testing, the results have often
been underwhelming. These challenges are far less pronounced
when considering industrial control system (ICS) networks. The
recurrent nature of these networks results in less noise and more
consistent patterns for a machine learning algorithm to recognize.
We propose a method of evolving decision trees through genetic
programming (GP) in order to detect network anomalies, such
as device outages. Our approach extracts over a dozen features
from network packet captures and netflows, normalizes them,
and relates them in decision trees using fuzzy logic operators.
We used the trees to detect three specific network events from
three different points on the network across a statistically
significant number of runs and achieved 100% accuracy on five
of the nine experiments. When the trees attempted to detect
more challenging events at points of presence further from the
occurrence, the accuracy averaged to above 98%. On cases where
the trees were many hops away and not enough information was
available, the accuracy dipped to roughly 50%, or that of a
random search. Using our method, all of the evolutionary cycles
of the GP algorithm are computed a-priori, allowing the best
resultant trees to be deployed as semi-real-time sensors with little
overhead. In order for the trees to perform optimally, buffered
packets and flows need to be ingested at twenty minute intervals.

I. INTRODUCTION

The ability to accurately identify intrusions or anomalies on
a network has long been a goal of the security community [14],
[16], [17]. Network administrators and security engineers alike
want to know exactly what is occurring on their networks,
but the amount of data flowing across all the nodes in large-
scale networks is simply too great to manually examine.
As a result, solutions have been created that analyze data
in a number of automated ways. Network-based intrusion
detection systems and host-based intrusion detection systems
each have their merits, but they often depend on specifically
crafted rules which can be circumvented. Signature-based
approaches often suffer from being too specific to capture
every kind of attack. Unique approaches involving machine
learning or anomaly detection methods often achieve high
accuracy rates, but still suffer from some imperfections. In
a large-scale network scenario, the sheer volume of data
generally renders these techniques unusable. Even with a 5%
false positive rate, human experts would need to manually

inspect an insurmountable number of false alarms.
Industrial control system (ICS) networks can be massive as

well, but generally contain far less noise. The way in which
programmable logic controllers (PLCs) and remote terminal
units (RTUs) transmit data back to a front end processor (FEP)
is cyclical. Usually data is transmitted at recurrent intervals,
and this periodic nature is a much simpler pattern to define
than the arbitrary chaos of a corporate network with endpoints
controlled by users. We propose a machine learning approach
that takes advantage of this fact in order to detect unwanted
behavior on an ICS network.

Although using machine learning techniques on ICS net-
work data was attempted in the past [10]–[13], the amount of
complete solutions is sparse. Furthermore, the goals of prior
work were fundamentally different. Rather than determining
what type of undesired behavior occurred on the network, most
of the research in this area focuses on identifying existing or
new attacks. Our approach focuses on three key goals. First,
we aim to detect the occurrence of specific effects or events,
such as outages of devices on the network, not causes. Second,
we want our solution to have a minimal presence on the
network. Rather than considering all data flowing across every
node in a network, we collect data flowing through one tap
in the network, reducing the amount of processing power and
space required to execute the solution. By extracting precise
data about the traffic, it may be possible to glean key details
about devices several hops away from the data collection
tap. Third, we want to minimize the amount of information
required to accurately determine if the event occurred. To
show the validity of our approach, we tested our algorithm
at different taps on the network with varying levels of access
to the data pertinent to identifying each event.

Our proposed solution for meeting the aforementioned goals
employs genetic programming (GP) to evolve decision trees.
GP is an iterative, population-based meta-heuristic technique
that follows an evolutionary cycle to produce solutions rep-
resented by trees or graphs. Multiple guesses at the solu-
tion are made, evaluated, and recombined to produce new
solutions. After many such cycles emulating natural selection
and evolution, a best solution is chosen [7]. In our approach,
this reinforcement technique evaluates evolved trees based on
their ability to use normalized extracted features to accurately
identify specific events in a labeled training set. This type of
technique was used to great effect in [6], and avoids some of

SAND2015-8850C



the problems with classic decision tree algorithms [15]. The
purpose of the resultant decision trees is to act as sensors
that take in buffered packet capture (PCAP) and netflow data,
compute the feature extractions, and identify whether a specific
event occurred. All of the machine learning iterations are
performed a-priori, allowing the sensor trees to quickly flag
buffers of data as soon as the feature extraction is complete.

In this paper, we focus on three experiments, each tested
at three different locations in the network. Our test network
is a standard 24-bus power network, virtualized on a server
with virtual machines simulating ICS traffic such as modbus.
We used Minimega, a tool developed by Sandia National
Laboratories, to deploy the virtual network [1]. The three
events that we tried to detect are: a specific router failing, any
router in the network failing, and a specific FEP failing. Our
points of presence were at different locations of the 24-bus
network, with some being close to the network outages while
others were several hops away. The majority of our results
achieved 100% accuracy in detecting specific events, and only
dipped below 98% when too little data was provided to the
machine learning algorithm.

This method can be used to answer a number of different
questions about the state of ICS networks, given a rich feature
set and the right amount of training data. Is the recurrent
pattern of communication broken? Has a large exfiltration of
data occurred? Has the process logic or firmware on a PLC
been updated across the network? The remainder of this paper
explores our methodology and test data in greater detail. The
GP parameters are explained, and an analysis of the nine
experiment results is shown. We end with a look at potential
future work regarding this idea.

II. RELATED WORK

Using GP to develop new heuristics is not a unique concept.
It has been explored with great success in prior works [2]–
[5]. The novel aspect of our research lies in the application of
the algorithm as well as the feature extractions. Others have
proposed a similar approach [10], [12], [17], but there are some
fundamental differences in the machine learning algorithms
used and the goal they are trying to achieve. We used the
effective portions of their work to enhance ours and create an
accurate method for detecting anomalies.

Sommer et al. [14] provided some warnings about using
machine learning to detect network intrusions. Their work
focused on less recurrent networks, but the conclusions are
important to consider nonetheless. The major claim is that
machine learning has had limited success in the intrusion
and anomaly detection domain because that problem type is
fundamentally different than the kinds of problems with which
machine learning algorithms excel. Machine learning is better
at determining similarities than it is at finding new, meaningful
outliers. This is perhaps why machine learning techniques such
as support vector machines (SVM) have the greatest success
in classification problems where the possible groupings are
known. Sommer et al. go on to suggest that the few successes
these techniques have experienced in the security domain, such

as spam filtering, are a result of detecting variations of known
attacks rather than new attacks altogether. Lastly, there exists a
high cost for misclassifying data. False negatives are generally
unacceptable, and false positives require a great human effort
to resolve.

The implications of these challenges can be seen with the
work of Yin et al. [18]. Their work was a great inspiration for
our approach, but ultimately suffered from some of the prob-
lems described by Sommer et al. They used a GP approach to
develop new rules for anomaly detection. The classic DARPA
network data set was used to evolve the new rule set. This
achieved great results, outperforming prior work by detecting
84 out of 148 events, but it is not practical in a real scenario
with live networks. During their testing phase, an unacceptable
number of attacks went undetected. Their algorithm required
two passes, which resulted in some undesirable inefficiency.
Despite these few issues, their findings were a great starting
point, and highlighted some of the problems we sought to
overcome.

Lu et al. [9] used the same data set as [18], but recognized
some of the issues involved with it. The DARPA data has
long been the standard in network attack testing data, but it is
outdated and incomplete. It also is not intended to represent
periodic ICS networks, so we have opted not to use it. Lu
et al. propose a slight alternate method as well. The result
of their findings is also excellent, as their false positive and
false negative rates are slightly above 5%, which is still too
high for practical applications, but suggests that a similar
approach would perform even better on a recurrent network.
The technique attempts to find variations of known attacks, as
opposed to new attacks, as is recommended by Sommer et al.

The recent work from [10] is one of two that closely
resembles our goals. They use Supervisory Control and Data
Acquisition (SCADA) network data and SVM to identify
attacks. Over 1500 packets of data are considered in their ap-
proach, and their results are impressive. With certain splits of
their data, they achieve nearly 100% accuracy. They extracted
several features, such as packet rate and packet size. While
the effects of an attack are our primary interest, Maglaras
et al. attempted to identify the attack itself. Their promising
results were nonetheless an inspiration, and we attempted to
capitalize on their progress. Our data sets are much larger and
consider many more protocols (both ICS communication and
otherwise).

The other research that attempts to identify anomalies in
ICS or SCADA networks is from Mantere et al. [11]–[13].
Throughout their work, they discussed the challenges of using
machine learning on recurrent networks, discovered valuable
features to extract, and created a prototype that uses self-
organizing maps (SOM) to relate their extracted features. To
assist in the feature extraction process, Mantere et al. use
Bro, a network security monitoring tool. Bro can aggregate
data quickly and reduce some of the overhead associated
with custom data extraction. While their results are mostly a
proof of concept, initial testing demonstrates they can achieve
as little as zero to three false positives per day. However,



they did not perform any attacks throughout their training
and testing data, so these results are still theoretical. They
used packet captures from a real ICS network running for
many days, which was an essential step in representing the
problem practically. While we did not have the same kind of
access to live data, our emulation techniques provide a realistic
alternative. The RTU and FEP communications accurately
model live systems, allowing the GP algorithm to evolve
sensors that could be placed in real systems after testing.

III. METHODOLOGY

Developing decision trees to act as sensors in a live network
must first begin with selecting appropriate features to extract
from the available data. We deployed a virtual 24-bus power
network with over 140 nodes, including routers, RTUs, FEPs,
and other components. The RTUs and FEPs communicated
with ICS traffic such as modbus, and the routers establish
dynamic routing through the OSPF protocol. If FEPs were
unable to communicate with their corresponding RTUs due to
network or device failure, they continuously tried to reestablish
connections, greatly increasing the amount of traffic they
generated. Figure 1 shows a sampling of our network structure.
The same structure exists in multiple branches of the network.
The rest was omitted for clarity. Figure 2 shows how devices
are connected to the routers. The network contains multiple
human-machine interface (HMI) workstations, an HMI server
housing the HMI applications, and a historian that aggregates
all RTU status updates and FEP interactions. Not all branches
in the network have as many devices connected to the routers.

Fig. 1. A subset of our 24-bus network

Fig. 2. An example of devices connected to a router in the 24-bus network

The goal was to detect anomalies in semi-real-time. True
real-time detection is difficult to achieve because a large
amount of data needs to be aggregated before useful features
can be extracted. We tested our method with many shorter
buffer sizes, but found the best accuracy with twenty minute
buffers. Even larger buffers may have produced better results
for our more difficult tests, but we wanted to minimize the
amount of storage and processing required to implement our
solution. Table I describes our nine experiments and the
location of the data buffering tap in each experiment.

TABLE I
EXPERIMENT DESCRIPTIONS

Exp. No. Fail Event Tap Location
1 Specific router Next to target router
2 Specific router Several hops, next to RTU
3 Specific router Several hops, next to FEP
4 Any router Next to router
5 Any router Next to RTU
6 Any router Next to FEP
7 Specific FEP Several hops, next to router
8 Specific FEP Several hops, next to RTU
9 Specific FEP Several hops, next to diff. FEP

We performed data collection at each of the three tap
locations listed in Table I, consisting of ten total hours, or
several gigabytes, of PCAP and netflow traffic. Throughout
the data gathering, we forced multiple device failures. Our
intent was to truly stress the versatility of our feature extraction
and machine learning, so many of the data sets we collected
captured numerous outages occurring at one time, with many
devices coming back up after several minutes. Table II shows
a description of the ten data sets that we used to comprise
our training and testing data sets. At the start of each data
collection, the network was fully operational and in a steady
state. In our descriptions, we define tx to represent the xth
minute for the data set. For example, t5 defines the 5th minute
of data collection for the particular data set.



TABLE II
DATA COLLECTION DESCRIPTIONS

Data No. Data Description
1 No fail events for the 20 minute period
2 At t10 a router fails

3 At t10 a router fails
At t17 it comes back online

4 At t5 a router fails
At t10 another router fails

5 At t10 a different router fails
6 At t10 a FEP fails

7 At t10 a FEP fails
At t17 it comes back online

8 At t7 a FEP and two routers fail
At t14 one of the routers come back online

9
At t5 a router fails

At t10 it comes back online
At t15 it fails again

10 At t10 a FEP and two routers fail

For these data sets to act as indicators in discerning the
occurrence of the events, meaningful feature extraction al-
gorithms need to be used. The feature extraction algorithms
provide metrics that can be used by the GP to evolve the
decision tree sensors. The following is a description of the
features we extracted, followed by a comparison of their
validity as discriminators of event occurrence.

A. Temporal Data

Five of the features we extracted were low-level temporal
features. We computed the average number of packets sent by
the target across the duration of the buffer. We also calculated
the rate OSPF packets were being sent in cases where the
target was a router. Another feature extracted the standard
deviation of the number of packets sent at every minute of the
buffer. We recorded the longest period of time a device would
be silent. Lastly, we captured the average duration of each
flow that the target initiated. The temporal data used in [10]
and [11] was a great inspiration for these choices. If the device
has a high packet rate early in the buffer and the rate drops,
several of these features will be impacted. Some of our data
sets attempt to circumvent these temporal features with short,
periodic outages. If the device comes back up quickly after
each outage, the average may not dip enough to be detected
by the feature.

The importance of the flow duration feature is that it can
detect differences in the types of communications used by
the devices. It is possible for this feature to be helpful when
discovering other, more nuanced network anomalies.

B. Communication Failure

We also wanted our sensors to capture obvious indicators
of communication failure. The trees are given a count of the
“ICMP unreachable” packets, incomplete handshakes (SYN,
SYN/ACK, without the last ACK), and communication pattern
breaks. The communication pattern breaks are calculated by
determining the pattern at which the target communicates. For
instance, routers have a pattern of sending OSPF Hello packets
every 10 seconds, any deviations in this pattern can be flagged

as a potential router outage and counted. This is particularly
helpful due to the recurrent behavior of these networks. The
FEPs generally receive RTU information at fixed intervals with
little discrepancy.

C. Communication Profile

Lastly, we included some high-level features to capture a
profile of the kinds of communications in the network. We
captured the length of each packet sent by the target, as
well as the time-to-live (TTL) of every packet coming across
the tap. The packet size would differ if the content of the
communication changed, and the TTL would hint at a change
in path, likely due to an outage or new device on the network.

We also made use of collocations within our features.
Collocations are a measure of how two things are usually
grouped. The classic example of collocation involves language.
The words “running” and “water” are much more likely
to occur together than the words “walking” and “water”.
Likewise, “tall” and “tree” make more sense together than
“high” and “tree”. These words are therefore more strongly
connected. To numerically represent these strong connections,
a mutual information equation can be used. The formula for
mutual information compares the probability of two objects
occurring together if they are independent and the probability
of their actual occurrence together [8]. The formula is shown
in Equation 1.

I = P (XY ) · log P (XY )

P (X)P (Y )
(1)

Within the netflows, we found strongly connected source-
destination pairs occurring adjacent to each other and flagged
any weak connections (based on an experimentally calculated
threshold of 0.05). We used collocations for two separate
PCAP features by first creating a label for each packet
type, such as “ACK packet” or “OSPF Hello packet”. The
collocation feature then used these human-readable labels to
determine what packet types often occur together. The feature
was split in two, with the target as the source and as the
destination. These features should indicate if packets that have
previously not been seen, such as ICMP unreachable packets
or new SYN packets attempting to establish connections, are
captured.

D. Single Feature Tests

We ran these features individually on our data sets to
validate the need for our GP approach. We chose thresholds
that allowed each feature to perform optimally on the datasets.
Figure 3 shows the average accuracy of our best-performing
features on one of our easier experiments, Experiment 4
from Table I. The average was calculated by using k-fold
cross validation and splitting our data sets into training and
testing sets, then using the optimal threshold from training to
categorize the remaining test data. We used a k value of five,
and the training set size in each of the five folds was 80% of
the total data set size. This meant that each data set was in
the testing set exactly one time.



Fig. 3. Individual feature accuracy on Experiment 4

The highest average accuracy that any single feature
achieved was 76.67%. Clearly, the features alone cannot
produce acceptable results, justifying the need for machine
learning to relate the extracted information.

E. Genetic Programming Algorithm

We developed a GP algorithm that evolves decision trees
for each type of event. If multiple events need to be detected,
a different tree can evolved for each event given the right
features and training data. It is possible for one data buffer to
contain many different events of interest, and this approach
makes it possible to detect all of them individually with
separate trees.

The terminals, or leaf nodes, in the GP trees are represented
by the feature extraction algorithms presented in subsec-
tions III-A through III-C. The features were all normalized to
be between zero and one, inclusive, to prevent any one feature
type from outweighing the others due to its numerical value.
These normalized values within the terminal nodes of the trees
are related by fuzzy logic operators AND, OR, NOT, NOR,
NAND, and XOR. The rules of fuzzy logic operators dictate
that an AND of two floating point values is the minimum of
the two, while OR is the maximum of the two values. A NOT
is equal to one minus the normalized value. Using these rules,
the other operators can be extrapolated. The reason for using
fuzzy logic operators over setting a hard threshold (such as
evaluating any value over 0.5 as true), is that reinforcement
learning algorithms such as GP need to determine a solution’s
quality relative to other solutions. If every tree only returned
a value of one or zero, there would only be two values upon
which a solution’s quality could be evaluated. By forcing
floating point values to be returned by a tree, the spectrum
of values between zero and one can be used by the algorithm
to determine fitness. This allows for a hierarchy of solutions
and makes the search space continuously multimodal.

The fitness function is key to evolving successful solutions.
Our fitness function is simple. The training data is split
into two sets, the PCAPs and netflows that captured the
event occurring, and those that did not capture the event.
Algorithm 1 shows how the fitness function uses these two

sets to compute a numeric value to represent the quality of
each solution.

Algorithm 1 Fitness function pseudocode
function get fitness(tree)

total← 0
for all data ∈ data sets do

val← eval tree(tree)
if val ≥ accept thresh && event then

total← total + num not event
end if
if val ≤ 1− accept thresh && not event then

total← total + num event
end if

end for
return total
end function

The purpose of adding the number of events in the training
set to the total fitness if a true negative is detected (and vice
versa for a true positive) is to remove any bias from unequal
quantities of events and non-events.

IV. EXPERIMENTAL SETUP

For any GP algorithm to appropriately evolve a heuristic,
the right parameters must be chosen. Otherwise, the selective
pressure of the algorithm could be too elitist and not allow
for enough exploration of the search space, or too relaxed
and never converge to a global optimum. Most security prac-
titioners are not machine learning or GP experts, and cannot
be expected to tweak many parameters. As such, we used
one set of default parameters in almost every experiment, and
only modified a few inputs if our results were unacceptable.
Even without complex parameter tuning or the use of meta-
evolutionary techniques, these parameters perform well. Ta-
ble III lists the parameters used in each experiment.

TABLE III
GP PARAMETERS

Parameter Default Exp. 5 Exp. 6
µ 100 200 200
λ 20 40 40

max depth 4 4 5
selection k-tourn. k-tourn. k-tourn.
survival k-tourn. k-tourn. k-tourn.
k 7 5 5

crossover single-point single-point single-point
mutation sub-tree sub-tree sub-tree

mutation rate .15 .8 .85
termination 5000 eval. 5000 eval. 5000 eval.

Acceptance Thresh. .9 .75 .75

The use of a high acceptance threshold forces the algorithm
to evolve trees that clearly separate the data into categories of
events and non-events. The greater population and offspring
sizes on tougher experiments encouraged exploration of the
search space. To reduce the complexity of final solutions, we



introduced parsimony pressure throughout such that smaller
solutions were favored when the fitness was identical.

We tested the experiments with thirty runs for each of the
cross validations. In total, we completed 150 runs of 5000
evaluations for each experiment. We used 80% of the data as
training data and the rest as testing data. Just as with the single
feature tests, the five-fold cross validation ensured that each
of our ten data sets appeared in the testing set exactly once.

V. RESULTS

Figures 4 through 6 show the average maximum fitness
values across generations during training.

Fig. 4. Average Fitness vs Generations for the target router failure event

Fig. 5. Average Fitness vs Generations for any router failure event

Fig. 6. Average Fitness vs Generations for the target FEP failure event

At 5000 evaluations, the populations converge to maximum
values in nearly all of the experiments. Determining the failure

of a FEP from a tap near a different FEP was ultimately no
better than a random search, and the training fitness does not
converge to the possible maximum.

When using the best solution in to identify the testing
data, the average accuracy was 100% for the majority of the
experiments. Experiments 5 and 6 had an average accuracy
of just over 98%. Figure 7 shows a histogram of the average
accuracies across all runs in all data splits.

Fig. 7. Accuracy per experiment, averaged over all runs and cross validations

Figure 8 and Figure 9 show sample overfitting plots for two
data splits in experiments 5 and 6, respectively.

Fig. 8. Sample overfitting plot for experiment 5

Fig. 9. Sample overfitting plot for experiment 6



In supervised learning, when parameters are not appropri-
ately tuned, there is always a danger of overfitting. In our case,
the evolutionary process may bias the results heavily in favor
of the training set, such that the resultant solutions are too
specialized to correctly identify new data sets.

These plots were generated by verifying the accuracy of
the best solution against the testing set at fixed generation
intervals. If overfitting occurs, the average accuracy drops in
later generations. Figure 8 is an example of this. Note that the
average accuracy shown is a representation of the accuracy
in identifying the testing set only. Accuracy in identifying
the training set was omitted. While overfitting is something
that should be avoided, it does not have a large impact on
the overall average accuracy of our solutions. The trade-off
is avoiding parameter tuning for slightly worse results. We
believe not performing parameter tuning to be a more realistic
approach, as practitioners likely will not have enough machine
learning expertise to adjust the parameters effectively.

VI. DISCUSSION

Most of the accuracies are perfect, highlighting the im-
portance of using machine learning to identify known events
over attempting to discover new useful outliers. The recurrent
nature of ICS networks was a vital contributing factor in our
solution’s success. The poor accuracy on experiments 8 and
9 was a result of inadequate information. The taps in those
particular locations in conjunction with our feature extraction
algorithms did not provide enough information to discern
events from non-events. It is obvious that collecting data near
the source of the event allows for greater insight into what
occurred. While it is still possible to glean some information
many hops away, it requires nuanced features. The types of
data we collected is intended to be a worst-case scenario,
with multiple devices going down, several coming back, or
even a single router fluctuating between failing and operating
normally. If a failure actually occurred, it would likely be
easier to detect than the data that we used. The sensor trees
had no problems identifying events in data sets where a lone
failure occurred with no subsequent normal operations. The
toughest data sets were those in which multiple routers failed
because the FEPs increased their communications, and vital
paths through the network were severed.

Throughout the testing process, we generated thousands of
sensor trees. Figure 10 and Figure 11 show two example
trees for experiment 2. The trees illustrate the variety that
can be achieved while maintaining a high accuracy. The
tree in Figure 10 will indicate that the router has failed
if the device’s longest period of silence is greater than the
number of collocation anomalies, or if the standard deviation
of packets increases immensely. This makes logical sense with
the type of event the tree is detecting. Similarly, the tree in
Figure 11 makes use of a number our features to produce
a more complicated, but likely more versatile tree. The great
difference in tree structure is due to the solutions belonging to
different data splits. The training set used to produce Figure 11
was more difficult to optimize against.

Fig. 10. Sample decision tree for experiment 2

Fig. 11. Sample decision tree for experiment 2

In order to deploy this approach as a viable semi-real-
time solution on a live system, it would be best to train
on data capturing both the event and non-events, as we did



for our experiments. Providing both types of data prevents
over-specialization to one single data type, and forces pattern
recognition over outlier detection when deployed [14]. The
sensor should also be placed as close to the event as possible,
and a buffer size of twenty minutes should be used for optimal
results. For more complete coverage and fewer false positives
or false negatives, several different evolved decision trees
should be placed at every location, and their consensus should
be used to determine anomalies. If multiple varied trees agree
that an event happened, it is more likely than if one tree returns
a positive result. Because the trees are generated ahead of time,
evaluation would be nearly instantaneous once the data buffer
has been filled.

It is theoretically possible to detect more varied events than
those explored in this paper, even if they are much more subtle.
Rather than detecting strictly failures, the trees could be trained
on data where devices react abnormally. If a firmware or
logic update needs to be detected, this approach would likely
perform very well given enough training data and the right
feature selection algorithms. The results we achieved would
not be nearly as positive if the features were not as diverse.
The rich feature set is key to capturing the many possibilities
that are associated with a network anomaly.

VII. CONCLUSION

Current capabilities in anomaly detection through the use
of machine learning techniques have been limited. While
some encouraging research has been done in the area, the
fundamental goals of the previous work made the machine
learning techniques not as effective as they could be. Rather
than attempting to detect new attacks, our aim was to identify
the occurrence of particular, known events. Specifically, we
wanted to detect network failures in recurrent ICS networks.
The periodicity of these networks allows for simple pattern
recognition and meaningful feature extraction. We developed
a GP approach to evolve decision trees for the purpose of
relating the extracted features and identifying the network
failures. The trees were tested in multiple locations on a
large-scale virtualized network. Five of our nine experiments
resulted in 100% average accuracy across a statistically signif-
icant number of runs. Two others achieved over 98% average
accuracy. The experiments that had poor results suffered from
a lack of available data.

Future work will attempt to build on our successes. Rather
than virtualizing the network, we intend to include real ICS
hardware in the loop. We will also add a diversity of ICS
communication protocols. We would also like to detect more
varied events, such as data exfiltration or PLC firmware up-
dates. To succeed in these endeavors, we will need to include
an updated feature set. The features used in the network failure
experiments may not all be meaningful discriminators in future
experiments.

REFERENCES

[1] Minimega.org. http://minimega.org. Accessed: 2015-09-29.
[2] M. Bader-El-Den, R. Poli, and S. Fatima. Evolving timetabling heuristics

using a grammar-based genetic programming hyper-heuristic framework.
Memetic Computing, 1(3):205–219, Oct. 2009.

[3] E. K. Burke, M. R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and J. R.
Woodward. Exploring Hyper-heuristic Methodologies with Genetic
Programming. In Computational Intelligence: Collaboration, Fusion
and Emergence, pages 177–201. Springer, Berlin-Heidelberg, Germany,
Mar. 2009.

[4] E. K. Burke, M. R. Hyde, G. Kendall, and J. R. Woodward. Automatic
Heuristic Generation with Genetic Programming: Evolving a Jack-of-all-
Trades or a Master of One. In Proceedings of the 9th annual conference
on Genetic and Evolutionary Computation, GECCO ’07, pages 1559–
1565, 2007.

[5] E. K. Burke, M. R. Hyde, G. Kendall, and J. R. Woodward. A Genetic
Programming Hyper-Heuristic Approach for Evolving 2-D Strip Packing
Heuristics. IEEE Transactions on Evolutionary Computation, 14(6):942–
958, Dec. 2010.

[6] J. Hosic, D. R. Tauritz, and S. A. Mulder. Evolving Decision Trees for
the Categorization of Software. In IEEE 38th International Computer
Software and Applications Conference Workshops, COMPSACW, pages
337–442, July 2014.

[7] J. R. Koza. Overview of Genetic Programming. In Genetic Program-
ming: On the Programming of Computers by Means of Natural Selection,
pages 74–78. MIT PRESS, Cambridge, MA USA, 1992.

[8] J.-F. Lin, S. Li, and Y. Cai. A new collocation extraction method
combining multiple association measures. In Proceedings of the Sev-
enth International Conference on Machine Learning and Cybernetics,
volume 1, pages 12–17, July 2008.

[9] W. Lu and I. Traore. Detecting New Forms of Network Intrusion Using
Genetic Programming. In Computational Intelligence, pages 475–494,
Aug. 2004.

[10] L. A. Maglaras and J. Jiang. Intrusion Detection in SCADA systems
using Machine Learning Techniques. In Science and Information
Conference, SAI 2014, pages 626–631, 2014.

[11] M. Mantere, M. Sailio, and S. Noponen. Network Traffic Features for
Anomaly Detection in Specific Industrial Control System Network. In
Future Internet, pages 460–473, Sept. 2013.

[12] M. Mantere, M. Sailio, and S. Noponen. A Module for Anomaly
Detection in ICS Networks. In Proceedings of the 3rd international
conference on High confidence networked systems, HiCoNS ’14, pages
49–56, Apr. 2014.

[13] M. Mantere, I. Uusitalo, M. Sailio, and S. Noponen. Challenges of
Machine Learning Based Monitoring for Industrial Control System
Networks. In 26th International Conference on Advanced Information
Networking and Applications Workshops, WAINA ’12, pages 968–972,
Mar. 2012.

[14] R. Sommer and V. Paxson. Outside the Closed World: On Using
Machine Learning For Network Intrusion Detection. In IEEE Symposium
on Security and Privacy, SP 2010, pages 305–316, Mar. 2010.

[15] J. Sun and X.-Z. Wang. An initial comparison on noise resisting between
crisp and fuzzy decision trees. In Proceedings of 2005 International
Conference on Machine Learning and Cybernetics, volume 4, pages
2545–2550, Aug. 2005.

[16] C. Y. Teo. Machine learning and knowledge building for fault diagnosis
in distribution network. In Electrical Power & Energy Systems, pages
119–122, Apr. 1995.

[17] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin. Intrusion detection by
machine learning: A review. In Expert Systems with Applications, pages
11994–12000, 2009.

[18] C. Yin, S. Tian, H. Huang, and J. He. Applying Genetic Programming
to Evolve Learned Rules for Network Anomaly Detection. In Advances
in Natural Computation, ICNC 2005, pages 323–331, Aug. 2005.


