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The Question:

Is a Steel-Cased Borehole an Electrical Transmission Line?

An Answer:

Yes, but under certain restricting geophysical circumstances:

- All medium (borehole and earth) material parameters are azimuthally

symmetric around the wellbore   (hard to achieve).

- All electric current sourcing and grounding conditions are also 
azimuthally symmetric around the borehole  (somewhat hard).

- Frequencies are low   (easy).

- At least one “free parameter” enters the physics / mathematics. 
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An Electrical Transmission Line (i.e., a Coaxial Cable)

R(z) = series resistance / length (Ω/m),

L(z) = series inductance / length (H/m),

C(z) = shunt capacitance / length (F/m),

G(z) = shunt conductance / length (S/m).

Apply Kirchhoff’s two circuit theory rules (and let dz → 0) to obtain: 
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The Transmission Line Equations:  a pair of coupled, linear, first-order PDEs 
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Cased-Borehole Transmission Line
Geometry and Parameters

side view end-on view

f = fluid
s = steel
c = cement
r = rock

i = axial current
v = transverse voltage
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ri , ro = “inner” and “outer” radii of borehole transmission line

~106 S/m
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Current Waveforms Along a Homogeneous
Steel-Cased Borehole

Infinite-length transmission line:
one-way pulse propagation toward +z.

Vanishing current BC imposed at z = 2000 m:
two-way pulse propagation;
strong current leakage into formation.

Vanishing voltage BC imposed at z = 2000 m:
two-way pulse propagation.

Note sensitivity to outer radius ro !
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= voltage storage node = current storage node

+t
tn tn+1 tn+2tn-1tn-2

Staggered temporal storage

tn+3

Δt
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zk zk+1 zk+2zk-1zk-2

1D staggered spatial storage

zk+3

Δz

O(2,4) Staggered-Grid Finite-Difference Solution
of the Coupled Transmission Line Equations
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Voltage PDE: Current PDE:
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Discretize on a 1D version of the famous 3D Yee (1966) staggered spatial grid:



t = 0.495 s

1500 m
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Current Magnitude Along a Borehole in a 1D Layered Earth

Three-layer conductivity model:
σ1 = 0.01,  0.05,  0.10  S/m.
εr = 150,    μr = 1.
outer / inner radius ro / ri = 200 m / ~7 cm.

Two current source locations:
amplitude = 1 A,  duration = 0.5 s. 

Two boundary conditions:
vanishing voltage,  current flow.

Discretization:
Δz = 20 m,     Δt = 0.5 μs

t = 0.495 s 700 m
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Generalized Borehole Source Electrode
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Borehole Current Sources:  Three Limiting Cases

Line sources Ring sources

Point sources
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Mathematical Solution Strategy
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Start with two of the four Maxwell equations of electromagnetism:

Faraday Law Ampere-Maxwell Law

0xhcurlxj
xd





),(),(

),(
tt

t

t

Combine with three constitutive relations for isotropic media with body sources:
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- electric permittivity (F/m)

- current conductivity (S/m)
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The EH Partial Differential System:
Two, coupled, first-order, 

inhomogeneous PDEs:

),( txe - electric vector (V/m)

),( txh - magnetic vector (A/m)only current
sources!
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Cylindrical Coordinates with Azimuthal Symmetry
(medium parameters and body forces independent of angle ϕ) 
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Circular Magnetic System (CMS) or Transverse Magnetic (TM) solution:
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Circular Electric System (CES) or Transverse Electric (TE) solution:

(er, hϕ, ez)

activated by r- and z-
component current 
source.

(hr, eϕ, hz)

activated by
ϕ-component 

current source.

(after S.A. Schelkunoff, 1934)



13

Mathematically Exact Solution (CMS and CES) 
in the Wavenumber-Frequency Domain
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axial coordinate:  z ↔ kz: axial wavenumber 

time:  t ↔ ω: angular frequency 

For example, azimuthal Eϕ of the CMS is given by a Hankel function superposition:

Superposition coefficients determined by imposing finiteness at r = 0 (B1 = A1), 
radiation condition at r → infinity (B4 = 0), and boundary conditions at the three
cylindrical interfaces:

tangential E and H components continuous across interfaces.

Leads to a 6 x 6 linear algebraic system for the six unknown coefficients 
(source terms appear in right-hand-side column vector).

   nnznnn ik   222

radial wavenumber:
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The Borehole Filter Concept
(extension of work by Cuevas, Geophysics, 2014)

     
e wholespacinsourceboreholeinsource
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External electromagnetic field due to a current source placed within a borehole
is related to EM field due to a current source within a homogeneous wholespace.

In spatial z domain:

In wavenumber kz domain:

     
e wholespacinsourceboreholeinsource

,,    ,BF,,  zzzzz krEkkrE 

easy to calculate!

Mathematical form of borehole filter BF(kz,ω) in wavenumber domain exists 
(albeit rather complicated)!
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Point Vertical Magnetic Dipole (Mz = 1 A-m2)

Borehole

Wholespace

Aref = 1 (A/m)/Hz

Aref = 1 (mV/m)/Hz
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Point Vertical Magnetic Dipole (Mz = 1 A-m2)

Borehole

Wholespace

Aref = 1 (A/m)/Hz

Aref = 1 (mV/m)/Hz
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Point Vertical Magnetic Dipole (Mz = 1 A-m2)

Borehole

Wholespace

Aref = 1 (A/m)/Hz

Aref = 1 (mV/m)/Hz
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Two Borehole Filters

Blue: Circular Magnetic 
System (CMS)
activated by a point
vertical electric dipole
(VED).

Red: Circular Electric 
System (CES)
activated by a point
vertical magnetic dipole
(VMD).

Filters are symmetric
with respect to z = 0 m.

Amplitudes consistent with    
Cuevas (2014).
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Point Vertical Electric Dipole (Jz = 1 A-m)

Borehole

Wholespace

Aref = 1 (A/m)/Hz

Aref = 1 (V/m)/Hz
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Point Vertical Electric Dipole (Jz = 1 A-m)

Borehole

Wholespace

Aref = 1 (A/m)/Hz

Aref = 1 (V/m)/Hz
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Point Vertical Electric Dipole (Jz = 1 A-m)

Borehole

Wholespace

Aref = 1 (A/m)/Hz

Aref = 1 (V/m)/Hz
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Point Radial Ring Current (Mr = 1 A-m2)

Borehole

Wholespace

Aref = 1 (A/m)/Hz

Aref = 1 (V/m)/Hz
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Point Radial Ring Current (Mr = 1 A-m2)

Borehole

Wholespace

Aref = 1 (A/m)/Hz

Aref = 1 (V/m)/Hz
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Line (h = 250 m) Vertical Electric Dipole (Jz = 1 A-m)

Borehole

Wholespace

Aref = 1 (A/m)/Hz

Aref = 1 (V/m)/Hz
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Line (h = 250 m) Vertical Electric Dipole (Jz = 1 A-m)

Borehole

Wholespace

Aref = 1 (A/m)/Hz

Aref = 1 (V/m)/Hz
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Conclusions

1) Electrical transmission line model of a steel-cased geologic borehole has been 
developed.  Requires:

1.1) azimuthal symmetry of borehole, medium, sourcing/grounding parameters.
1.2) contains free parameter ro, the “outer radius” to electrical ground.  

1.3)  useful in numerical modeling for replacing fluid-filled, cased, and cemented
borehole with a body source distribution of electric current.

2)  Rigorous derivation of transmission line PDEs from Maxwell’s equations is worked.

2.1)  “Borehole Filter” linking cased / cemented borehole EM responses to
simpler wholespace responses is derived and analyzed. 

2.1.1)  works for either point or spatially-extended sources.
2.1.2)  enables study of sensitivity of EM field to various system parameters.
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