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Mg Batteries as a Beyond Li-ion Energy Storage 
Technology

 Competitiveness of Mg batteries hinges on the utilization of a metal anode

1www.alibaba.com
2Based on Li2CO3 price of $7500 

Mg
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Intercalation 
Cathode

Mg2+

Electrolyte

Mg0

Anode mAh/cm3

$/1000 kg 
metal1 V vs. SHE

LiC6 780 $ 396002 -2.9
Mg 3830 $ 2700 -2.4
Ca 2090 $ 3500 -2.9
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Mg anode + high voltage cathode = success



Technical challenge
 Develop and implement the design rules necessary to achieve Mg cycling at > 99.8% coulombic 

efficiency (CE) under relevant conditions

 Mg electrodeposition has historically been accomplished using chloride-rich electrolytes
 Target oxide cathodes not expected to be stable in high-chloride environments

 Push to develop Cl-free electrolytes for Mg electrodeposition
 Need to understand the role of alternative anions at the interface

Electrolyte Approaches to Mg Electrodeposition

Magnesium Anode Challenges

Conventional Electrolyte Approach

Mg2+ blocking film
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Chloro-Complex Approach
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Chloride-based salts, 
ether solvents



12/7/2015
4

MgTFSI2/glyme Electrolytes

What feature(s) of these electrolytes impose low CE and passivation?

JECS, 162 (8) D389-D396 (2015) JPS 278 (2015) 340

• Weakly coordinating, wide electrochemical window
• First “conventional” electrolyte to show reasonable 

electrodeposition activity
• Sub-optimal electrochemical behavior

• Low CE
• Passivated dissolution
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Electrochemical cycling enhances activity
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• Bulk electrolysis improves subsequent electrochemical behavior
• Increased CE from < 50% to over 80%
• Suppression of passive state

• Something in the as-prepared electrolyte restricts CE and imposes passivation

 Behavior suggests that passivating impurities are being removed

2-electrode electrolysis

Mg2+

Mg Mg

3-electrode characterization on clean Pt

active

passivated
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Cycling removes organic impurities
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 Methods of attaining improved electrolyte performance without cycling
 Aggressive distillation of the glyme solvent
 Addition of trace amounts of reducing agents (Mg(BH4)2, R2Mg)

 Solvent-borne contaminants impose the activation requirement
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Cycling breaks down residual protic
molecules:
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Purified MgTFSI2/G2 activity is still limited
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 CE limited to < 95%
 Mg0 passivates over time
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Formation of anion-derived species on electrode
 Byproduct buildup on current collector during cycling

 Signs point to decomposition of TFSI

 Surface film formation on thick Mg deposits
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Formation of anion-derived species in solution
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 Fluorine and nitrogen are liberated from TFSI-

 Data suggests that TFSI instability limits electrolyte activity

895 = (G2)2Mg2(TFSI)2F+ 957 = (G2)2Mg3(TFSI)2F3
+ 617 = (G2)Mg(TFSI)(CH3ON)+

Cycled
No cycling
Expected distribution

ESI-MS reveals creation of new species with cycling
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TFSI instability is promoted by Mg2+ coordination

 Interfacial speciation may differ from bulk speciation

Raman spectroscopy of TFSI electrolytes is sensitive to 
coordination

(W. Henderson, PNNL)

C-S bond scission predicted during Mg2+ -> Mg+ reduction
Proposed mechanism requires TFSI-Mg2+ coordination

Computationally derived bond dissociation energies
(K. Persson group, LBNL)

J. Am. Chem. Soc. 2015, 137, 3411−3420

MgTFSI2/G2 solutions show little ion pairing! 

Free TFSI- TFSI-:Mg2+
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In Situ Raman Spectroscopy

Mg rod CE/RE

Electrochemically-roughened Au electrode

Quartz window

Inverted laser

Raman spectra provide information on Mg2+ speciation

particle-decorated Au

4 um

G2 νC-O + rCH2

C-O-C ring breathing 
(G2:Mg2+)TFSI breathing

G2 rCH2 + twCH2

 Goal: detection of Mg2+ environment changes 
at the anode interface
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Speciation changes during cathodic polarization

1. Increasing 752 cm-1 shoulder at 1.0 V and below - enhanced interaction between TFSI- and Mg2+

2. Suppression of 885 cm-1 peak below 0.0 V - reduced interaction between G2 and Mg2+

normalized TFSI breathing mode
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 TFSI-Mg coordination at interface during Mg deposition promotes TFSI instability 



 Impurity management is critical to enabling efficient Mg 
electrodeposition/dissolution in conventional electrolytes

 Purified MgTFSI2/glyme electrolytes still suffer from limited coulombic 
efficiency and rapid passivation due to TFSI instability

 In operando detection of speciation changes at the anode interface are 
consistent with increased coordination of TFSI- and Mg2+ at Mg0 potentials

 Experimental findings are consistent with computationally derived 
coordination-induced instability mechanism
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Take Home Messages
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