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Mg Batteries as a Beyond Li-ion Energy Storage
Technology

/\ Mg anode + high voltage cathode = success
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» Competitiveness of Mg batteries hinges on the utilization of a metal anode
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Magnesium Anode Challenges

Technical challenge
» Develop and implement the design rules necessary to achieve Mg cycling at > 99.8% coulombic
efficiency (CE) under relevant conditions

Electrolyte Approaches to Mg Electrodeposition

Conventional Electrolyte Approach Chloro-Complex Approach
24 Traditional battery salts Chloride-based salts,
Q Mg and solvents Mg"CIY+ ether solvents
$ Mg2* blocking film l No blocking film
I
Mg° Mg®

» Mg electrodeposition has historically been accomplished using chloride-rich electrolytes
» Target oxide cathodes not expected to be stable in high-chloride environments

» Push to develop Cl-free electrolytes for Mg electrodeposition
» Need to understand the role of alternative anions at the interface
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MgTFSI,/glyme Electrolytes

e Weakly coordinating, wide electrochemical window
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What feature(s) of these electrolytes impose low CE and passivation?
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Electrochemical cycling enhances activity

* Bulk electrolysis improves subsequent electrochemical behavior
* Increased CE from < 50% to over 80%
* Suppression of passive state
* Something in the as-prepared electrolyte restricts CE and imposes passivation

3-electrode characterization on clean Pt
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» Behavior suggests that passivating impurities are being removed
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Cycling removes organic impurities

Cycling breaks down residual protic
molecules: SPME-GC-MS
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» Methods of attaining improved electrolyte performance without cycling
» Aggressive distillation of the glyme solvent
» Addition of trace amounts of reducing agents (Mg(BH,),, R,Mg)

» Solvent-borne contaminants impose the activation requirement
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Purified MgTFSI,/G2 activity is still limited

» CE limited to < 95%
» Mg passivates over time

dissolution potential sweep
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Formation of anion-derived species on electrode

» Byproduct buildup on current collector during cycling » Surface film formation on thick Mg deposits
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Formation of anion-derived species in solution

ESI-MS reveals creation of new species with cycling
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» Data suggests that TFSI instability limits electrolyte activity
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TFSI instability is promoted by Mg?* coordination

Computationally derived bond dissociation energies Raman spectroscopy of TFSI electrolytes is sensitive to
(K. Persson group, LBNL) coordination

(W. Henderson, PNNL)
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C-S bond scission predicted during Mg?* -> Mg* reduction MgTFSI,/G2 solutions show little ion pairing!

Proposed mechanism requires TFSI-Mg2* coordination

» Interfacial speciation may differ from bulk speciation
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In Situ Raman Spectroscopy

Electrochemically-roughened Au electrode

Mg rod CE/RE

y Quartz window

: Inverted laser

Raman spectra provide information on Mg?* speciation
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> Goal: detection of Mg?* environment changes
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Speciation changes during cathodic polarization

normalized TFSI breathing mode normalized G2 modes
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1. Increasing 752 cm™ shoulder at 1.0 V and below - enhanced interaction between TFSI- and Mg?*
2. Suppression of 885 cm™ peak below 0.0 V - reduced interaction between G2 and Mg?*

» TFSI-Mg coordination at interface during Mg deposition promotes TFSI instability
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Take Home Messages

= |Impurity management is critical to enabling efficient Mg
electrodeposition/dissolution in conventional electrolytes

= Purified MgTFSI,/glyme electrolytes still suffer from limited coulombic
efficiency and rapid passivation due to TFSI instability

= |n operando detection of speciation changes at the anode interface are
consistent with increased coordination of TFSI- and Mg?* at Mg® potentials

= Experimental findings are consistent with computationally derived
coordination-induced instability mechanism

JCESR @ ot

Laboratories



Acknowledgements

Sandia
National
Laboratories

Michael Brumbach
Richard Grant
Curtis Mowry

James Ohlhausen

Adam Pimentel

ArgonneA

NATIONAL LABORATORY

Electrochemical Discovery
Laboratory
Nenad Markovic
Justin Connell
Bostjan Genorio
Pietro Lopes
Dusan Strmcnik

=7

Pacific Northwest
NATIONAL LABORATORY

Wesley Henderson

“

frrereer |m

Kristin Persson
Xiaohui Lu
Nav Nidhi Rajput

JCESR

Sandia
National
Laboratories



