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• Overview of Sandia National Laboratories

• Molecular simulations and applications to 
repository science

• Interlayer structure and dynamics of swelling clays

• Clay edge sites

2



3

Our Workforce

 Total Sandia workforce: 12,609
 Regular employees: 10,330
 Advanced degrees: 5,790 (56%)

Data as of July 20, 2015

* Other badged personnel

Engineering (mechanical, electrical, other)
Computing
Science (physics, chemistry, other)
Mathematics
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Technical Staff Disciplines

Mechcanical engineering
Computing
Electrical engineering
Other engineering
Other fields
Other science
Physics
Chemistry
Mathematics



Our Research Framework 
Strong research foundations play a differentiating role in our mission delivery

Computing & 
Information Sciences

Radiation Effects & 
High Energy Density Science

Materials Science

Engineering Sciences Nanodevices & 
Microsystems

Bioscience
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•Geotechnologies and Engineering
•Geophysics and Atmospheric Sciences
•Geomechanics
•Geochemistry
•Geothermal Research

Technical foundation for Sandia missions 
connected with the Earth and atmosphere

• Theory
• Model development
• Analysis
• Laboratory  expertise
• Field activities

Overview
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We engage and solve challenging technical problems in geochemistry, environmental 
science and applied materials science with a focus on both basic and applied research that 
is supported by our computational modeling and experimental capabilities.

Large-scale MD of CO2 bubble
in saturated H2O on clay (EFRC)

Large-scale models of UO2
2+

adsorption on clay (BES)

Permeable reactive 
barriers

Redox reactions on
clay mineral surfaces (BES)

SrCl+ ion-pair
Adsorption on
Goethite (BES)
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Background – Repository Science
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• Fate of radionuclides in the environment

• Sequestration of radionuclides

• Atomistic understanding of the solution-mineral interface

• Simulations complement both micro- and macro-experiments

Uranium migration, Naturita, Colorado, USA
NRC NUREG/CR-6870

www.nagra.ch

11 y 23 y 29 y

40 y 51 y 62 y



Crystal structure models of clay minerals are typically unknown

• Nanocrystalline materials (less than 1 m grain size)
• No large single crystals for X-ray diffraction refinements
• Hydrogens positions are often unknown (require neutron diffraction analysis)
• Complex chemistry with multicomponent

systems, cation disorder, and vacancies
• Low symmetry (monoclinic or triclinic)
• Stacking disorder complicates structural

analysis

Molecular Simulation of Clay Minerals

Atomistic simulations of clay minerals are non-trivial

• Require accurate empirical energy forcefield;
quantum methods are typically too costly

• Large unit cells or simulation supercells
are required (100s to 106 atoms)

• Significant electrostatic fields associated
with layer structure

• Validation of models is difficult 1 m

Interlamellar
hydrate layer with M+
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Finite
Element
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Methods
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Simulations Cover a Wide Ranges of Length and Time Scales
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Local Minimum

Potential
Energy Surface
(rotation about 
the C-C bond) 1.63 kcal/mol

Global Minimum

Transition
State

-1.28 kcal/mol

Dichloroethane
C2H4Cl2
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Energy Minimization
Molecule



Intramolecular Properties – Vibrational Spectrum
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Vibrational spectrum of liquid water
Fanourgakis and Xantheas, J. Chem. Phys. 2008

libration

HOH bend

OH stretch



Energy Minimization
Periodic StructureForsterite

Mg2SiO4

Structural optimization with 
periodic boundary conditions

(100) view
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MD Simulation

Na3(Si31Al)(Al14Mg2)O80(OH)16nH2O

4 unit cell basis

Swelling Behavior of Montmorillonite
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Large-scale Simulations of Uranyl-Clay Interfaces
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(2005) Phys. Chem. Chem. Phys.

Carbonate concentration 
influences uranyl adsorption
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Using Molecular Simulation to Understand Clay Hydration

RH

Ferrage et al (2010) J. Phys. Chem. C
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 Predict properties of clay barriers considered for 
use in nuclear waste repositories.

 Aid in interpretation of experimental diffraction 
studies.

 Explain trends in structural (swelling) and 
thermodynamic (hydration energies) properties as 
functions of:
• Interlayer water content (relative humidity, RH)
• Interlayer cation (e.g., Na+ vs Cs+)
• Temperature

 Upscale results to thermodynamic models
• Hydration energies
• Ion exchange energies
• Water loading at a given RH and temperature



Clay-Water-Ion Behavior

Cs+ < Rb+ < K+ < Na+ < Li+ < Ba2+ < Sr2+ < Ca2+ < Mg2+

Lowest 
Hydration Energy

Highest
Hydration Energy

Weakly Hydrated Strongly Hydrated

Larger ionic radius
Lower charge density

Smaller ionic radius
Higher charge density

Clay-Ion
Interactions Dominate

Water-Ion
Interactions Dominate

Cs+ Rb+ K+ Na+ Li+ Ba2+ Sr2+ Ca2+ Mg2+
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Comparison of Simulation and Experiment (SWy1)
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MD Simulation, 25 C

• Pronounced 1-layer hydrate (1W) phases for 
monovalent cations. 

• Onset of swelling at low water content to form 2-layer 
hydrate (2W) phases for divalent ions.

• Simulation results are consistent with experiment
Ferrage et al (2005) Am. Min.

Teich-McGoldrick et al (2015) J. Phys. Chem. C



Effect of Cation Hydration and Layer Charge Location

Montmorillonite, 25 C Beidellite, 25 C

Ion-water interactions 
enhanced (outer-sphere)

Ion-clay interactions 
enhanced (inner-sphere)
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Interlayer Structure, Na-montmorillonite

2W (14.9 Å)

1W (12.2 Å)

Outer sphere coordination (similar for Mg2+, Ca2+)  

Na+ aligned with hexagonal rings or at mid-plane

z

x

z

x

y

x

Na

Clay ob

Water H

Water O

Na+ adsorbs exclusively at ring sites
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Interlayer Structure, Beidellite (2W, 15 Å)

Na+

Inner-sphere complexes due to tetrahedral charge sites.

Ca2+

Mg2+
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Correlating RH Values With Water Content

RH values at onset of stable swelling states can be obtained by comparing 
adsorption isotherms (RHH2O/u.c.) with swelling curves (dH2O/u.c.).

RH 0.35

RH 0.40

2W (all cations)
RH 0.45  0.50

RH values from experiment
• 0.5  0.6 (2W, Na-saponite and Na-montmorillonite)
• 0.2  0.4 (1W-2W intermediate states, Mg- and Ca-montmorillonite)

Ferrage et al: (2005) Am. Min., (2010) J. Phys. Chem. C

Montmorillonite, 25 C

RH 0.25

2W (all cations)
RH 0.45  0.50

Beidellite, 25 C
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Sorption at Clay Edge Sites

Adsorption on edges can be fundamentally 
different from that on basal surfaces

Yu and Schmidt (2011)  J. Phys. Chem. C

1 m

2626



Fenter, P. et al (2003) Geochim. Cosmochim. Acta

Mineral-Water Interfacial Structure: Experiment

X-ray reflectivity 
experiment

orthoclase (001) 
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Structural Comparisons: Mg-O-H Angle

• Comparison of classical static calculations (GULP) with DFT (VASP) for models of bulk 
brucite, basal surface, and edge surface.

• Equilibrium angle parameter (θ0 = 120°) matches with DFT optimization for bulk brucite.

Bulk	brucite

28

11�0 edge

Basal	surface



Vibrational Comparisons: Edge Surface

• Validation: vibrational power spectra from MD simulation using ClayFF (vacuum interface) 
compared with DFT normal modes.

• Good agreement between MD and DFT frequencies for Mg-O-H bend modes.

11�0 edge

29 Zeitler et al (2015) J. Phys. Chem. C



Vibrational Comparisons: Basal Surface

952 cm-1

711 cm-1
Brucite	 001

Surface modes are blue-shifted in the bulk.
30



pHequil

2 3 4 5 6 7 8 9 10

D
is

tr
ib

u
ti

o
n

 o
f 

U
V

I  S
p

e
c
ie

s
 (

m
o

l·
L

-1
)

10-11

10-10

10-9

10-8

10-7

10-6

UO2(CO3)3
4-

U
O

2
(C

O
3

) 2
2
-

U
O

2
(C

O
3

)o
(a

q
)

U
O 2

(O
H
)
+

UO2
2+

UO2(OH)2
0(aq)

UO2(OH)3
+

Application of Edge Site Models

pH-dependent adsorption

Deprotonation of edge surface

Pabalan and Turner, Aquatic Geochem. 1997

Montmorillonite (100) 

Uranyl speciation
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Department of Homeland Security Internships
• Look for projects at Sandia (New Mexico or California)
• (e.g. Molecular Modeling of Chemical Threat Agent Interactions with Concrete)
• Application deadline Dec 22
• http://www.orau.gov/dhseducation/internships/index.html

Sandia Internships Website
http://www.sandia.gov/careers/students_postdocs/internships/index.html

Summer Internships at Sandia

http://www.sandia.gov/careers/students_postdocs/internships/index.html
http://www.sandia.gov/careers/students_postdocs/internships/index.html
http://www.sandia.gov/careers/students_postdocs/internships/index.html
http://www.orau.gov/dhseducation/internships/index.html
http://www.orau.gov/dhseducation/internships/index.html

