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The Question:
Is a Steel-Cased Borehole an Electrical Transmission Line?

An Answer:
Yes, but under certain restricting geophysical circumstances:

- All medium (borehole and earth) material parameters are azimuthally
symmetric around the wellbore (hard to achieve).

All electric current sourcing and grounding conditions are also
azimuthally symmetric around the borehole (somewhat hard).

Frequencies are low (easy).

At least one “free parameter” enters the physics / mathematics.
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An Electrical Transmission Line (i.e., a Coaxial Cable)

inner conductor i (z+dz.t)

itot(Z,t) \ A
TE MM 0000~

= series resistance / length (Q/m),

R(z+dz/4) L(z+3dz/4) .
| L(z) = series inductance / length (H/m),
v(zt) 1/G(z+dz/2) —— C(z+dz/2) V(z+dzt) ¢ (z) = shunt capacitance / length (F/m),
G(z) = shunt conductance / length (S/m).
o O
_ 1

- outer conductor

Apply Kirchhoff's two circuit theory rules (and let dz — 0) to obtain:

0i(z,t) R(Z) i(z.0)+ 1 Gv(z,t) _0i(z,0) R(Z)l (20),
ot L(z) L(z) oz o  L(z)°
ov(z,1) | G(2) Wity + 1 di(z,t) 1 0i(z0)
ot C(z) C(z) &z  C(z) &z

The Transmission Line Equations: a pair of coupled, linear, first-order PDEs
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Geometry and Parameters
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side view
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r, r, = “inner” and “outer” radii of borehole transmission line




Current Waveforms Along a Homogeneous
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mh
Steel-Cased Borehole

Infinite-length transmission line:
one-way pulse propagation toward +z.

Vanishing current BC imposed at z = 2000 m:
two-way pulse propagation;
strong current leakage into formation.

Vanishing voltage BC imposed at z = 2000 m:
two-way pulse propagation.

Note sensitivity to outer radius r, !
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of the Coupled Transmission Line Equations

Voltage PDE: Current PDE:

0i(z,t) . w,(z) ov(z,t) _ ov(z,t) o, (z) Oi(z,t) _
Py +w,(2)i(z,t)+ RG> o =0 v +,(2)v(z,t)+ G o =0

®,(z)=R(z)/L(z) <— characteristic frequencies —> @, (z) = G(z)/C(z)

Discretize on a 1D version of the famous 3D Yee (1966) staggered spatial grid:

Staggered temporal storage

tn-2 tn-1 tn tn+1 tn+2 tn+3

1D staggered spatial storage

< A\7z—>
— e >—e—">—e—T>0o—>eo—> |,
Zvo LA Zy Zie1 Lya2 Zi+3
® = yoltage storage node > = current storage node
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Current Magnitude Along a Borehole in a 1D Layered Earth (ff) i
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— o (5m) Three-layer conductivity model:

——G (Sim) o, =0.01, 0.05, 0.10 S/m.
00l ] £ =150, b =1.

5 : ? ? outer / inner radius r, / r;= 200 m / ~7 cm.

ST IR W 3 O8] e ] Two current source locations:
N amplitude = 1 A, duration = 0.5 s.

Two boundary conditions:

800 un
; ; vanishing voltage, current flow.

G=2nclln(rofri)

Discretization:
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Generalized Borehole Source Electrode

axial current

—
azimuthal current Eé |¢ Wd,(t)

radial current < > |r Wr(t)
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Borehole Current Sources: Three Limiting Cases (i) &,

+z +7

Line sources Ring sources

+h/2 r«=0 s
)\ axial current Z=0 |z Wz(t)
axial current L w,(t)

Is
~L7 i -
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E
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radial current % I w(t) T
radial current z=o~§ I w(t)
-h/2 +z ¥
point electric dipole =0 J; wy(t)
\A—m
point magnetic dipole  z=0 M¢ w¢(t) Point sources
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\/

point radial ring ~ Z=0 %» M, w(t)
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Mathematical Solution Strategy ) e,

Start with two of the four Maxwell equations of electromagnetism:

Faraday Law Ampere-Maxwell Law
ob(x, 1) +curl e(x,7) =0 od(x.1) + j(x,t) —curl h(x,7) =0
ot ot
Combine with three constitutive relations for isotropic media with body sources:
b(x,?) = u(x)h(x,7) + b (x,7), 1 (X) - magnetic permeability (H/m)
d(x,?) = e(x)e(x,7) +d (x,7), g (x) - electric permittivity (F/m)
J(x,1) =o(x)e(x,t)+ j,(X,1), o (X) - current conductivity (S/m)

) The EH Partial Differential System: Two, coupled, first-order

inhomogeneous PDEs:
8eg§,t) +o(x)e(x,t)—curl h(x,?) =—j (x,?)

oh(x,t)

£(X)

e(X,?) - electric vector (V/m)

+curle(x,t) =0 <— only current h(x,?) - magnetic vector (A/m)
sources!

p(x)
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(medium parameters and body forces independent of angle ¢)

Circular Magnetic System (CMS) or Transverse Magnetic (TM) solution:

oh,(r,z,t ]
O aAUT)) (r 20 4 o(r,2)e.(r,2,1) + (2D —j (r,z,t)
Oz (er’ h¢’ ez)
4(r2) 6’h¢(l’, z,t) N Oe,(r,z,t) _Oe.(r,z,t) _ 0 | activated by - and z-
’ ot 0z or component current
source.
oh, (r,z,t) h,(r,zt
otr,2) 2D o1, 2y (r, 2 - D RED
or r )
Circular Electric System (CES) or Transverse Electric (TE) solution:
Oe, (r,z,t 7
u(r.z) ﬁhr(g,z,t) B e¢(g z,t) o
N (h, €4 )
8(1", Z)M +G(I", Z)€¢(I", . t) _ Ghr(l’, z, t) n Ghz(l’, z, t) — _de)(r’ z, t) L activated by
ot 0z or $-component
- )6’h (r 2.1) 6’e¢(r 2.6) e¢(r,z, H current source.
or r _

(after S.A. Schelkunoff, 1934) 12
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Mathematically Exact Solution (CMS and CES) i)
in the Wavenumber-Frequency Domain

axial coordinate: Z <> kz: axial wavenumber

time: 1 < W: angular frequency

For example, azimuthal E, of the CMS is given by a Hankel function superposition:

E (rk.0)| =A4,(k,0)H(B,r)+B,(k,0)H(B,r)

zone n

radial wavenumber:
2 2 2 .
B2 = (0,1, - k2 )+i(wo,u,)

Superposition coefficients determined by imposing finiteness at r=0 (B, = A,),
radiation condition at r — infinity (B, = 0), and boundary conditions at the three
cylindrical interfaces:

tangential E and H components continuous across interfaces.

Leads to a 6 x 6 linear algebraic system for the six unknown coefficients

(source terms appear in right-hand-side column vector).
13



The Borehole Filter Concept h) S
(extension of work by Cuevas, Geophysics, 2014)

External electromagnetic field due to a current source placed within a borehole
is related to EM field due to a current source within a homogeneous wholespace.

In spatial z domain:

— *
E z (l" > 25 60) source in borehole BF(Z’ 60) E I", 2,0 source in wholespace

In wavenumber k, domain: > easy to calculate!

= BF(k,,0) X E.(rk.,0)

z

E. (r,kz,a))

source in borehole source in wholespace

Mathematical form of borehole filter BF(k,,w) in wavenumber domain exists
(albeit rather complicated)!
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Point Vertical Magnetic Dipole (M, = 1 A-m?)
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Two Borehole Filters

o4 Real Part i

Red: Circular Electric
System (CES)
activated by a point
vertical magnetic dipole

] i (VMD).
5 10 Hz |

l0gof IreallBF]] } (1/m)

Blue: Circular Magnetic
System (CMS)
activated by a point
z (m) . . .
. l . vertical electric dipole
o] Imaginary Part I (VED).

1 1
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Filters are symmetric
with respectto z = 0 m.
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logyp{ imag[BF]| } {1/m)

Amplitudes consistent with
Cuevas (2014).
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Line (h = 250 m) Vertical Electric Dipole (J, =1 A-m)
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Conclusions

1) Electrical transmission line model of a steel-cased geologic borehole has been
developed. Requires:

1.1) azimuthal symmetry of borehole, medium, sourcing/grounding parameters.
1.2) contains free parameter r,, the “outer radius” to electrical ground.

1.3) useful in numerical modeling for replacing fluid-filled, cased, and cemented
borehole with a body source distribution of electric current.

2) Rigorous derivation of transmission line PDEs from Maxwell’s equations is worked.

2.1) “Borehole Filter” linking cased / cemented borehole EM responses to
simpler wholespace responses is derived and analyzed.
2.1.1) works for either point or spatially-extended sources.
2.1.2) enables study of sensitivity of EM field to various system parameters.
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