EXPLORING M1

D.(

D/l/'/) ]/)’;4/IIT fT4/'/1’;4/l



CROSTRUCTURAL §7

. Bufford, B.R. Muntifi

]/)/)4/4/1/]/14/'41 RS Ry S AN A



[ABILITY OF METAL!

ering, W.M. Mook, F. Al

/44/)0 4/1/107’-/1/r ~F /)//)/Hﬂfﬂ/] +, 2121 DA F7 17,



S VIA IN S117U TRAN

»deljawad, D.P. Adams,

/I//I/l/]/)/l/' /I/I/I/)/‘})/Ifl/l’;/‘ﬂ/ cFrn o /14/1/] 174/



SMISSION ELECTRO:

S.M. Foiles, and K. Ha

1/)/]/)4/' f;/l/'/i/'n/]f;/n’-f;nm 2 AN T /1/]41/14/1/'/)/] T



N MICROSCOPY

ttar

LA 0 nthhn Ae



8 /U(/&/&é 5/’(/&&/&

Capabil
Sandia’s In Situ lon Ir
TEM (ISTEM) Facility

¢ 200 kV JEOL 2100 TEM with two attach

large range of in situ sample manipulatis

Schematic of the TEM, accelerators,
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and beamline hardware.
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Mechanica
Cyclic Loading and Fractu

¢ Quantitative tension and compression testing of na

¢ Texture and structure changes tracked by orientati

Nanocrystalline Cu
tension  specimen
shown by conven-

tional TEM and ofri-
entation mapping be-
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(Right) Nanocrystalline
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ere 435 grains counted 1nitially, and a total of 3408 grains
ps. This experiment and analysis represent weeks of work.
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These include a wvir-
tual STEM 1mage,
orientation mapped
to the inverse pole
figure, correlation
and reliability indices,
and a composite im-
age of orientation
and correlation index
information.
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(Left)  Increasing
crack tip opening
displacement  as
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tation maps collected
before and after
situ TEM 1on irradia-
tion with 10 MeV
Si3* to a dose of 2 X
10> cm=. The maps
display combined ori-
entation and index
data. Corresponding
grain size histograms.
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In Situ Manipulation op

¢ Hedating

¢ Liquid flow

¢ Gas flow + heating
¢ Double tilt /rotate
¢ Single tilt tomography

¢ Straining
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nanoindentation

® Custom electrical feedthrouah
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electron diffraction pat-
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corresponding orienta-
tion distribution functios

(011) and (111) textures
ble format. (Courtesy of




15 plotted on the [001] inverse pole figure show strengthening
and weakening of the (001) texture in a more easily interpreta-

B.R. Muntifering).

Annealed

NN 1 101 | A A | 101



Cycle 16 PR cyvcle testing.
(Right) Quantitative

crack  measure-
ments and engi-
neering stress-strain
curves.

In Situ Fatigue

¢ First ever tests exceeding 10° cy-
cles in the TEM

¢ Crack initiation, propagation, and
associated grain growth

Cracked nanocrystalline Cu sample after ap-
proximately 305,000 loading cycles as seen

Engineering Stress (MPa)
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(Above, left) Bright-field TEM mi
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¢ In situ heating, deformation,

¢ TEM imaging and advanced

These experimental results were fully supported by the Division of Materials Scienc
partment of Energy. Work was performed, in part, at the Center for Integrated P
ed for the U.S. Department of Energy (DOE) Office of Science under proposal #U20
laboratory managed and operated by Sandia Corpo- N E
ration, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s Na-

tional Nuclear Security Administration under contract

DE-AC04-94AL85000. SAND NO. 201 5XXXXX




¢ Revealing re
character an

e and Engineering, Office of Basic Energy Sciences, U.S. De-

Nanotechnologies, an Office of Science User Facility operat- I n c o ntra d i «

14A0026. Sandia National Laboratories is a multi-program

=PARTMENT OF Ofﬁce Of Chanical, an

IERGY Science




iy I

lationships between grain boundary
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near the tip are evident after an additional 19,000 cycles.

¢ First in situ TEM observations of grain
ahead of a growing fatigue crack.

 theories, grain boundary response to th
)ending on grain boundary character, ar
1s abnormal grain growth.
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