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Team | — Who Are We?

= Sandia National Laboratories
= Scott Sanborn — Civil/Structural Engineer
= John Bignell — Civil/Structural Engineer
= Chris Jones — Civil/Structural/Materials Engineer

= What We Do:

= Hazardous Materials Transportation Packaging
= Design, Analysis, Test, and Certification

= Radioisotope Power System (RPS) Launch Safety
= Blast and Impact Modeling

= Nuclear Power Industry
= System and Component Modeling.

= Motivation:

Sandia
National
Laboratories

= We care about accurately modeling complex mechanical system behavior

(response and failure) subject to a wide range of environments.




General Approach ) ..

= Standard Finite Element Method

= |mplicit Solver w/ Numerical Stabilization

= Reduced Integration 8-Node Hexahedral Elements

= Commercially Available Code
= Abaqus Standard (Implicit) Versions 6.13 and 6.14

= Well Established Material Model
= Hill Plasticity w/ Rate Dependence

= Material Degradation and Failure
= Strain to Failure vs. Stress Triaxility and Strain Rate

= Material Stress Reduced to Zero Following Exceedance of Failure Criterion.
= Removal of Degraded Elements (Optional).




Material Failure Model ) .
= Based on critical plastic failure strain.

_ = pl
g, P! (77, &7 ), wheren = —s
= Material degradation/failure initiates when:

j d&, P’ .
Wp = : 7 =
gbpl (77» gDp )
= Once initiation criterion is met, material stress degraded as follows:
c=(1-D)o
= Evolution of the damage variable with increasing plastic strain is based
on the material fracture energy (Gy):
L*pl =pl
D= _Spl = j‘pl,
uf uf O'yo
= Listhe characteristic element length and gy, is the value of the yield
stress at the time of failure initiation.

= This method attempts to ensure that the energy dissipated during the damage
evolution process equals the fracture energy for the material.

2Gf

where ﬂfpl =




Calibration Procedure Overview )

= Use uniaxial tension test data to determine material hardening
parameters:

= Curves -2 Yield Stress vs. Equivalent Plastic Strain vs. Strain Rate.

= Use shear test data to define hill plasticity factors.

= Shear Stress Ratios.

= Use uniaxial tension test data to determine failure initiation
parameters in tension regime (n = 0.33).

= Curves -2 Critical Failure Strain vs. Stress Triaxiality vs. Strain Rate

= Use shear test data to determine failure initiation parameters in
pure shear regime (n = 0.0).

= Curves -2 Critical Failure Strain vs. Stress Triaxiality vs. Strain Rate

= Use uniaxial tension and shear test data to verify all inputs.
= Make double-notch test predictions.




Tension Test Coupon Model )

Laboratories

Element Type: Reduced Integration Hexahedral (C3D8R)

Number of Elements: Quarter Symmetry Model - 12,756
Element Size: ~0.25 mm

Boundary Conditions
= Symmetry
= Applied Nodal Velocity (Grip Ends)




Material Hardening Parameters ) e,

= Strain Rate Relationship — Log-Linear (Assumed).

=pl
O—y(gpl) =|1+ C(Epl)ln <_§ ) 0y0.001

pl
E ref

= Hardening Relationship — Power Law (Assumed).

-\ — —n1M0.001
0y0.001(€p ) = Ag.o01 + Bo.0o1€?
—nl\ _ —niMN1.0
Uy1.0(€p ) = A1+ B1oé?

= Rate multiplier parameter C(e‘pl) determined as follows.

(s o)1)

c(en) = n(1.0/0.001)

" A0t Bo.oo1r M0.001, 41.0, B1.0, N1.0 determined by fitting model response to
available tension test data.
-



Material Hardening

Parameters
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Shear Test Coupon Model ) s,

= Element Type: Reduced Integration Hexahedral (C3D8R)
= Number of Elements: Half Symmetry Model = 40,236
= Element Size: ~0.25 mm
= Boundary Conditions
= Symmetry
= Fixed (X, Y, Z) One End
= Applied Velocity (Y) Opposite End
=  Fixed (X, Z) Opposite End




Hill Plasticity Parameters ) ..

= Hill plasticity shear yield strength scaling factors determined
using shear test data: Load vs. Axial LVDT 1 with Slip Removed
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Failure Criterion Parameters D=

= |nitial reference critical failure strain vs. stress triaxiality (S"D_refpl(n)) based on M. Giglio et al.

= Rate Dependence Relationship — Log-Linear (Assumed).
pl

& (n.é"") = 1+E(n)ln<-_§l ) Ep—rerP (N)Q (1)

E ref

= Performed fit between model and shear/tensile test data by determining scaling factor (Q (1))
and rate multiplier constant (E'(n)).

45 v . ' . ; . HEX Model, 0.25 mm Element Size
Strain to Failure vs. Stress Triaxiality
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Fig. 12. Fracture locus of the Ti-6A1-4V according to the Bao-Wierzbicki [ 1] model.

M. Giglio et al. / International Journal of Mechanical Sciences 54 (2012) 121-135




Double Notch Coupon Model )

= Element Type: Reduced Integration Hexahedral (C3D8R)
= Number of Elements: Half Symmetry Model = 31,845
= Element Size: ~0.25 mm
=  Boundary Conditions:
= Symmetry
= Applied Nodal Velocity (One End)
= Fixed (Opposite End).

Fixed Y
Applied Y Velocity Half of Hole
Half of Hole Fixed X

Centerline Top of Hole

Symmetry BCs
Back Surface (Not Shown)
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Model Limitations )

= Thermal effects not incorporated (material model does not
include temperature dependence or plasticity induced heating).

= Boundary conditions on double notch specimen not entirely
representative of the test setup.

= Assumptions made on the form of the yield stress vs. plastic
strain vs. strain rate relationship unverified.

= Limited time to develop and assess model.
= Mesh and element type sensitivity.
= Assumptions and sensitivity to assumptions.
= Anisotropic behavior of material.
= Temperature effects and couple thermal-mechanical analyses.




Lessons Learned & Observations ) i,

= |tis critical to include the following material response characteristics.
= Strain Rate Dependence.

= Temperature Dependence.

= Stress Triaxiality Informed Failure.

= Plasticity Induced Heating (Coupled Thermal-Mechanical Analysis).
= Anisotropy (to a Lesser Extent?).

= |f properly implemented, continuum models are capable of reasonable
accuracy in predicting the response of the coupon.

= Mesh sizes required to accurately resolve failure processes generally
not scalable to system level analyses.

=  Having sufficient test data to determine material model inputs over the
applicable range of loading environments is necessary.




Double Notch — B.C. Comparison

COD vs. Applied Load

DUCTCRT
(Avg: 75%)
+9.6756-01

+1.613e-01
+8.063e-02
+0.000e+00

Crack Opening Diéplacement (mm)

25000
- - 4-5LOW-COD1
20000 = = 6-5LOW-COD1
- = 7-5LOW-COD1
15000 - - 11-SLOW-COD1
z - - 13-SLOW-COD1
S 10000
3 - - 14-SLOW-COD1
©
o — ~ 19 y
£ 5000 19-SLOW-COD1
3 - — 23-SLOW-COD1
0 - = 28-SLOW-COD1
0e 300 _ _ 9510w-cop1
-5000 ——FEM Slow COD1
= FEM Slow COD1 New BCs
-10000 ! —L—
Crack Opening Displacement (mm)
COD vs. Applied Load
25000
~ = 9-FAST-COD1
— — 15-FAST-COD1
20000
- — 18-FAST-COD1
- = 20-FAST-COD1
15000
~ — 22-FAST-COD1
£ ~ — 24-FAST-COD1
T 10000
8 ~ — 25-FAST-COD1
T 27-FAST-COD1
3 5000
2 ——FEM Fast COD1
——FEM Fast COD1 New BCs
0
0.0 20.0[7 25.0 30.0
-5000 ‘ !
-10000

New BCs

SFC2 S Goupon Hex Fate 0.0254 m per sec
ODE: SFC2 S Coupon Hs E-

Step:
*—p

ul Test
ment 1000 Step Time ~ 02574
ary Var: DUGTCAT

Daformed Var: U Dalormstion Scsla Fsctor

HS var 2015
fex Fiate 0.0254 m per s=

Sandia
'11 National

Laboratories

Original BCs




Moving Forward ) .

= |mplement Abaqus Capability into Sierra SM

= Hydra Plasticity Model Complete
= General Plasticity

= Rate Dependence

= Triaxiality Based Failure

" Temperature Dependent Material Response
= Adiabatic Heating

= Evaluate Past SFCs with Sierra SM and Hydra Plasticity

= Evaluate and Demonstrate Model

= Develop Plane Stress Model for Shell Elements

= Useful for Engineering Problems

= Computational Efficiency




