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Team I – Who Are We?
 Sandia National Laboratories

 Scott Sanborn – Civil/Structural Engineer

 John Bignell – Civil/Structural Engineer

 Chris Jones – Civil/Structural/Materials Engineer

 What We Do:
 Hazardous Materials Transportation Packaging

 Design, Analysis, Test, and Certification

 Radioisotope Power System (RPS) Launch Safety
 Blast and Impact Modeling

 Nuclear Power Industry
 System and Component Modeling.

 Motivation:
 We care about accurately modeling complex mechanical system behavior 

(response and failure) subject to a wide range of environments.
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General Approach
 Standard Finite Element Method

 Implicit Solver w/ Numerical Stabilization

 Reduced Integration 8-Node Hexahedral Elements

 Commercially Available Code
 Abaqus Standard (Implicit) Versions 6.13 and 6.14

 Well Established Material Model
 Hill Plasticity w/ Rate Dependence

 Material Degradation and Failure
 Strain to Failure vs. Stress Triaxility and Strain Rate

 Material Stress Reduced to Zero Following Exceedance of Failure Criterion.

 Removal of Degraded Elements (Optional).
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Material Failure Model
 Based on critical plastic failure strain.
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 Once initiation criterion is met, material stress degraded as follows:
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 Evolution of the damage variable with increasing plastic strain is based 
on the material fracture energy (��):

�̇ =
���̇��

���
�� =

��̇��

���
��,  where  ���

�� =
���

���

 �	is the characteristic element length and ��� is the value of the yield 
stress at the time of failure initiation.
 This method attempts to ensure that the energy dissipated during the damage 

evolution process equals the fracture energy for the material.
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Calibration Procedure Overview
 Use uniaxial tension test data to determine material hardening 

parameters:
 Curves  Yield Stress vs. Equivalent Plastic Strain vs. Strain Rate.

 Use shear test data to define hill plasticity factors.
 Shear Stress Ratios.

 Use uniaxial tension test data to determine failure initiation 
parameters in tension regime (� ≥ 0.33).
 Curves  Critical Failure Strain vs. Stress Triaxiality vs. Strain Rate

 Use shear test data to determine failure initiation parameters in 
pure shear regime (� = 0.0).
 Curves  Critical Failure Strain vs. Stress Triaxiality vs. Strain Rate

 Use uniaxial tension and shear test data to verify all inputs.

 Make double-notch test predictions.
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Tension Test Coupon Model
 Element Type: Reduced Integration Hexahedral (C3D8R)

 Number of Elements: Quarter Symmetry Model  12,756

 Element Size: ~0.25 mm

 Boundary Conditions
 Symmetry

 Applied Nodal Velocity (Grip Ends)
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Material Hardening Parameters
 Strain Rate Relationship – Log-Linear (Assumed).
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 Hardening Relationship – Power Law (Assumed).
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 Rate multiplier parameter � �̅�� determined as follows.

� �̅�� =
���.� �̅�� ���.��� �̅��� − 1

�� 1.0 0.001⁄

 ��.���, ��.���, ��.���, ��.�, ��.�, ��.� determined by fitting model response to 
available tension test data.
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Material Hardening Parameters
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Shear Test Coupon Model
 Element Type: Reduced Integration Hexahedral (C3D8R)

 Number of Elements: Half Symmetry Model  40,236

 Element Size: ~0.25 mm

 Boundary Conditions
 Symmetry

 Fixed (X, Y, Z) One End

 Applied Velocity (Y) Opposite End

 Fixed (X, Z) Opposite End
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Hill Plasticity Parameters
 Hill plasticity shear yield strength scaling factors determined 

using shear test data:
 ��� = ��� = ��� = 1.0

 ��� = ��� = ��� = 0.88
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Failure Criterion Parameters
 Initial reference critical failure strain vs. stress triaxiality (��̅����

�� � ) based on M. Giglio et al.

 Rate Dependence Relationship – Log-Linear (Assumed).
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 Performed fit between model and shear/tensile test data by determining scaling factor (� � ) 
and rate multiplier constant (� � ).
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Double Notch Coupon Model
 Element Type: Reduced Integration Hexahedral (C3D8R)
 Number of Elements: Half Symmetry Model 31,845
 Element Size: ~0.25 mm
 Boundary Conditions:

 Symmetry
 Applied Nodal Velocity (One End)
 Fixed (Opposite End).
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Results Comparison (Slow)
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Results Comparison (Fast)
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Model Limitations
 Thermal effects not incorporated (material model does not 

include temperature dependence or plasticity induced heating).

 Boundary conditions on double notch specimen not entirely 
representative of the test setup. 

 Assumptions made on the form of the yield stress vs. plastic 
strain vs. strain rate relationship unverified.

 Limited time to develop and assess model.
 Mesh and element type sensitivity.

 Assumptions and sensitivity to assumptions.

 Anisotropic behavior of material.

 Temperature effects and couple thermal-mechanical analyses.
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Lessons Learned & Observations
 It is critical to include the following material response characteristics.

 Strain Rate Dependence.

 Temperature Dependence. 

 Stress Triaxiality Informed Failure.

 Plasticity Induced Heating (Coupled Thermal-Mechanical Analysis).

 Anisotropy (to a Lesser Extent?).

 If properly implemented, continuum models are capable of reasonable 
accuracy in predicting the response of the coupon.

 Mesh sizes required to accurately resolve failure processes generally 
not scalable to system level analyses.

 Having sufficient test data to determine material model inputs over the 
applicable range of loading environments is necessary.
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Double Notch – B.C. Comparison
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Moving Forward
 Implement Abaqus Capability into Sierra SM

 Hydra Plasticity Model Complete 

 General Plasticity 

 Rate Dependence

 Triaxiality Based Failure

 Temperature Dependent Material Response 

 Adiabatic Heating 

 Evaluate Past SFCs with Sierra SM and Hydra Plasticity
 Evaluate and Demonstrate Model 

 Develop Plane Stress Model for Shell Elements
 Useful for Engineering Problems

 Computational Efficiency
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