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Our Workforce W=

= Total Sandia workforce: 12,609 Engineering (mechanical, electrical, other)
= Regular employees: 10,330 Computing
" Advanced degrees: 5,790 (56%} Science (physics, chemistry, other)
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Our Research Framework

Strong research foundations play a differentiating role in our mission delivery
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Geoscience Research &
Applications Group

overview

(

*Geotechnologies and Engineering \
*Geophysics and Atmospheric Sciences
*Geomechanics

*Geochemistry

*Geothermal Research

\ )
Technical foundation for Sandia missions
connected with the Earth and atmosphere

* Theory
* Model development BN @ENERGY | w2y
* Analysis

* Laboratory expertise
* Field activities

Nanoscale Porescale Continuum Scale




Geochemistry Department

We engage and solve challenging technical problems in geochemistry, environmental
science and applied materials science with a focus on both basic and applied research that
is supported by our computational modeling and experimental capabilities.
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Background — Repository Science

* Fate of radionuclides in the environment

» Sequestration of radionuclides

« Atomistic understanding of the solution-mineral interface

« Simulations complement both micro- and macro-experiments
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Molecular Simulation of Clay Minerals

Crystal structure models of clay minerals are typically unknown

10

Nanocrystalline materials (less than 1 um grain size)

No large single crystals for X-ray diffraction refinements

Hydrogens positions are often unknown (require neutron diffraction analysis)
Complex chemistry with multicomponent

@] o o [¢)
systems, cation disorder, and vacancies 'CI') 2888
Low symmetry (monoclinic or triclinic) T 4 8029
Stacking disorder complicates structural Interlamellar

hydrate layer with M*

analysis

Require accurate empirical energy forcefield;
quantum methods are typically too costly
Large unit cells or simulation supercells

are required (100s to 10° atoms)

Significant electrostatic fields associated
with layer structure - A eSS
Validation of models is difficult @ Sandia
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Simulations Cover a Wide Ranges of Length and Time Scales
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Energy Minimization

Molecule

Dichloroethane
C,H,Cl,

Potential
Energy Surface
(rotation about
the C-C bond)

1.63 kcal/mol

Transition
State

-1.28 kcal/mol

Local Minimum

Global Minimum
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Intramolecular Properties — Vibrational Spectrum

Vibrational spectrum of liquid water
Fanourgakis and Xantheas, J. Chem. Phys. 2008
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Energy Minimization
Periodic Structure

Forsterite
Mg,SiO,

. Cell Lengths

(100) view

Structural optimization with ; _
. . ... Number of Iterations
periodic boundary conditions @ Sanda
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Swelling Behavior of Montmorillonite
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Large-scale Simulations of Uranyl-Clay Interfaces
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Using Molecular Simulation to Understand Clay Hydration

N
B

. . . . S"Naoa
> Pred-lct properties of clay b.arrl.ers considered for 3064 5, rsialiraie
use in nuclear waste repositories. I Pore water

16 1 I 2W water

[ 11w water
» Aid in interpretation of experimental diffraction i

studies.
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Water content
(in mmol H,O / g of dried clay)
o
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» Explain trends in structural (swelling) and ' ' ' ' |
thermodynamic (hydration energies) properties as 00 02 04 06 08 10
functions of: RH

® Interlayer water content (relative humidity, RH) Ferrage et al (2010) J. Phys. Chem. C
® Interlayer cation (e.g., Na* vs Cs*)
® Temperature

» Upscale results to thermodynamic models
® Hydration energies
® lon exchange energies
® Water loading at a given RH and temperature
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Clay-Water-lon Behavior

Cs*|< Rb* < K*<|Na*|< Li* < Ba?* < Sr¢* <|Ca?*|<|Mg?*

Lowest Highest
Hydration Energy Hydration Energy
Weakly Hydrated Strongly Hydrated

W e
Clay-lon . o & Water-lon

Interactions Dominate € Interactions Dominate
Rb* Li* Ba2* Sr2+ Ca?t Mg?*
Larger ionic radius Smaller ionic radius @ ﬁaa!(ligﬁal
19 Lower charge density Higher charge density Laboratories



Comparison of Simulation and Experiment (SWy1)

MD Simulation, 25 °C
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* Pronounced 1-layer hydrate (1W) phases for
monovalent cations.

» Onset of swelling at low water content to form 2-layer
hydrate (2W) phases for divalent ions.

» Simulation results are consistent with experiment

20 Teich-McGoldrick et al (2015) J. Phys. Chem. C
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Effect of Cation Hydration and Layer Charge Location
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Density Profile

Density Profile

Interlayer Structure, Na-montmorillonite
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Density Profile
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Interlayer Structure, Beidellite (2W, 15 A)

Inner-sphere complexes due to tetrahedral charge sites.
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Correlating RH Values With Water Content

RH values at onset of stable swelling states can be obtained by comparing
adsorption isotherms (RH-H,O/u.c.) with swelling curves (d-H,O/u.c.).
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Sorption at Clay Edge Sites

hydrotalcite (1

LB

|

Yu and Schmidt (2011) J. Phys. Chem. C
Adsorption on edges can be fundamentally

different from that on basal surfaces @ Sandia
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Mineral-Water Interfacial Structure: Experiment
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Structural Comparisons: Mg-O-H Angle

* Comparison of classical static calculations (GULP) with DFT (VASP) for models of bulk
brucite, basal surface, and edge surface.

* Equilibrium angle parameter (6, = 120°) matches with DFT optimization for bulk brucite.
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Bulk DET

CLAYFF
CLAYFF2

A

Basal
Surface

60
Mg-O-H Angle / °

A
Bulk brucite g‘ g‘

28

Edge
Surface
120 160

| Surface Angle's

Basal
Surface

I

T v
B
DFT

CLAYFF
CLAYFF2

A ]

Edge
Surface

2k La,

1 A 1 " L

60 80 100

120 140 160 180

Mg-O-H Angle / °

surface

Basal surface

<— (110) edge

@ Sandia
National
Laboratories



Vibrational Comparisons: Edge Surface

* Validation: vibrational power spectra from MD simulation using ClayFF (vacuum interface)
compared with DFT normal modes.

* Good agreement between MD and DFT frequencies for Mg-O-H bend modes.
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Intensity (a.u.)
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Application of Edge Site Models

Uranyl speciation
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Summer Internships at Sandia

Department of Homeland Security Internships
 Look for projects at Sandia (New Mexico or California)
* (e.g. Molecular Modeling of Chemical Threat Agent Interactions with Concrete)
 Application deadline Dec 22
* hitp://www.orau.gov/dhseducation/internships/index.html

Sandia Internships Website
http://www.sandia.gov/careers/students postdocs/internships/index.html
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