

ON THE EDGE: STATE TOMOGRAPHY, BOUNDARIES, AND MODEL SELECTION

Travis L Scholten
Center for Computing Research
Sandia National Labs

CQuIC Talk
University of New Mexico
2015 December 2

Center for Computing Research

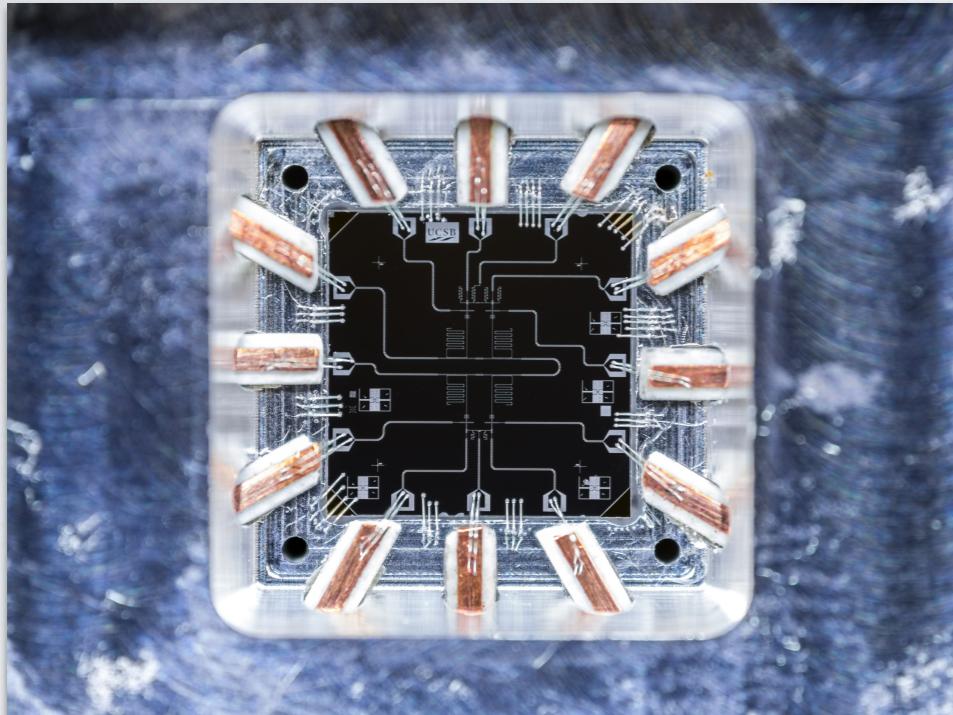
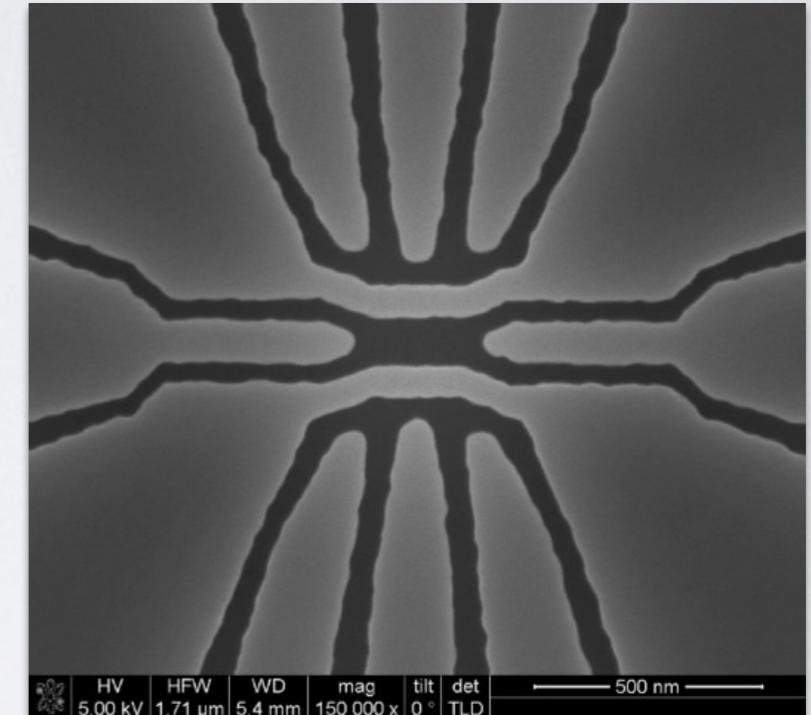
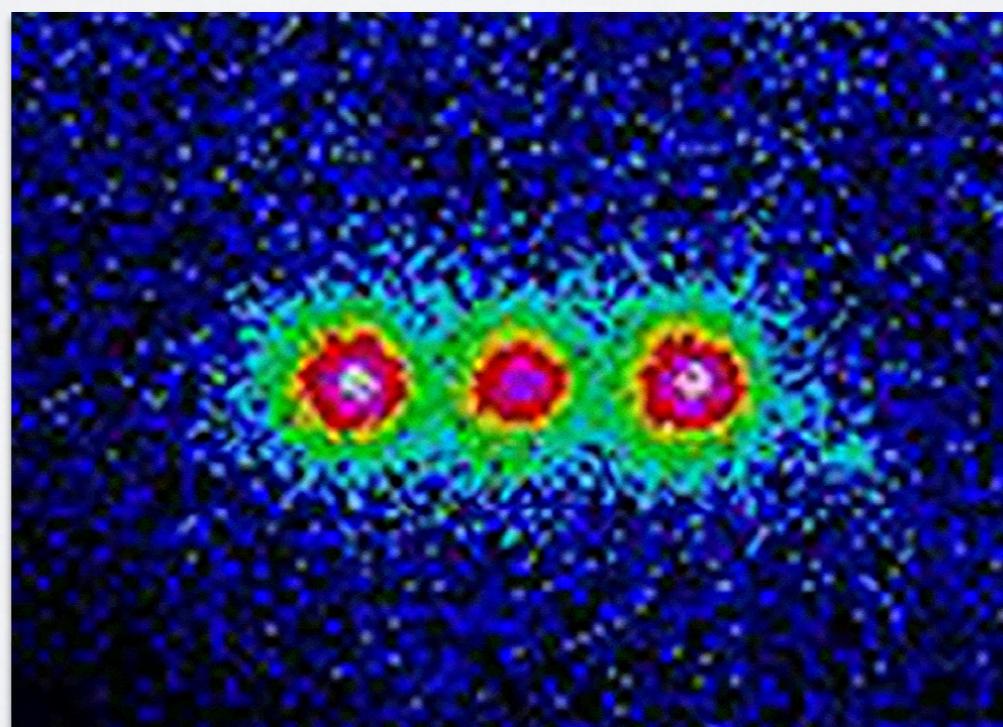
National Nuclear Security Administration

**Sandia
National
Laboratories**

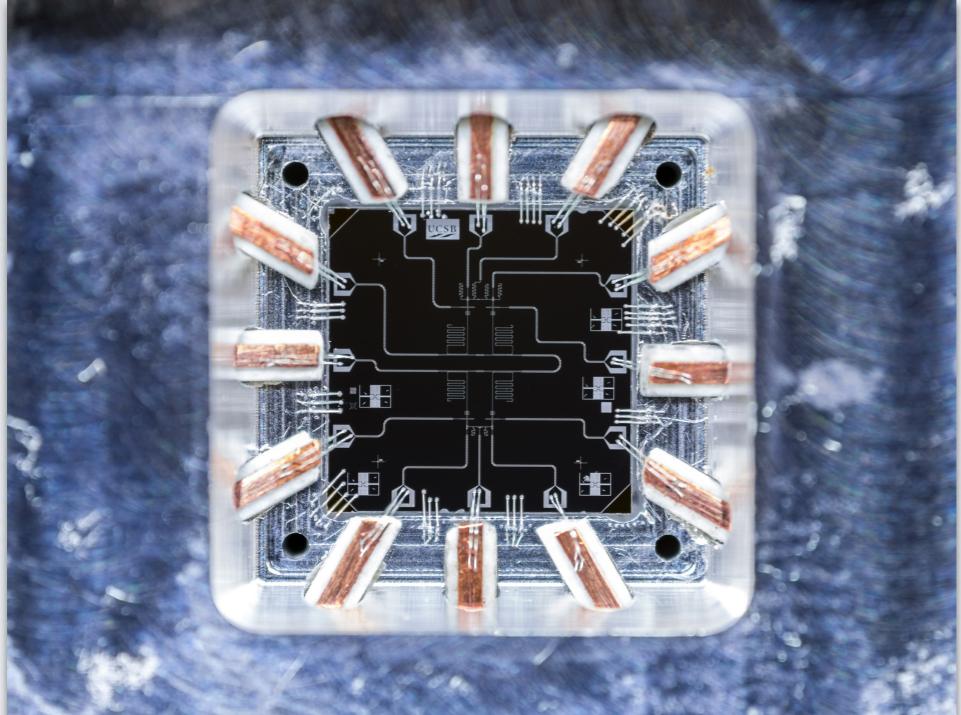
**U.S. DEPARTMENT OF
ENERGY**

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

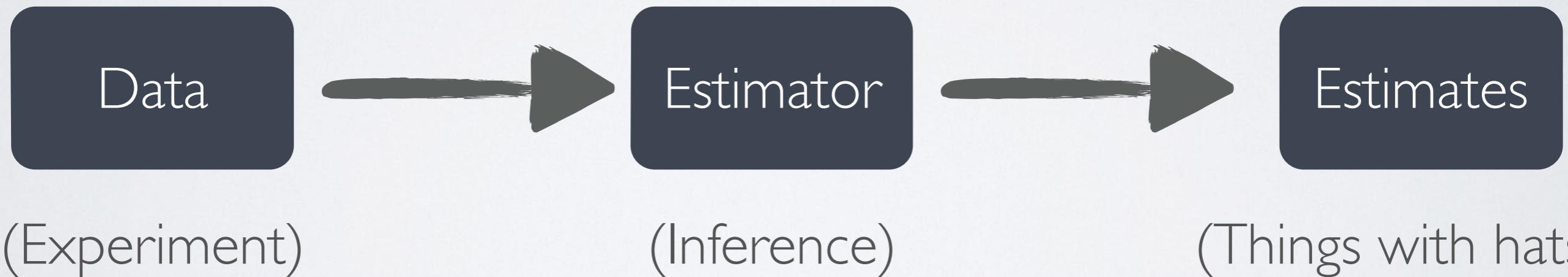
I am interested in tomography, the characterization of quantum systems.



Characterizing a system means estimating/ inferring something about it.



Tomography is a
statistical *inference*
problem.



POVM $\{E_j\}$

$\hat{\rho}$

The “best” estimator is very accurate...

Many measures of accuracy:

Quantum Fidelity

Relative Entropy

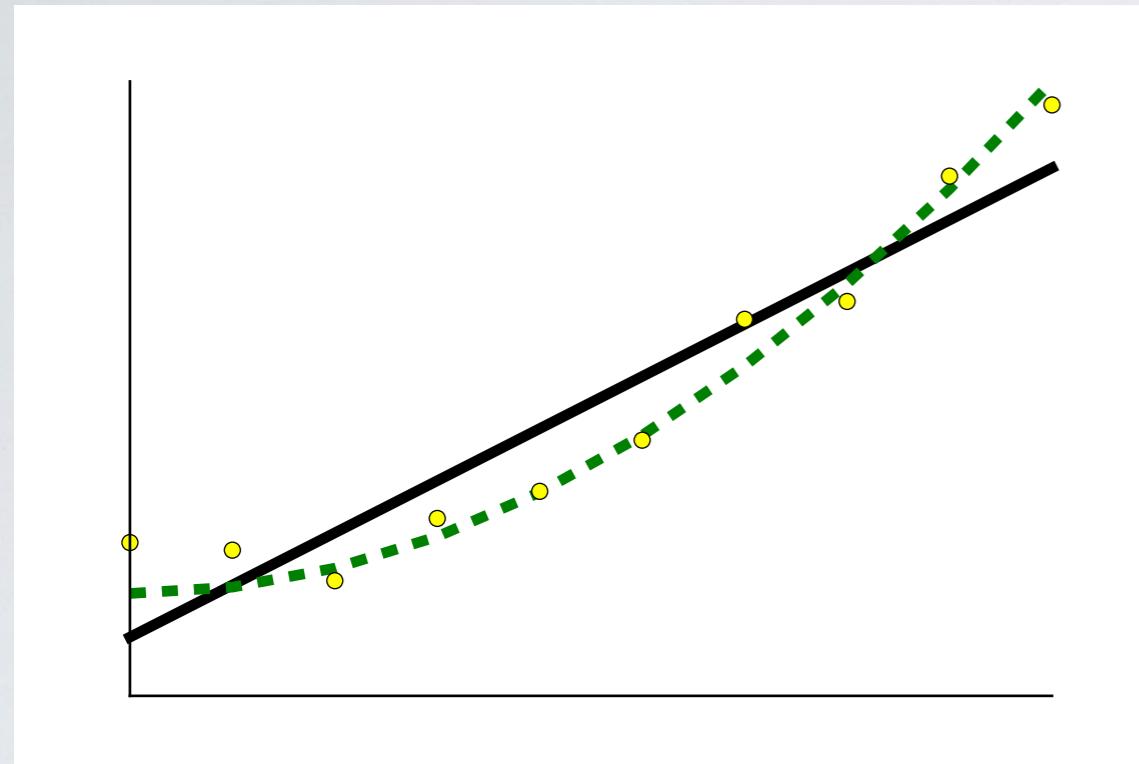
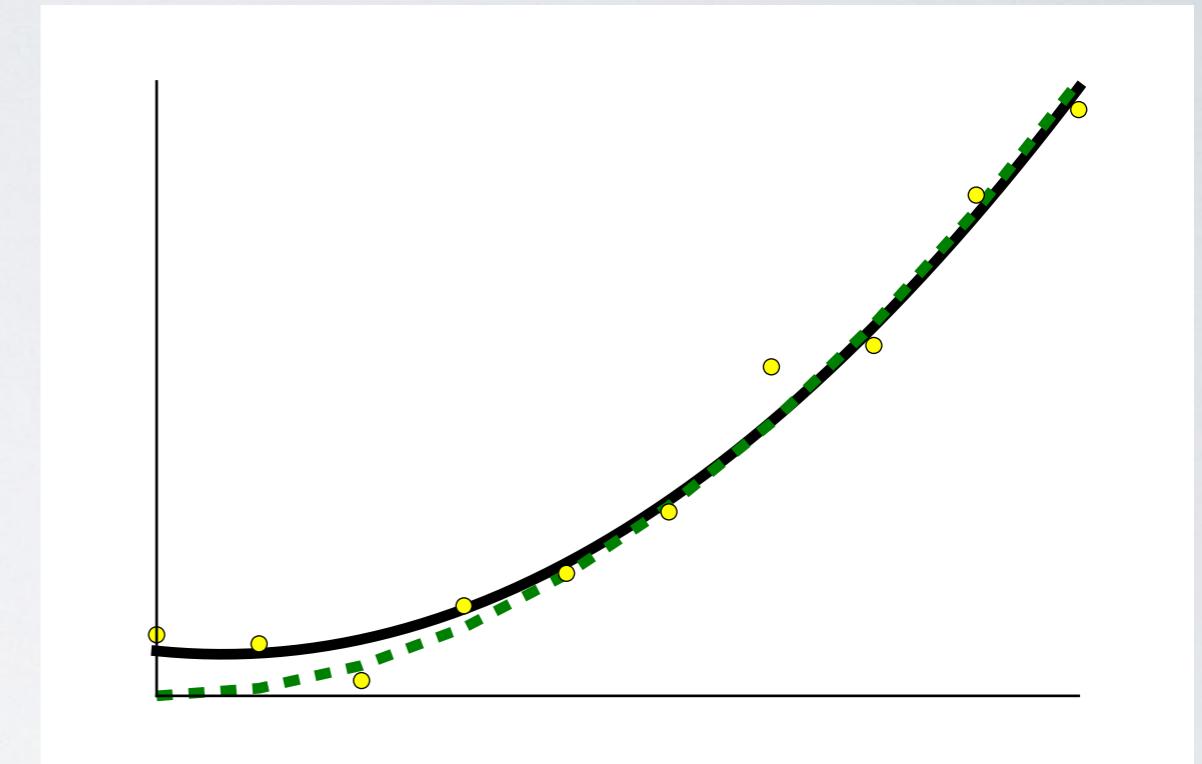
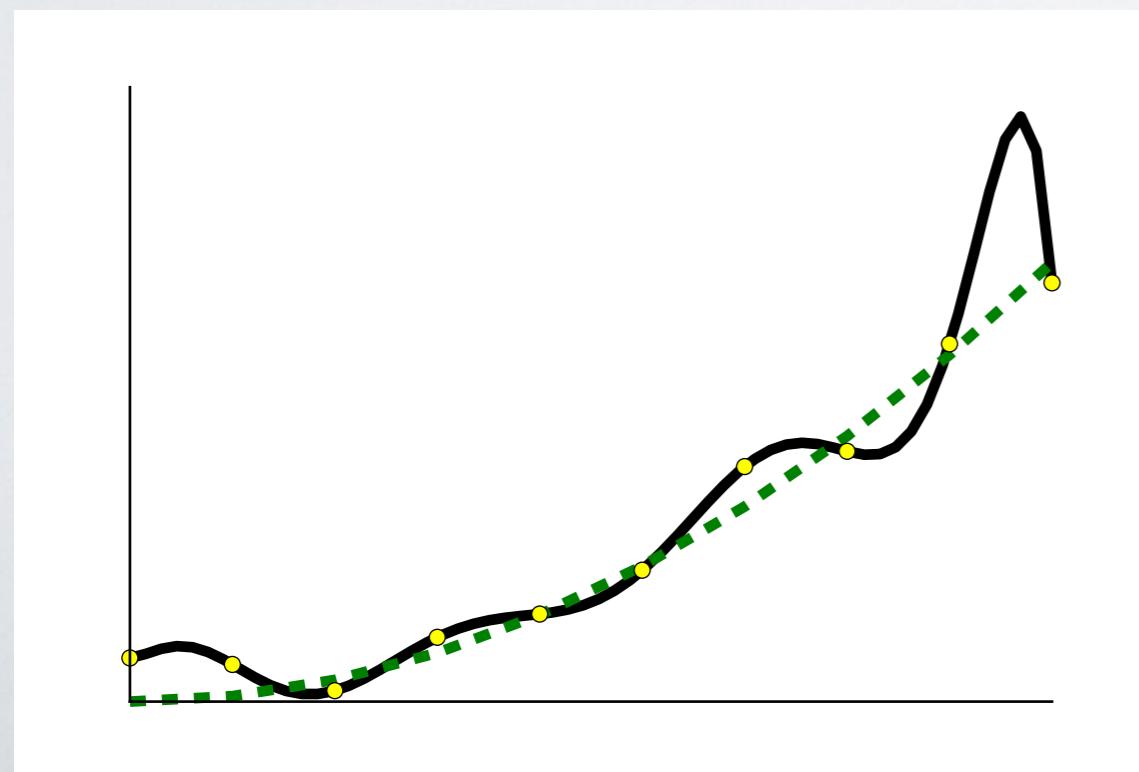
Trace Distance

Hilbert-Schmidt Distance

We seek high accuracy *relative to an **unknown** truth.*

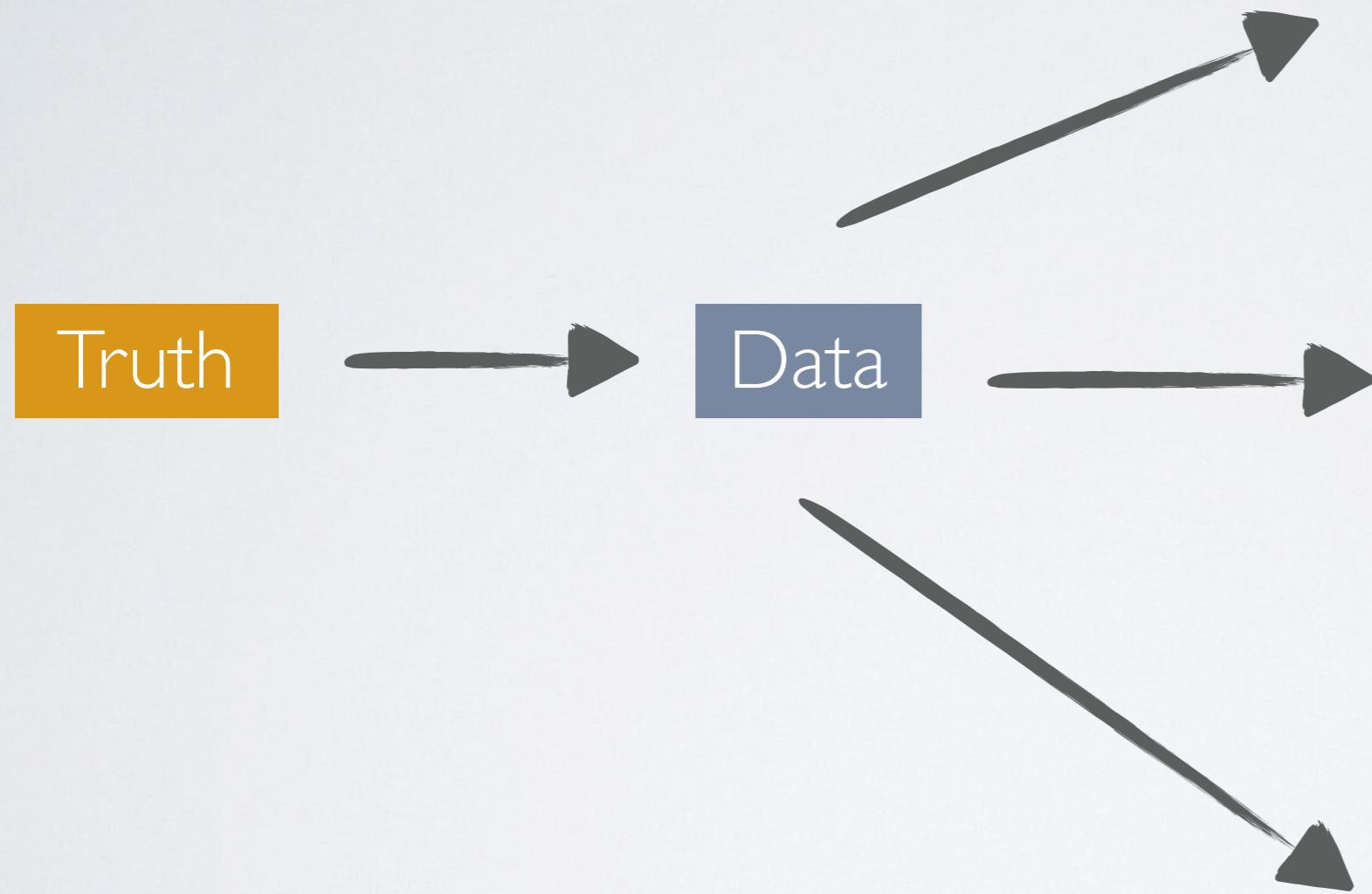
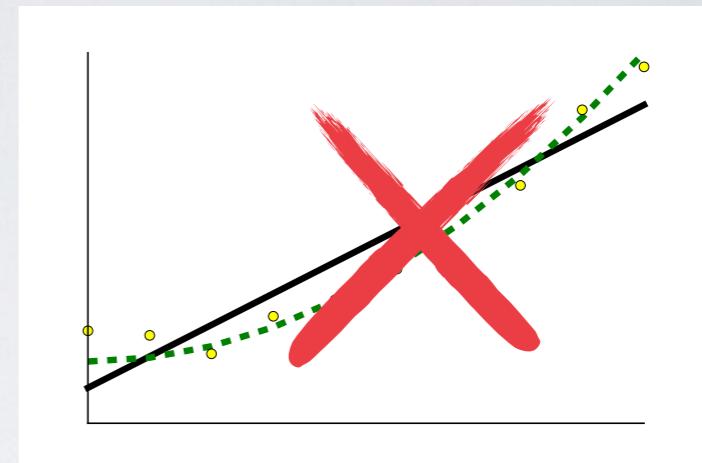
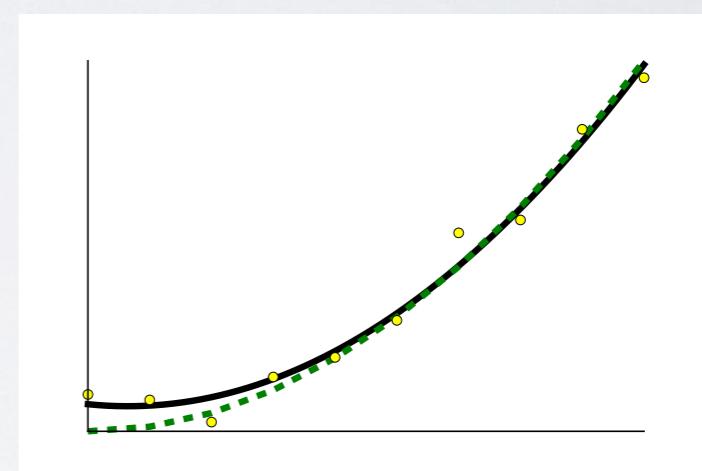
The “ideal” estimator would be very accurate...

and would not fit noise in the data.



“Ideal” impossible to achieve!

We do not have truth, only data. How do we be accurate and fit well? Model selection.



People already use model selection in quantum information...but are they justified in doing so?

“Error models in quantum computation:
an application of model selection”
(Schwarz/van Enk, **2013**)

“Rank-based model selection
for multiple ions quantum tomography”
(Guta et. al., **2012**)

“When quantum tomography goes wrong:
drift of quantum sources and other errors”
(van Enk/Blume-Kohout, **2013**)

Model selection techniques
currently used in quantum
tomography **may have**
problems.

Such as loglikelihood ratio tests, or Akaike's AIC.

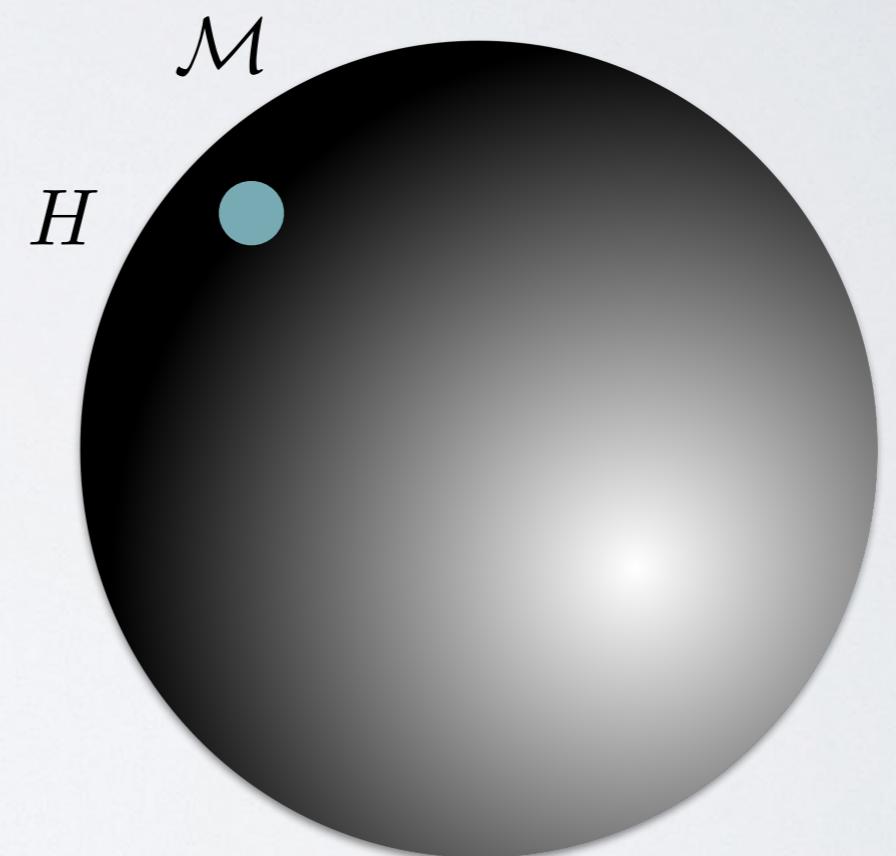
Quantum information makes connections to statistical inference in many ways.

Model = parametrized family of probability distributions

Hypothesis = point in the model

Distributions via the Born rule:

$$Pr(E) = \text{tr}(\rho E)$$



Given some data, plausibility of models/hypotheses is quantified by their *likelihood*.

What is the probability assigned to the data seen?

Hypothesis: Just compute it!

$$\mathcal{L}(H) = \Pr(\text{Data}|H)$$

Models: Just maximize!

$$\mathcal{L}(\mathcal{M}) = \max_{H \in \mathcal{M}} \Pr(\text{Data}|H)$$

We use likelihoods to compare hypotheses/models and to make estimates.

Quantum information makes connections to statistical inference in many ways.

State discrimination

is an instance of

simple hypothesis testing

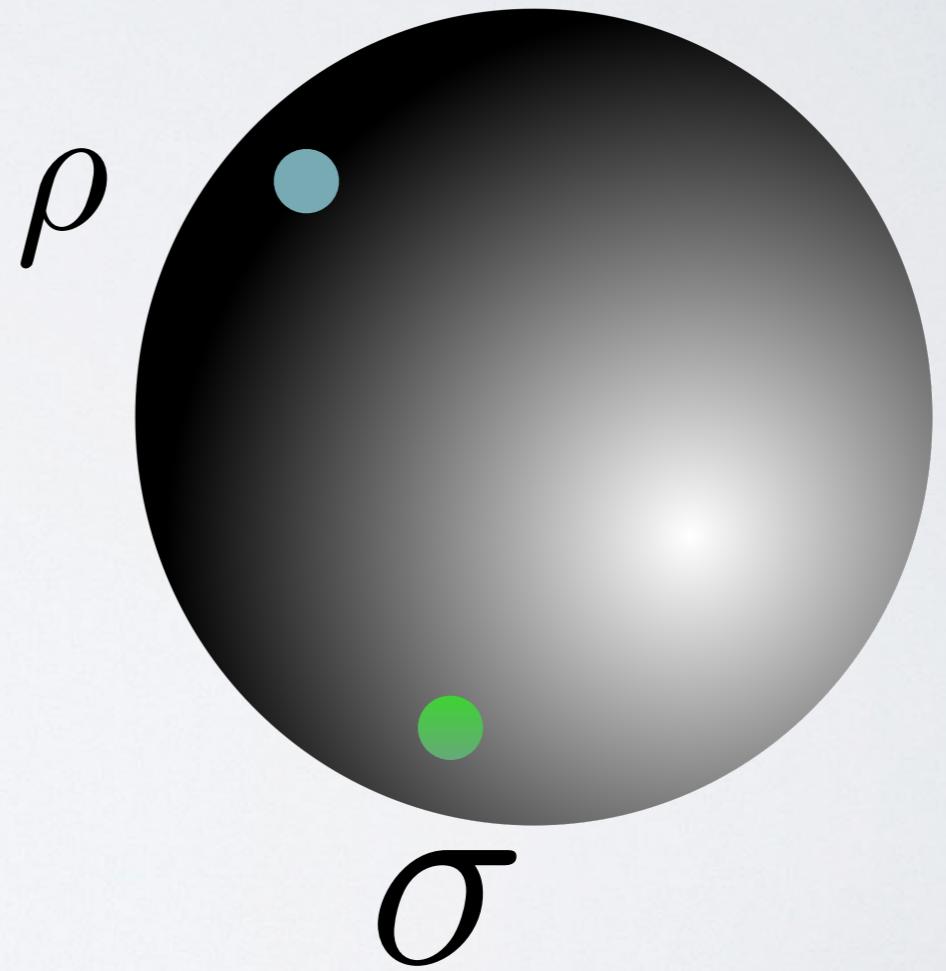
Which state is it?

Choose the higher likelihood!

$$\lambda(\rho, \sigma) = -2 \log \left(\frac{\mathcal{L}(\rho)}{\mathcal{L}(\sigma)} \right)$$

$$\sigma \iff \lambda \geq 0$$

Neyman-Pearson lemma tells us this is the most powerful test.



Quantum information makes connections to statistical inference in many ways.

State tomography

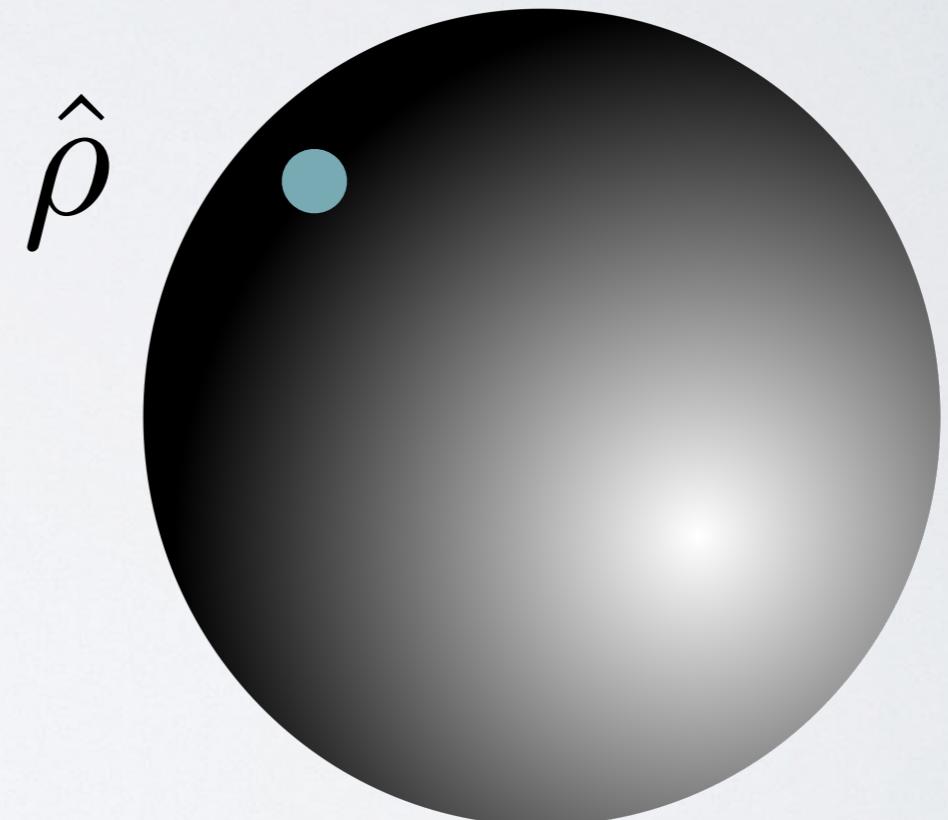
is an instance of

model fitting

Which parameters are best?

Maximum likelihood estimation

$$\hat{\rho} = \operatorname{argmax}_{\rho} \mathcal{L}(\rho)$$



Quantum information makes connections to statistical inference in many ways.

Entanglement verification

is an instance of

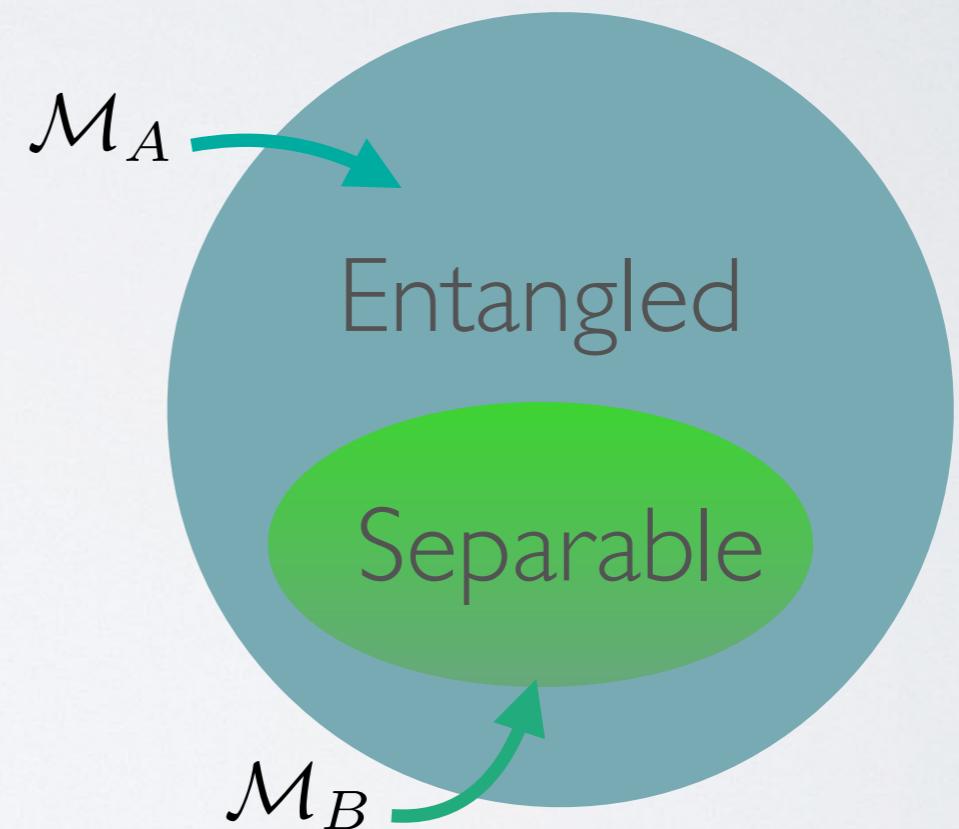
composite hypothesis testing

Which region is it?

Choose the higher likelihood!

$$\lambda(\mathcal{M}_A, \mathcal{M}_B) = -2 \log \left(\frac{\mathcal{L}(\mathcal{M}_A)}{\mathcal{L}(\mathcal{M}_B)} \right)$$

$$\mathcal{M}_B \iff \lambda \geq 0$$



Quantum information makes connections to statistical inference in many ways.

Z-diagonal state vs not

is an instance of

(nested) model selection

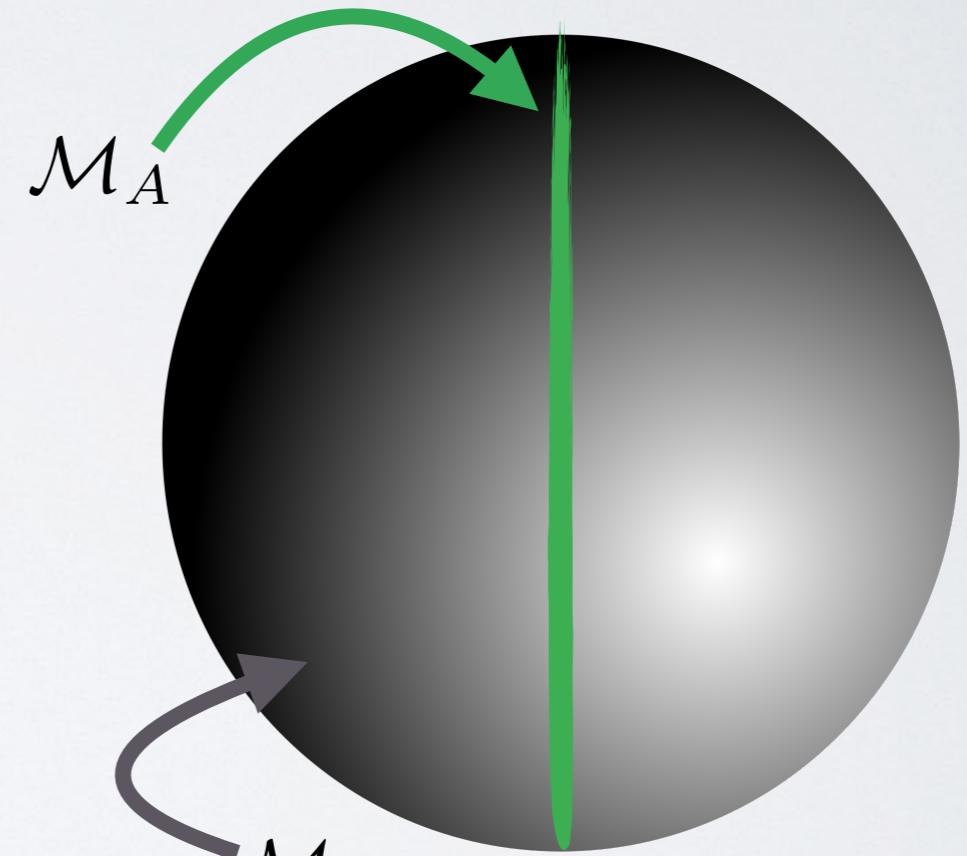
Is the true state on the line
or not?

~~Choose the higher likelihood!~~

$$\lambda(\mathcal{M}_A, \mathcal{M}_B) = -2 \log \left(\frac{\mathcal{L}(\mathcal{M}_A)}{\mathcal{L}(\mathcal{M}_B)} \right)$$

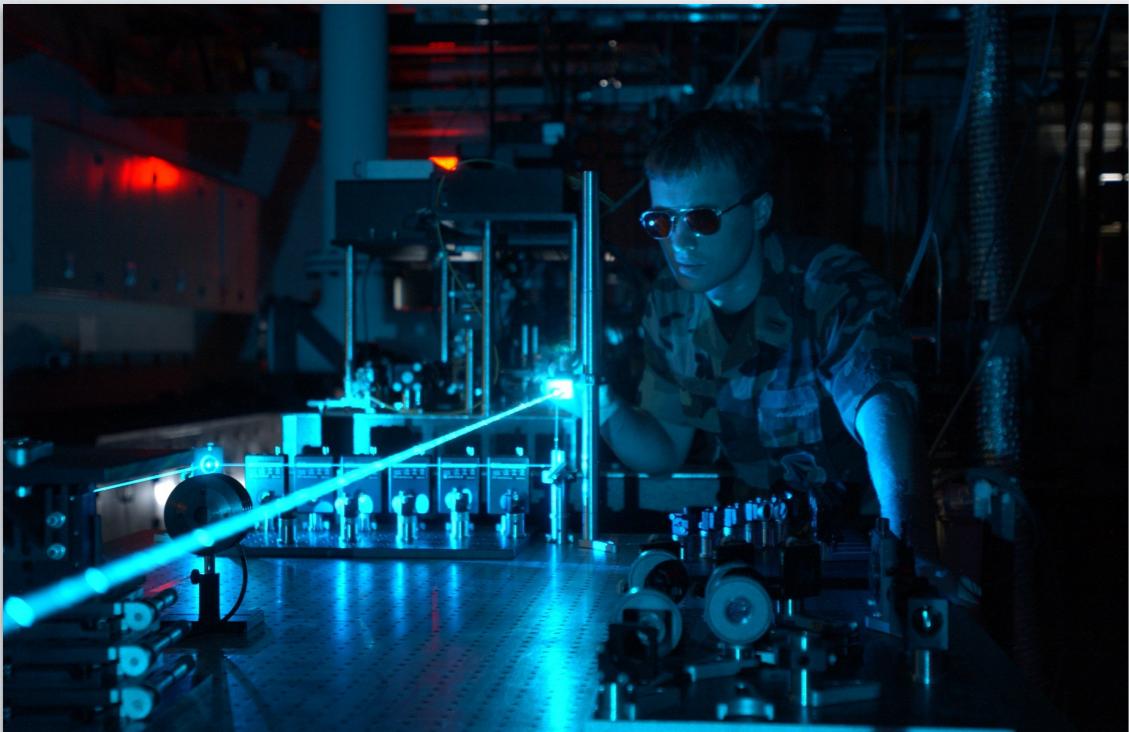
$$\lambda \geq 0 \implies \mathcal{M}_B ???$$

LLRS never negative!



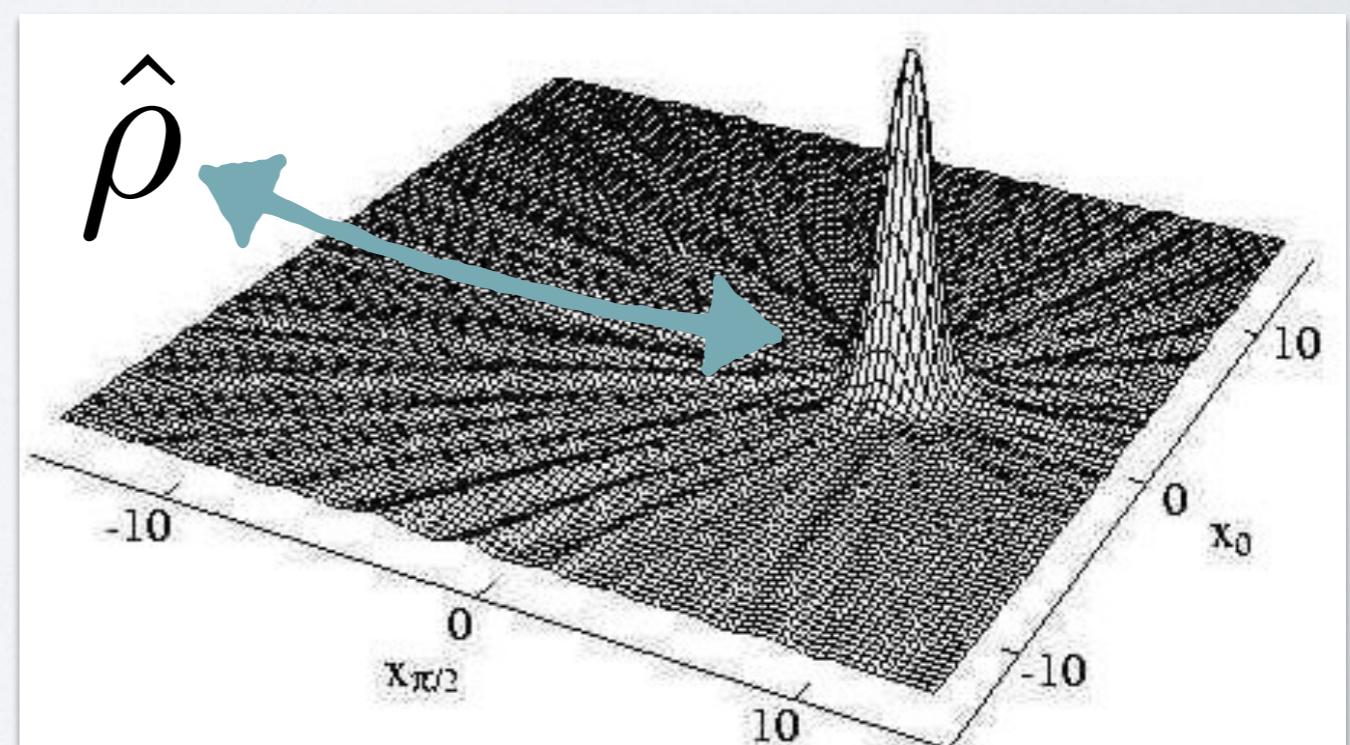
How will we **investigate** model selection in state tomography?

I am studying a paradigmatic problem:
tomography of continuous-variable systems.



Optical modes of light....

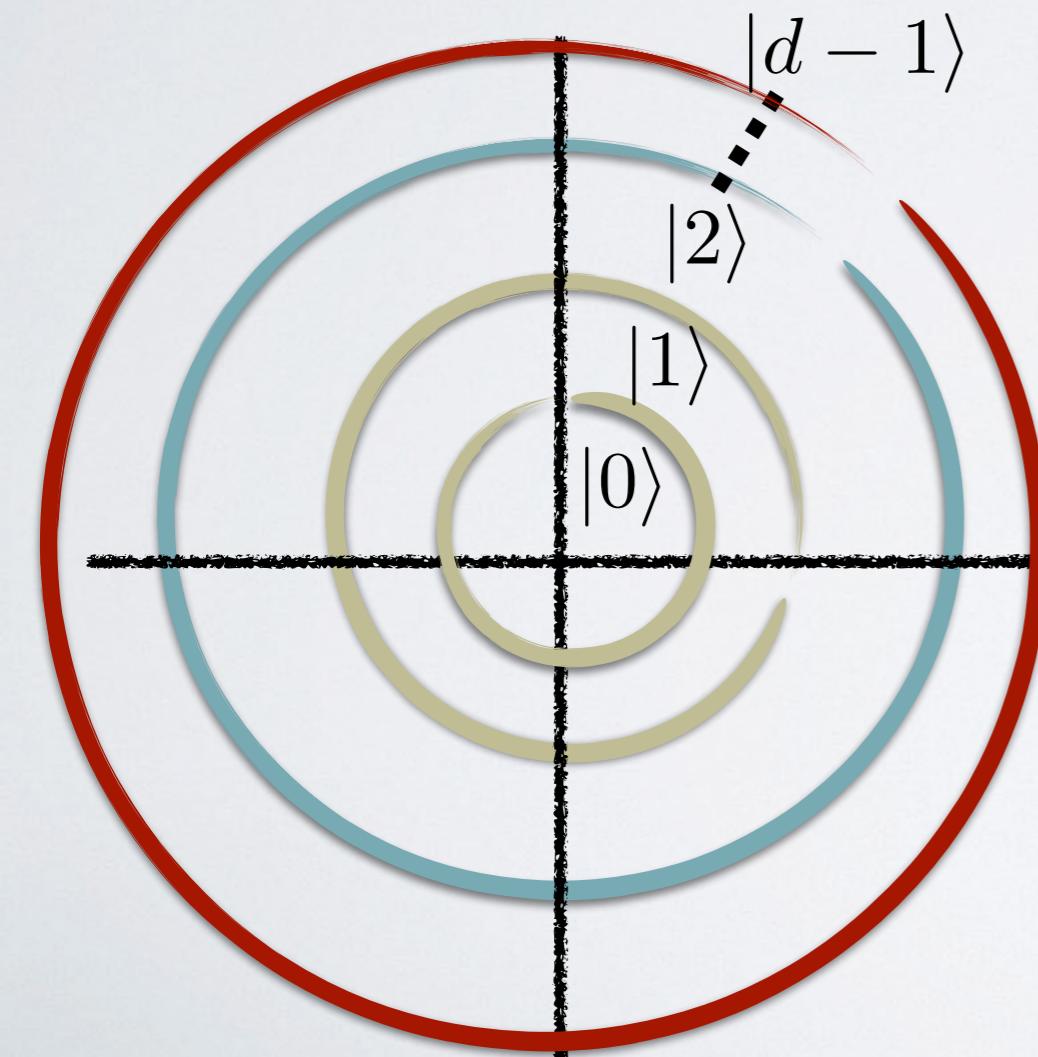
...as *Wigner functions*
or *density matrices*.



The models I consider are subspaces of an infinite-dimensional Hilbert space.

$$\mathcal{H}_d = \text{Span} (|0\rangle, |1\rangle, \dots |d-1\rangle)$$

$$\mathcal{M}_d = \{\rho \mid \rho \in \mathcal{B}(\mathcal{H}_d), \text{Tr}(\rho) = 1, \rho \geq 0\}$$



Models come from low-energy assumption (and lack of structure in Wigner function)

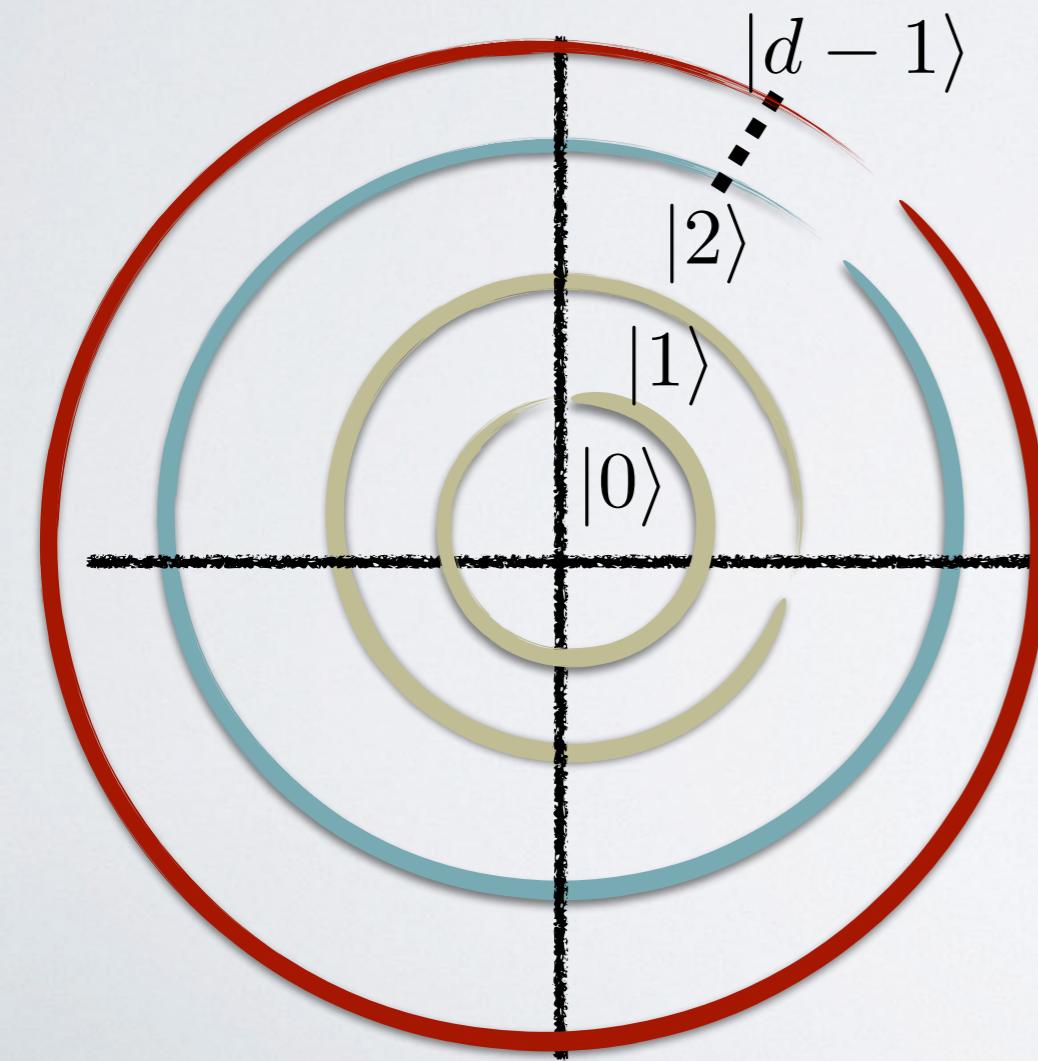
Other models are possible (e.g., by rank).

The models I consider are *nested* inside one another.

$$\mathcal{M}_d \subset \mathcal{M}_{d+1}$$

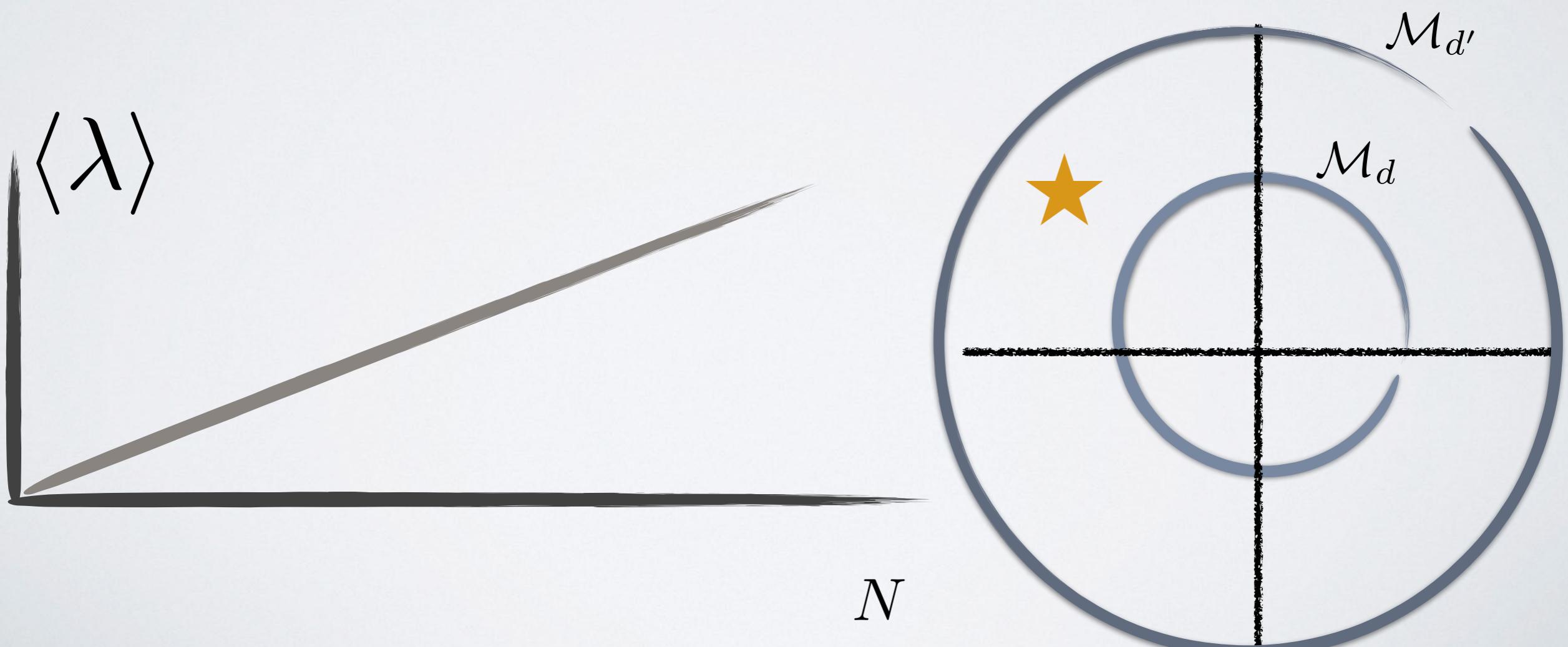
How can we use likelihoods to compare them?

We have to tackle nested model selection



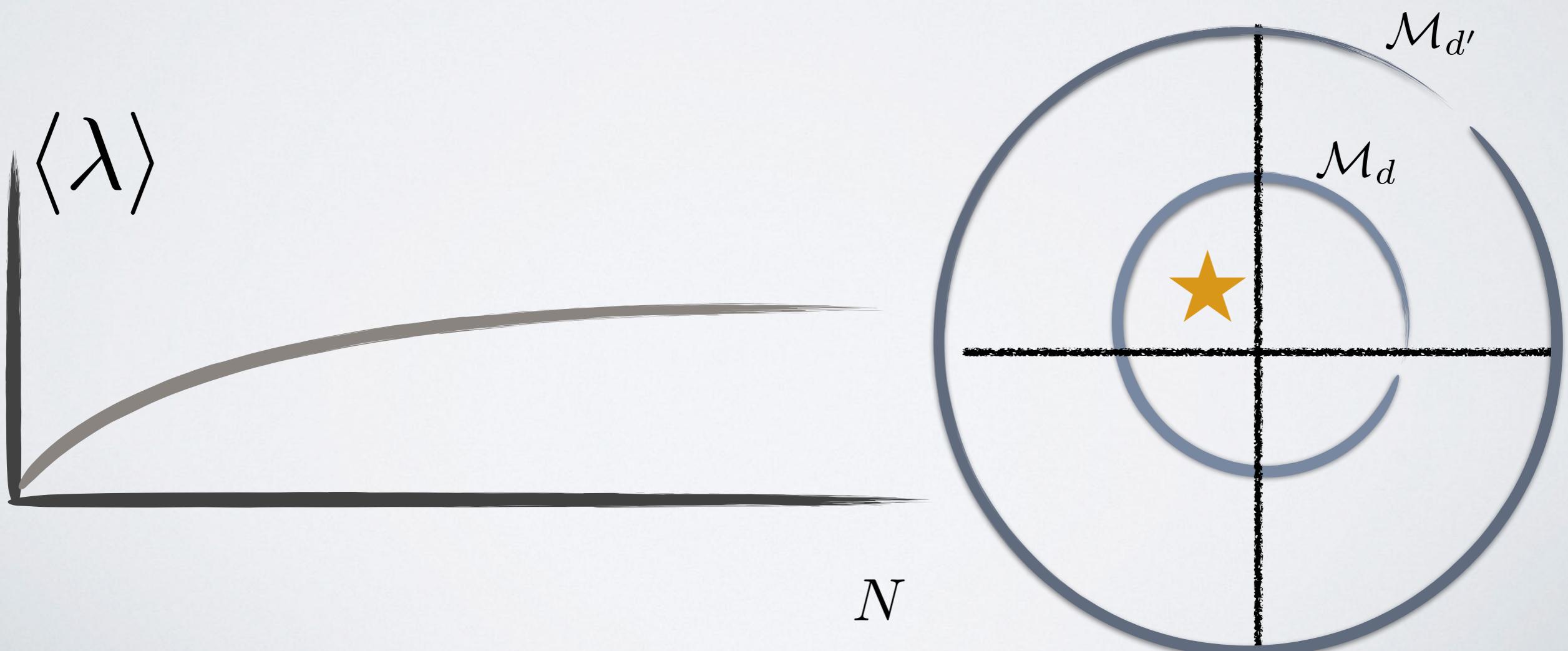
We re-think the use of the LLRS for nested model selection, based on its expected value.

$$\lambda(\mathcal{M}_d, \mathcal{M}_{d'}) = -2 \log \left(\frac{\mathcal{L}(\mathcal{M}_d)}{\mathcal{L}(\mathcal{M}_{d'})} \right)$$



We re-think the use of the LLRS for nested model selection, based on its expected value.

$$\lambda(\mathcal{M}_d, \mathcal{M}_{d'}) = -2 \log \left(\frac{\mathcal{L}(\mathcal{M}_d)}{\mathcal{L}(\mathcal{M}_{d'})} \right)$$



Asymptotic convergence of the LLRS is a consequence of the Wilks Theorem.

**THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO
FOR TESTING COMPOSITE HYPOTHESES¹**

By S. S. WILKS

1938: Wilks gives distribution of LLRS.

$$\lambda(\mathcal{M}_d, \mathcal{M}_{d'}) \sim \chi^2_{p_{d'} - p_d}$$

The Wilks Theorem allows us to do nested model selection.

We compare the LLRS to its expected value

$$\lambda(\mathcal{M}_d, \mathcal{M}_{d'}) = -2 \log \left(\frac{\mathcal{L}(\mathcal{M}_d)}{\mathcal{L}(\mathcal{M}_{d'})} \right)$$

$$\mathcal{M}_{d'} \iff \lambda \geq \langle \lambda \rangle$$



Another model selection technique
relies on this result.

Information criteria **explicitly trade off** between
fitting data well and having high accuracy

Use of Akaike's **AIC** is **common**

Relies on Wilks to compute bias of a
particular estimator of KL divergence

**My work feeds into creating a
quantum information criterion**

We now have **potential tools** for **nested model selection** in tomography. How do they **perform**?

I performed a Monte Carlo study of the LLRS and its behavior.

Studied:

- 17 true states (supported on low-energy subspace)

I performed a Monte Carlo study of the LLRS and its behavior.

Studied:

- 17 true states
- 100 random datasets for each state (coherent state POVM)

$$\text{Data} = \{\alpha_j \mid \alpha_j \in \mathbb{C}, \Pr(\alpha_j) = \langle \alpha_j | \rho_{\text{true}} | \alpha_j \rangle\}$$

I performed a Monte Carlo study of the LLRS and its behavior.

Studied:

- 17 true states
- 100 random datasets for each state
- 10K to 100K samples for each dataset

I performed a Monte Carlo study of the LLRS and its behavior.

Studied:

- 17 true states
- 100 random datasets for each state
- 10K to 100K samples for each dataset
- MLE over $\{2 \dots 10\}$ -dimensional Hilbert spaces
$$\{\mathcal{M}_2, \mathcal{M}_3, \dots, \mathcal{M}_{10}\}$$

Lots of supercomputer time!

The results were **puzzling**.

I checked four predictions of the Wilks Theorem on the behavior of the LLRS. Only one matched.

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO FOR TESTING COMPOSITE HYPOTHESES¹

By S. S. WILKS

Predictions:

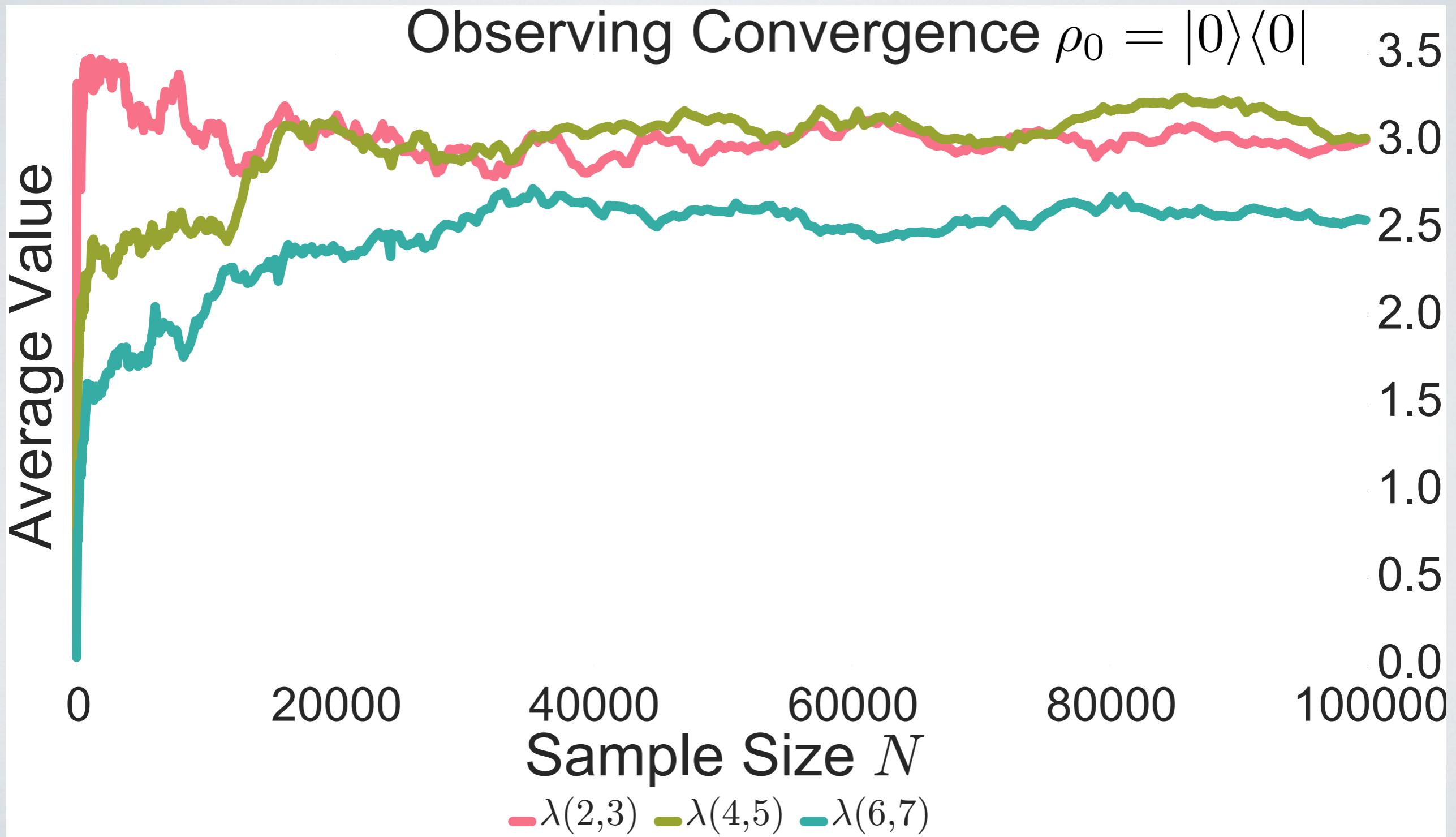
Asymptotic convergence

A particular expected value

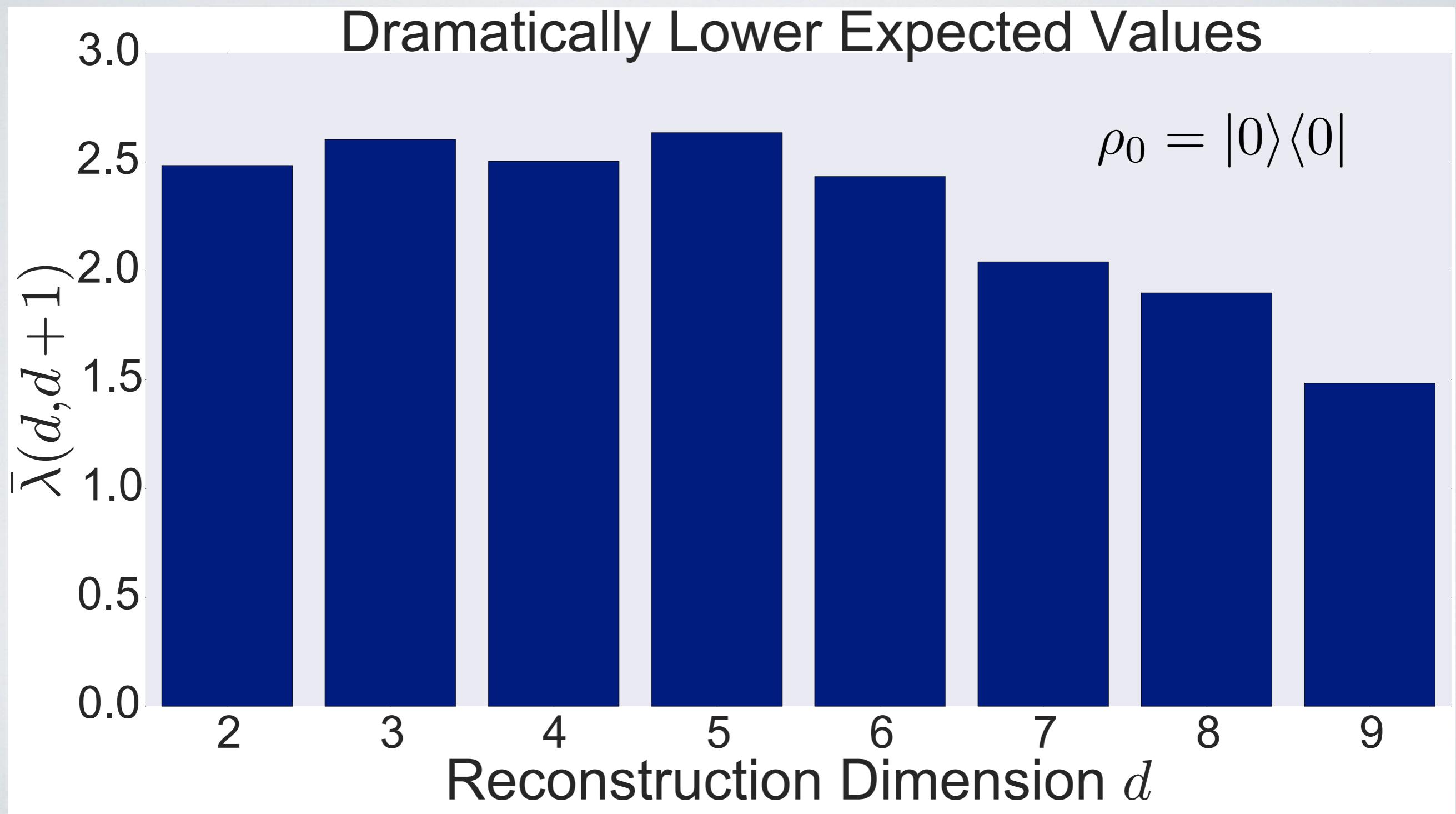
Distribution independent of truth

Distribution depends on reconstruction dimension

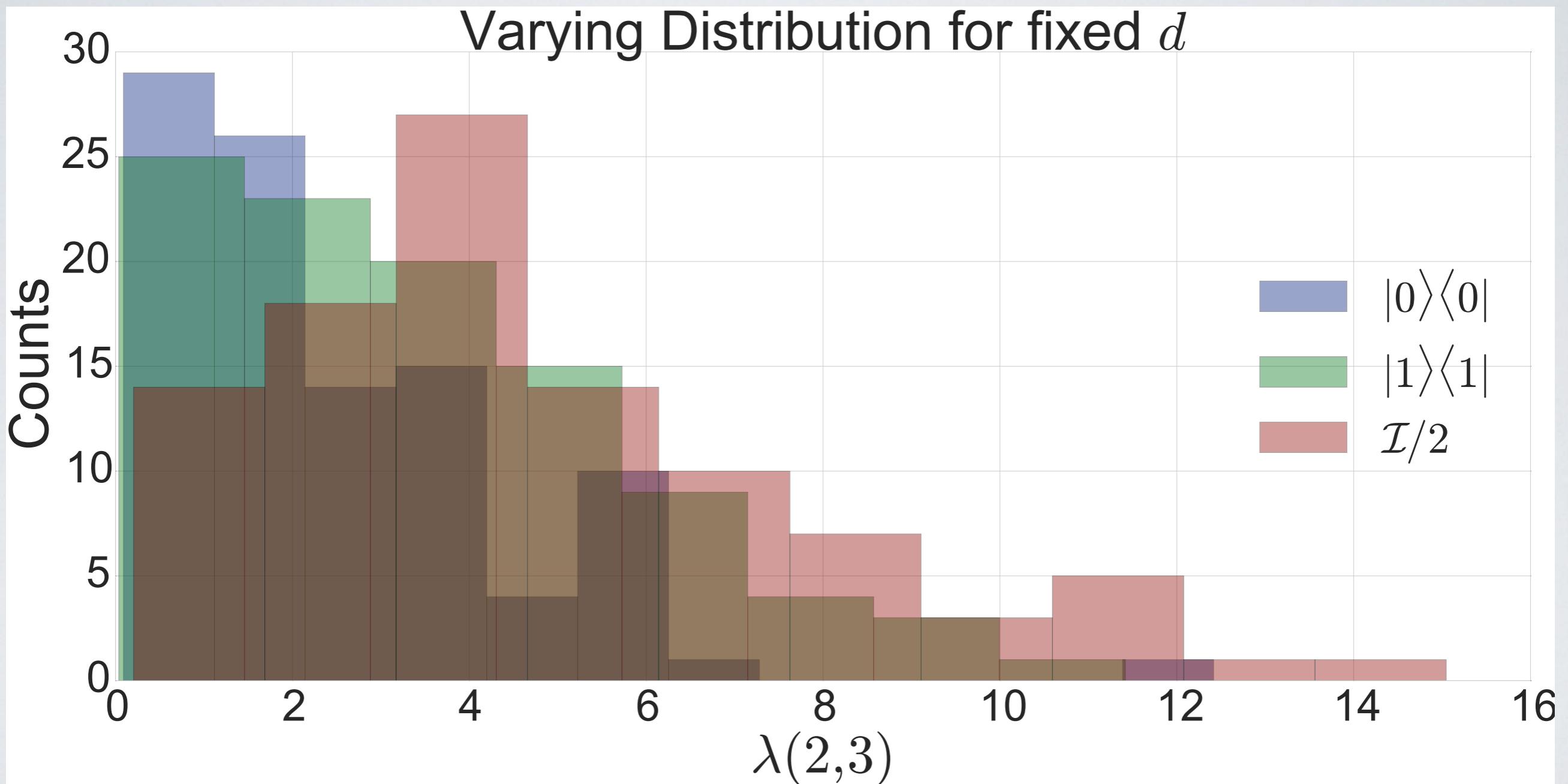
When the truth is in the smaller model, we observe asymptotic convergence.



Monte Carlo averages and expectation values
do not agree at all.

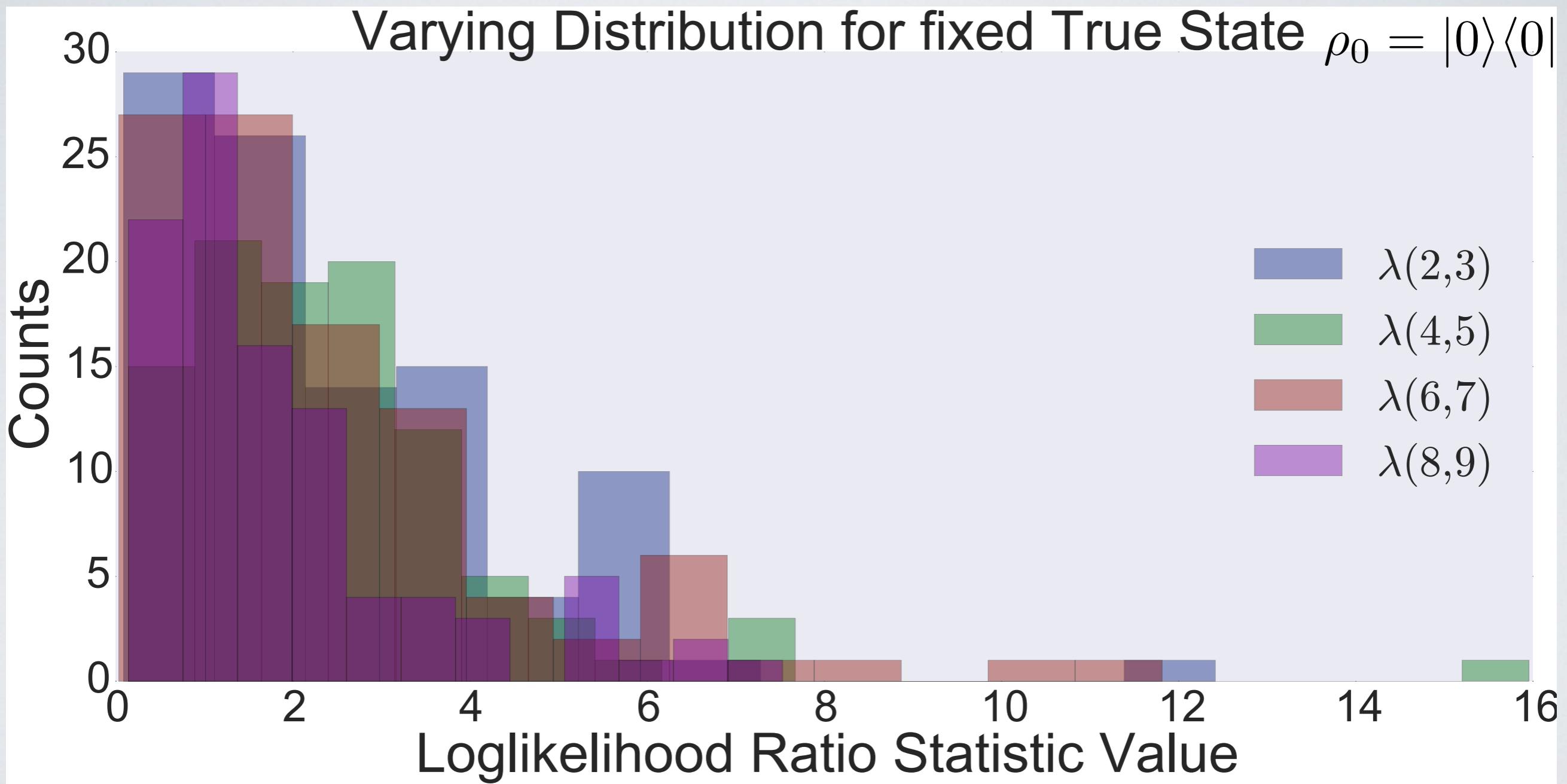


Wilks theorem predictions for distribution of LLRS do not agree with simulation.



Wilks: Distribution *independent of true state*

Wilks theorem predictions for distribution of LLRS do not agree with simulation.



Wilks: Distribution depends on reconstruction dimension

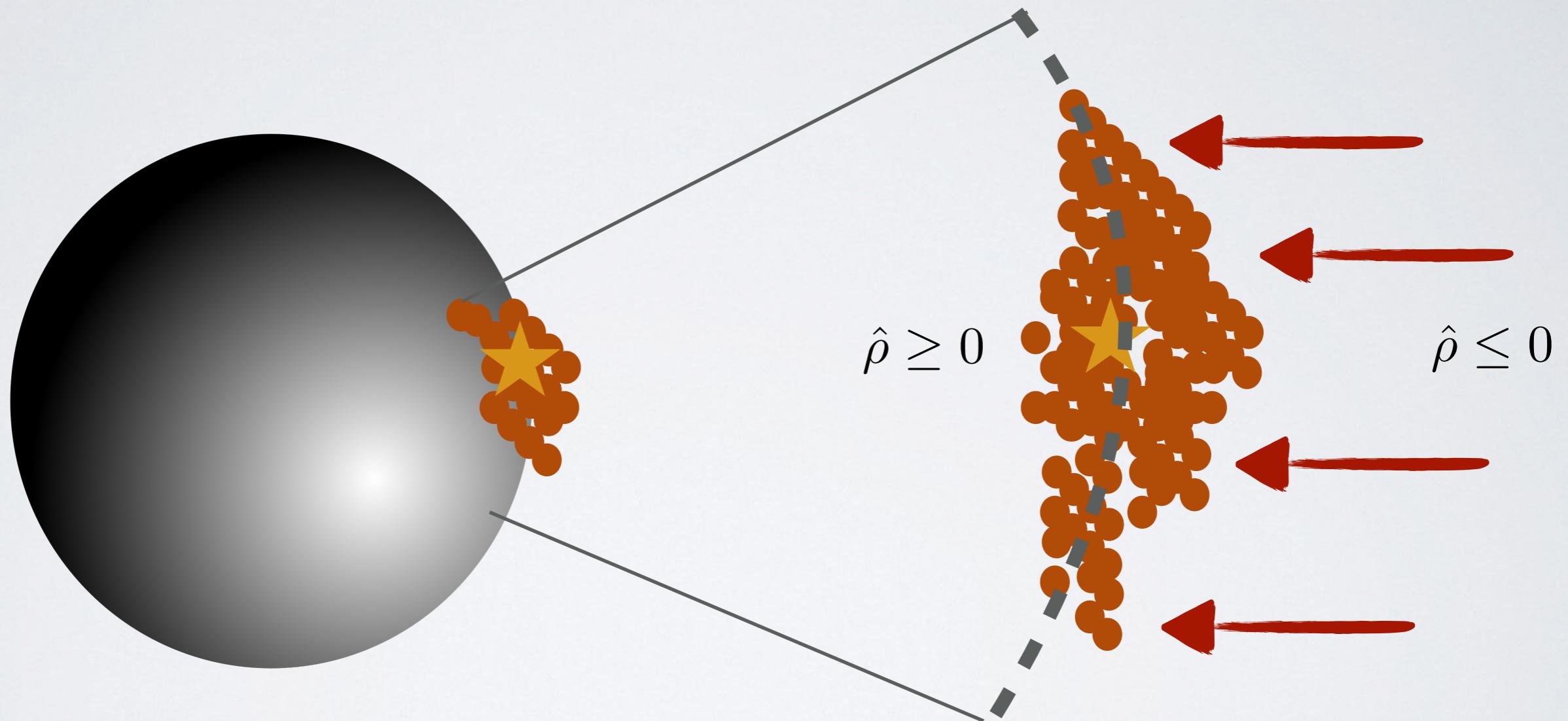
Theorems are not “wrong”, only
“not applicable”.

Why does the Wilks Theorem
not apply?

State tomography is **on the edge.**

Let's see why.

The first edge is the positivity constraint. This shows up a lot in quantum information.



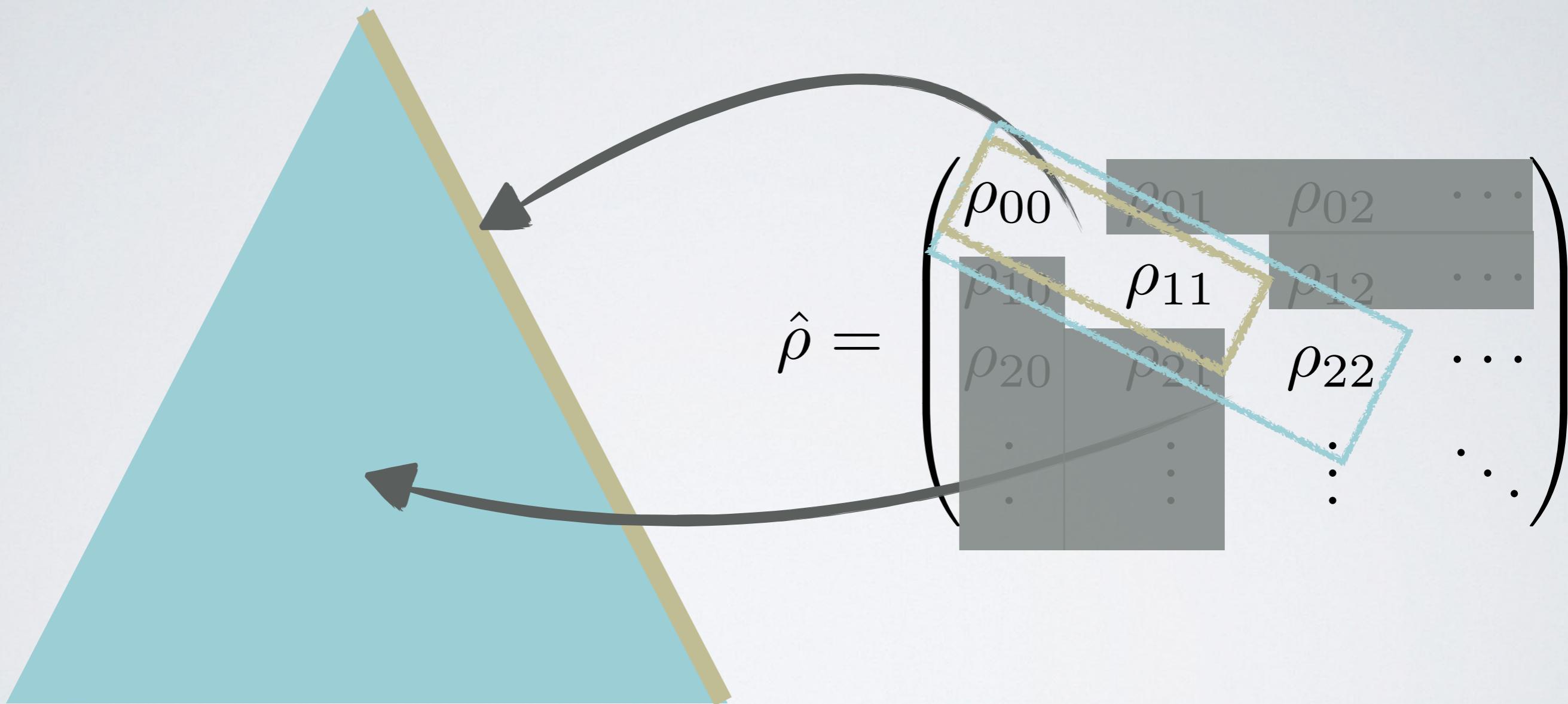
The first edge is the positivity constraint. This shows up a lot in quantum information.

Positivity “piles up” estimates on the boundary

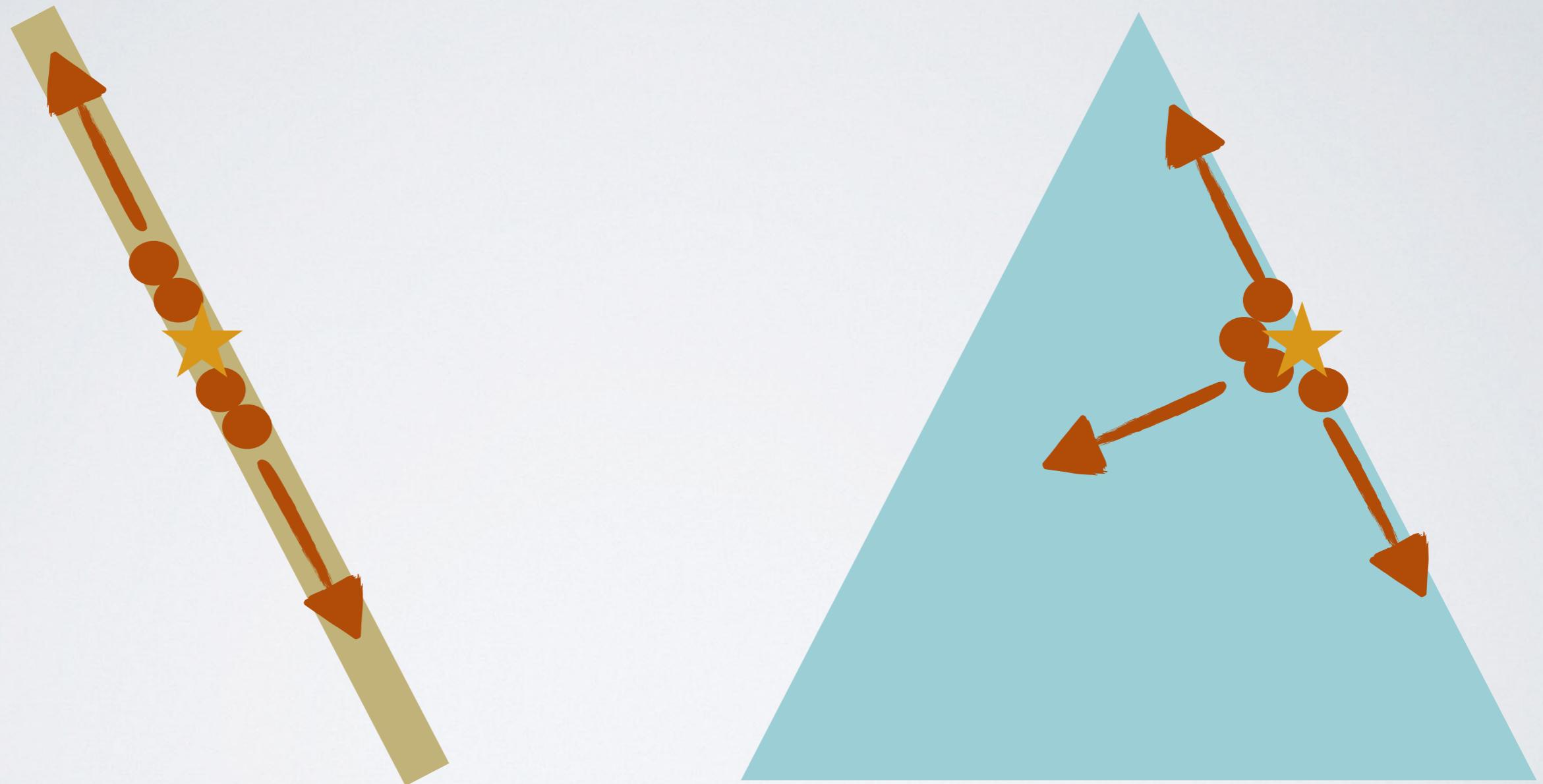
Fluctuations normal to boundary are *diminished*.

Results in *bias* of the estimator

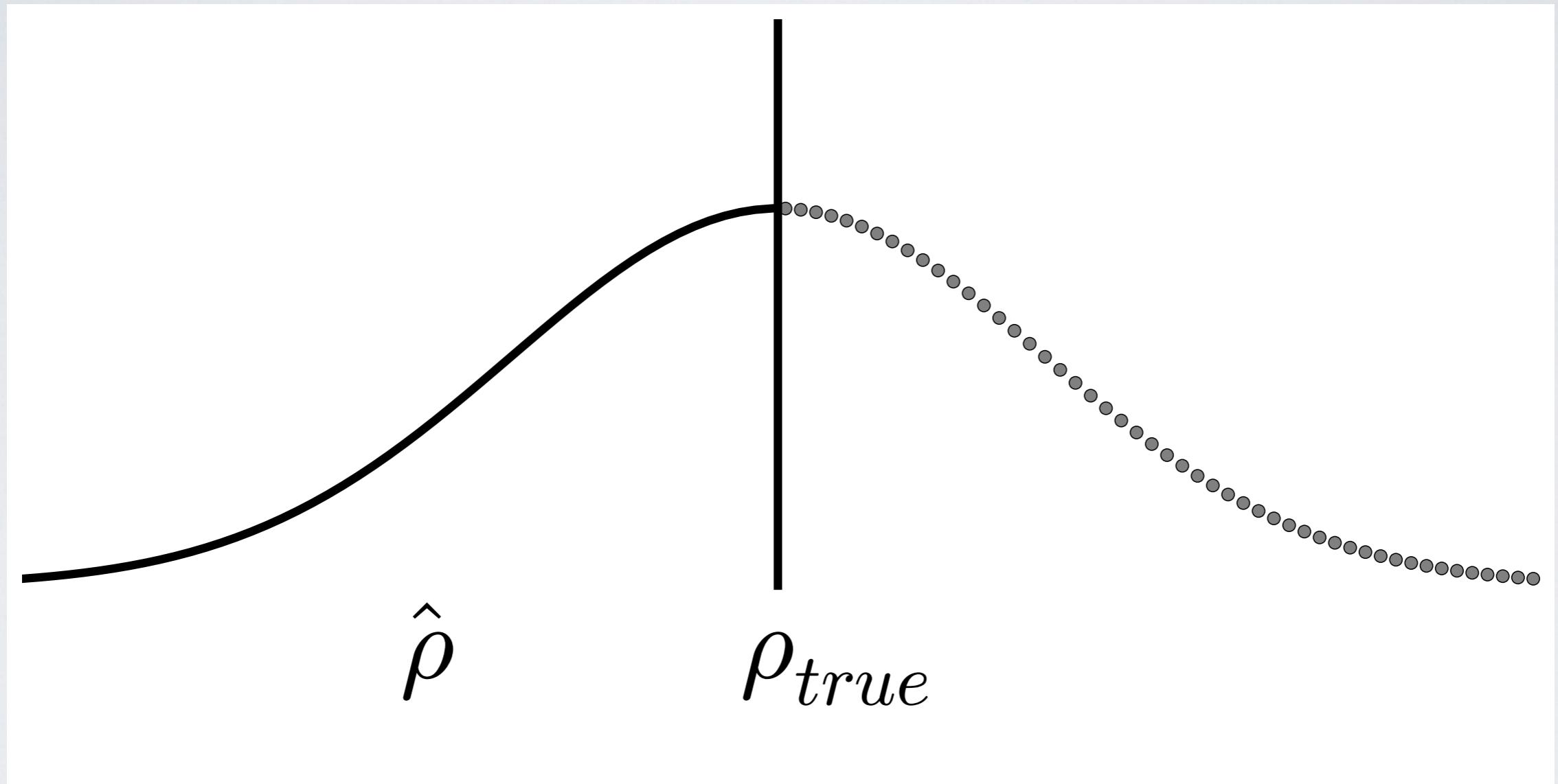
The second edge is that the Hilbert spaces I use nest on the boundary of one another.



When the true state is mixed, you avoid the first edge, but still run right into the second.



The Wilks Theorem cannot be applied on boundaries - they introduce constraints.

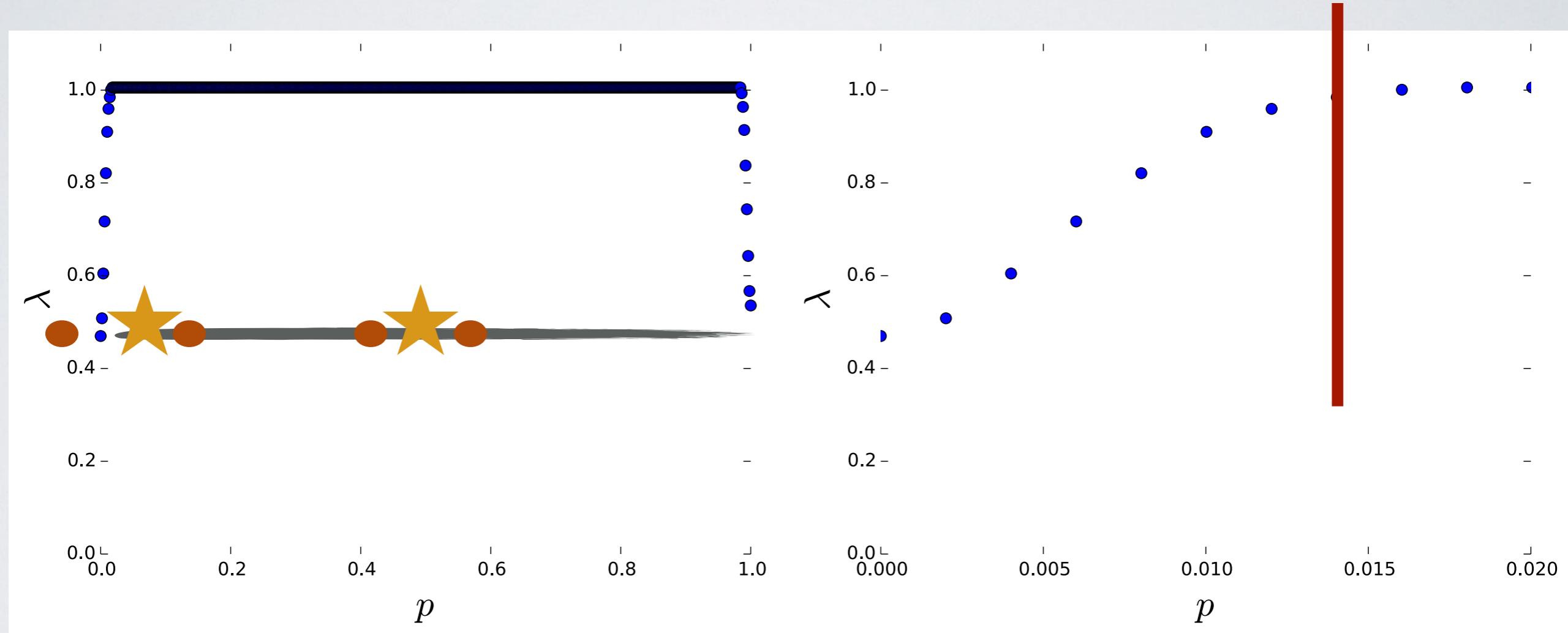


**Boundaries change distribution of MLEs,
causing problems.**

A numerical study of a related problem indicates closeness to the boundary affects the LLRS.

1-simplex (i.e., a coin)

A numerical study of a related problem indicates closeness to the boundary affects the LLRS.



If truth within 1 standard deviation of boundary,
constraints become important.

State tomography is **on the edge.**

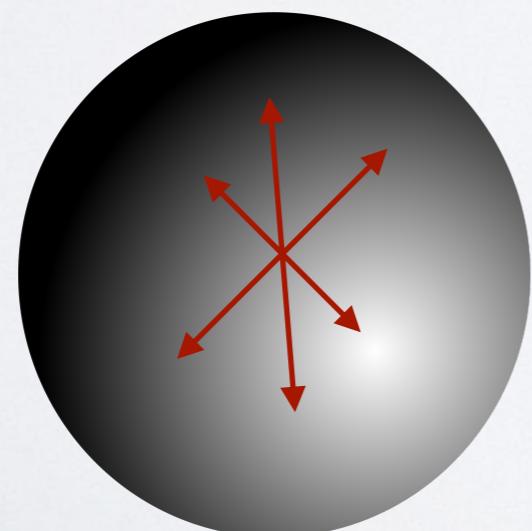
So must our model selection be.

Proving a “qWilks theorem” would be hard, in general.

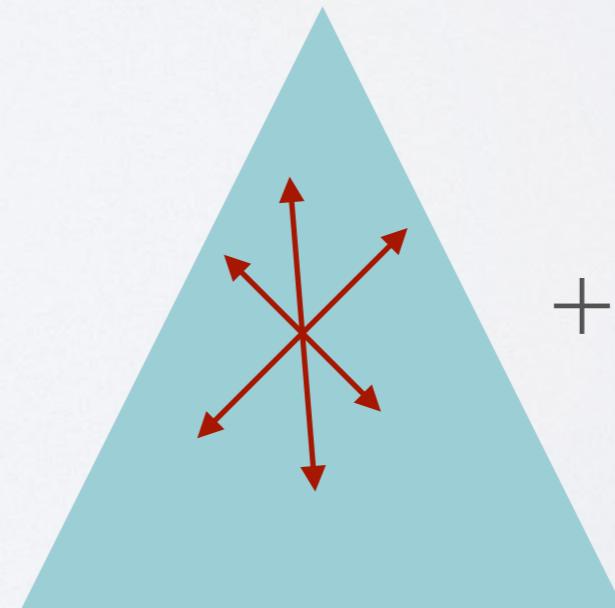
Distribution of lambda depends on true state

Distribution depends on Hilbert space dimension

Quantum state space hard to reason about...



3



+ 6

Can we find a replacement for the Wilks theorem which respects boundaries?

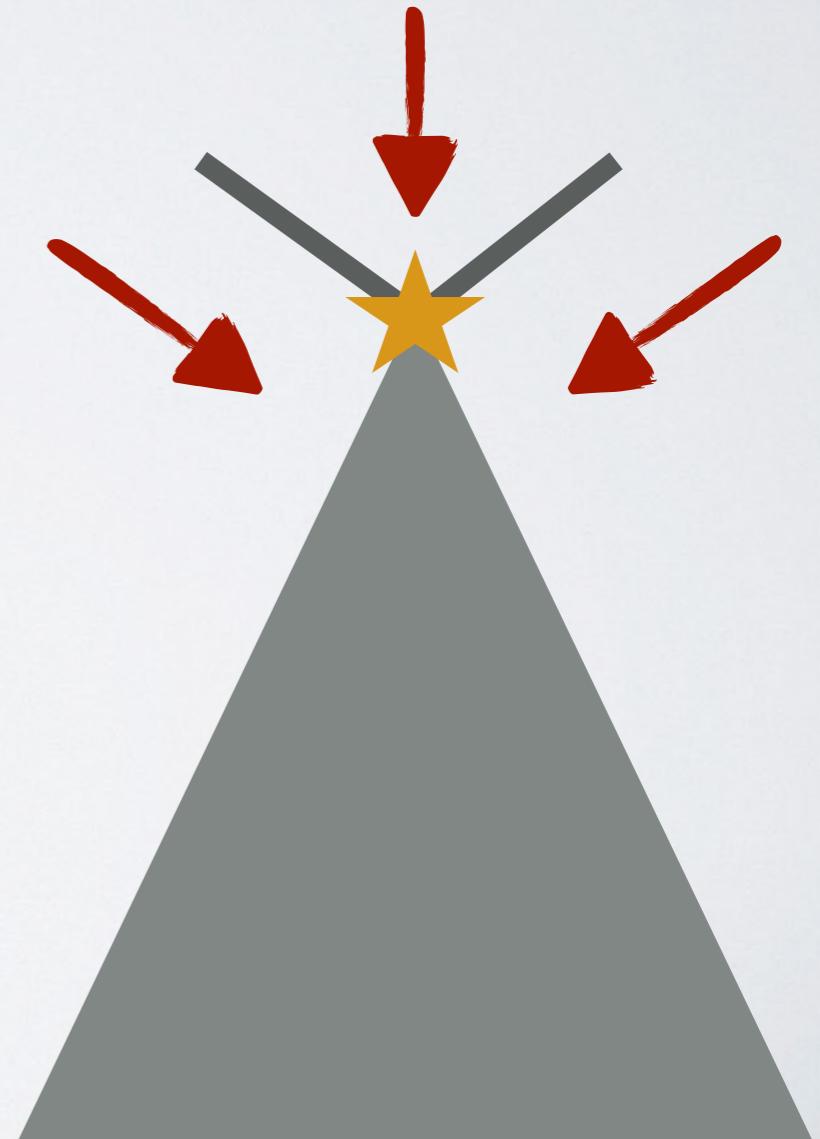
Quantum states = classical simplexes + unitary DOF

LLRS depends on *rank of true state*

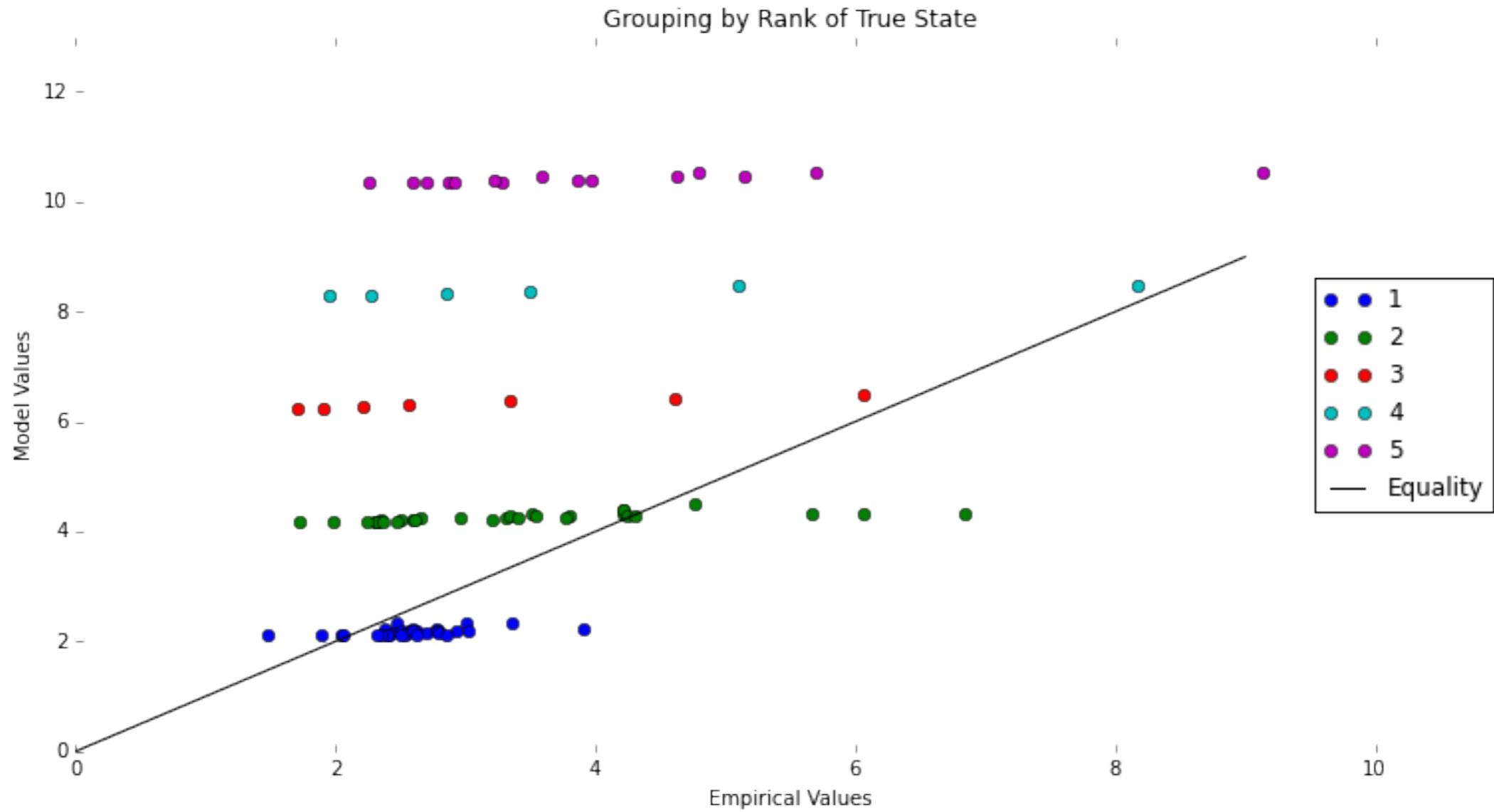
Does require Monte Carlo for simulating effect of simplex boundaries

$$\langle \lambda \rangle = 2 \operatorname{rank}(\rho_{true}) + f(d+1, r) - f(d, r)$$

	1	2	3	4	5	6
2	0.496443	0.999158	NaN	NaN	NaN	NaN
3	0.822011	1.488624	1.982415	NaN	NaN	NaN
4	1.070604	1.875747	2.478096	2.976010	NaN	NaN
5	1.263654	2.189043	2.883159	3.465806	3.959832	NaN
6	1.442006	2.480977	3.266152	3.926972	4.485939	4.985161
7	1.599560	2.728116	3.589044	4.313688	4.933024	5.488181
8	1.731031	2.937367	3.865390	4.648795	5.319806	5.921281
9	1.846602	3.127363	4.116697	4.955233	5.675212	6.321233
10	1.962161	3.317975	4.365928	5.258693	6.024682	6.715674
11	2.076795	3.502036	4.610776	5.554809	6.365295	7.098042
12	2.171777	3.666289	4.831894	5.828708	6.685554	7.458987



How well does this replacement work?



Not as accurate as we expected...what is going on?

When in doubt, do a Taylor series expansion of something!

Helpful trick: $\lambda(\mathcal{M}_d, \mathcal{M}_{d'}) = \lambda(\rho_{true}, \mathcal{M}_{d'}) - \lambda(\rho_{true}, \mathcal{M}_d)$

How does LLRS change
when truth and estimates are close?

Expand LLRS as function of
true state to second order

The Taylor series allows us to calculate an approximate expected value.

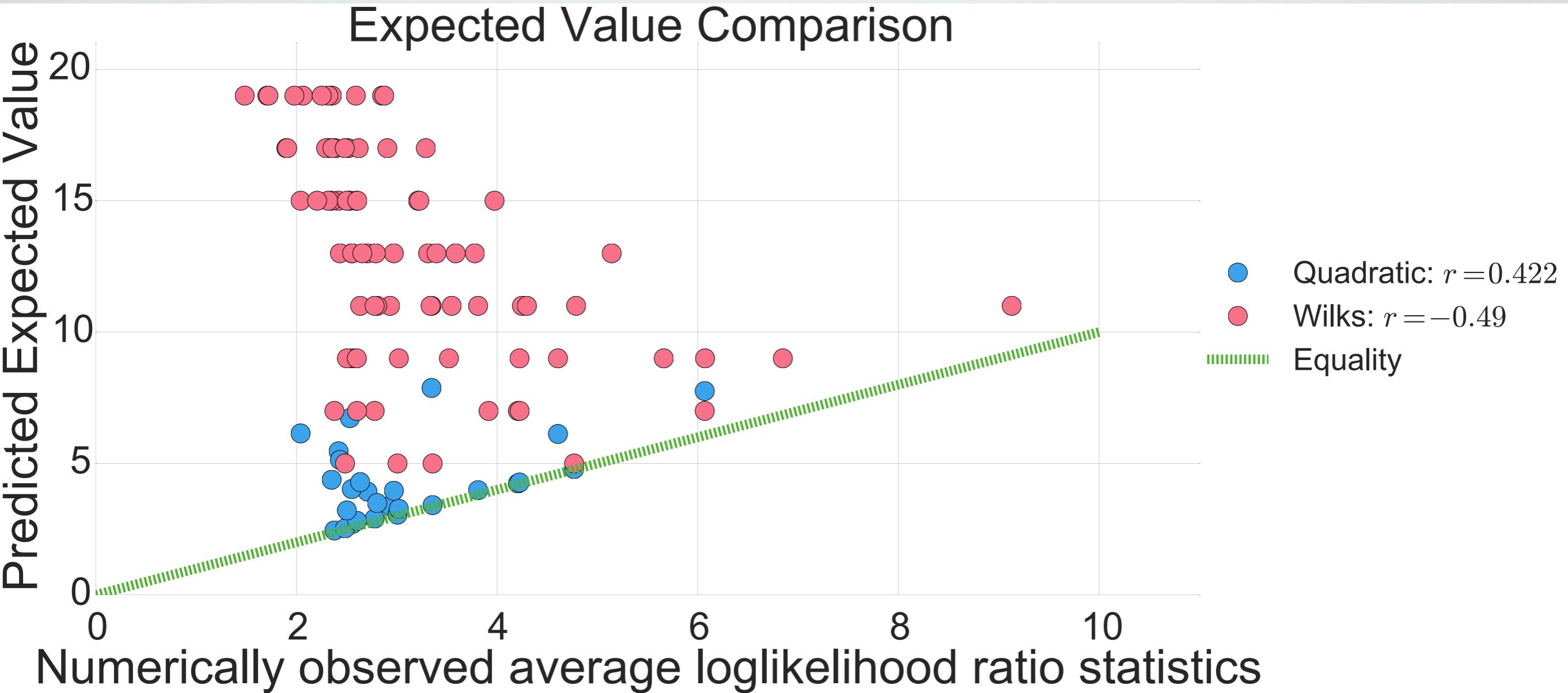
$$\lambda(\rho_{true}, \mathcal{M}_d) = \lambda(\rho_{true}, \hat{\rho})$$

$$\approx 0 + \frac{\partial \lambda}{\partial \rho} \bigg|_{\hat{\rho}} (\rho_{true} - \hat{\rho}) + \frac{1}{2} \frac{\partial^2 \lambda}{\partial \rho^2} \bigg|_{\hat{\rho}} (\rho_{true} - \hat{\rho})^2$$

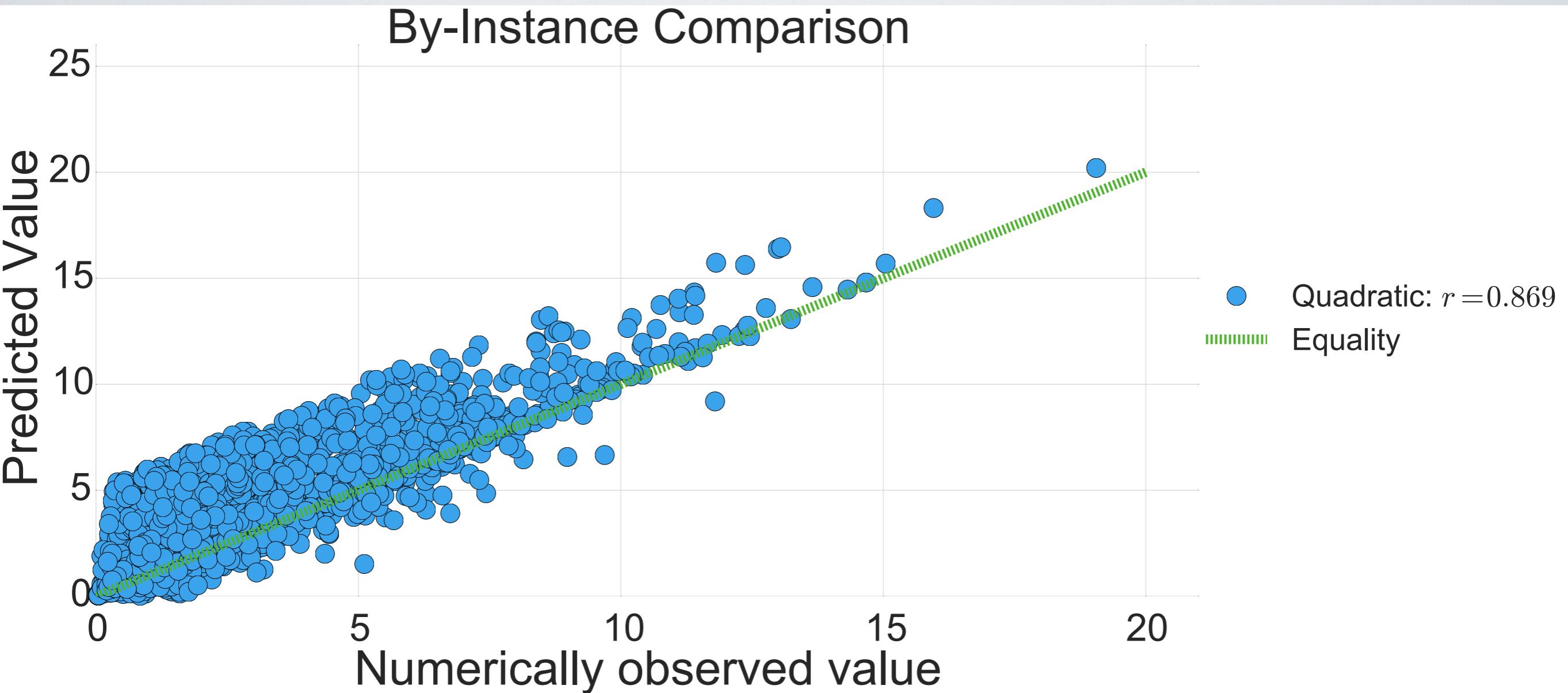
$$\langle \lambda(\rho_{true}, \mathcal{M}_d) \rangle \approx -tr \left(\left\langle \left. \frac{\partial^2 \mathcal{L}}{\partial \rho^2} \right|_{\hat{\rho}} \right| \left| \rho_{true} - \hat{\rho} \right\rangle \langle \langle \rho_{true} - \hat{\rho} \right| \right)$$

Addresses the question “If estimate close to truth, what does the LLRS do?”

This estimator outperforms the Wilks Theorem in predicting the Monte Carlo averages.



It also performs reasonably well on an instance-by-instance basis.



In the absence of any boundaries,
the prediction reduces to that of Wilks.

No boundaries = no bias in MLE

$$\langle \lambda(\rho_0, \hat{\rho}) \rangle \approx -\text{tr} \left(\left\langle \left. \frac{\partial^2 \mathcal{L}}{\partial \rho^2} \right|_{\hat{\rho}} \right| \rho_0 - \hat{\rho} \right) \langle \langle \rho_0 - \hat{\rho} \rangle \rangle$$

$$\langle \widehat{\lambda(\rho_0, \hat{\rho})} \rangle \approx \text{tr} \left(\hat{I}(\hat{\rho}) \text{Cov}(\hat{\rho}) \right) \approx d^2 - 1$$

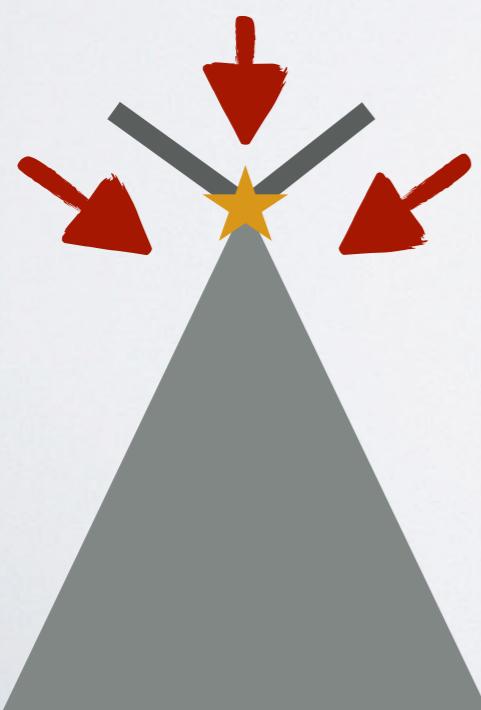
Does not predict distribution, however

What was the **point** of
all that **math**?

We are going to have a way to do nested model selection in quantum tomography!

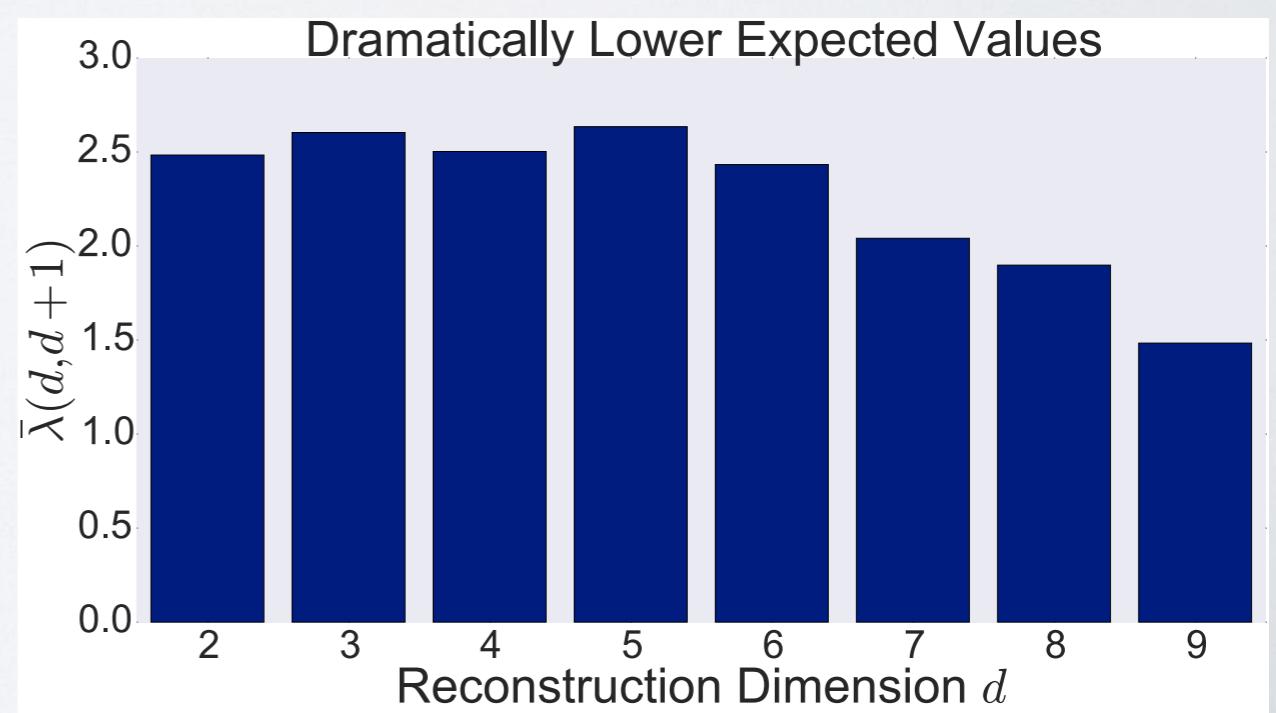


Simplex-Based Method



$$\lambda(\mathcal{M}_d, \mathcal{M}_{d+1})$$

Cannot use Wilks Theorem



What is **next**?

There are many ways forward.

Use this result to ***create estimator*** of expected value

Make a **quantum information criterion**

What's with **compressed sensing** and model selection?

A model selection rule for **displaced/squeezed states**

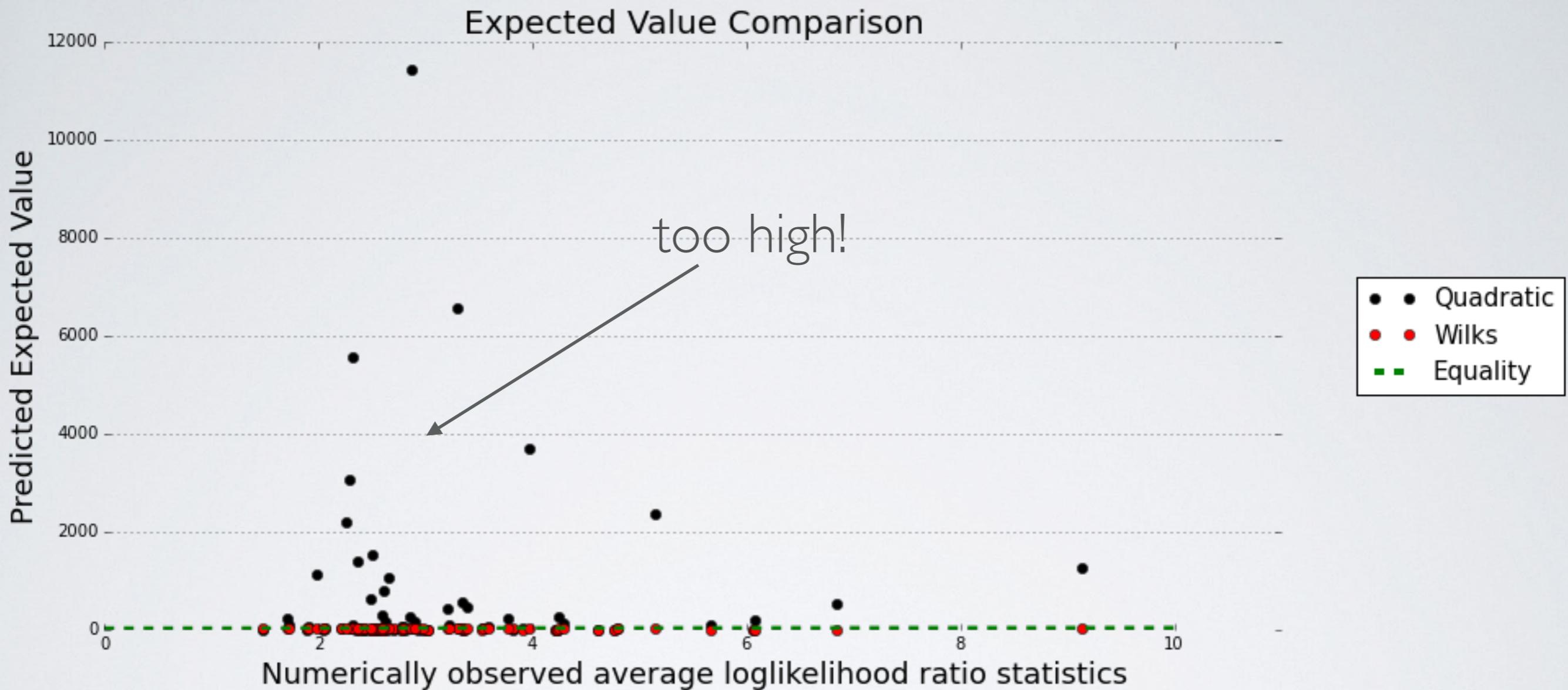
Apply active subspace methods to **speed up optimization**

A **year ago**, I thought
model selection using the LLRS
was **easy** . . .

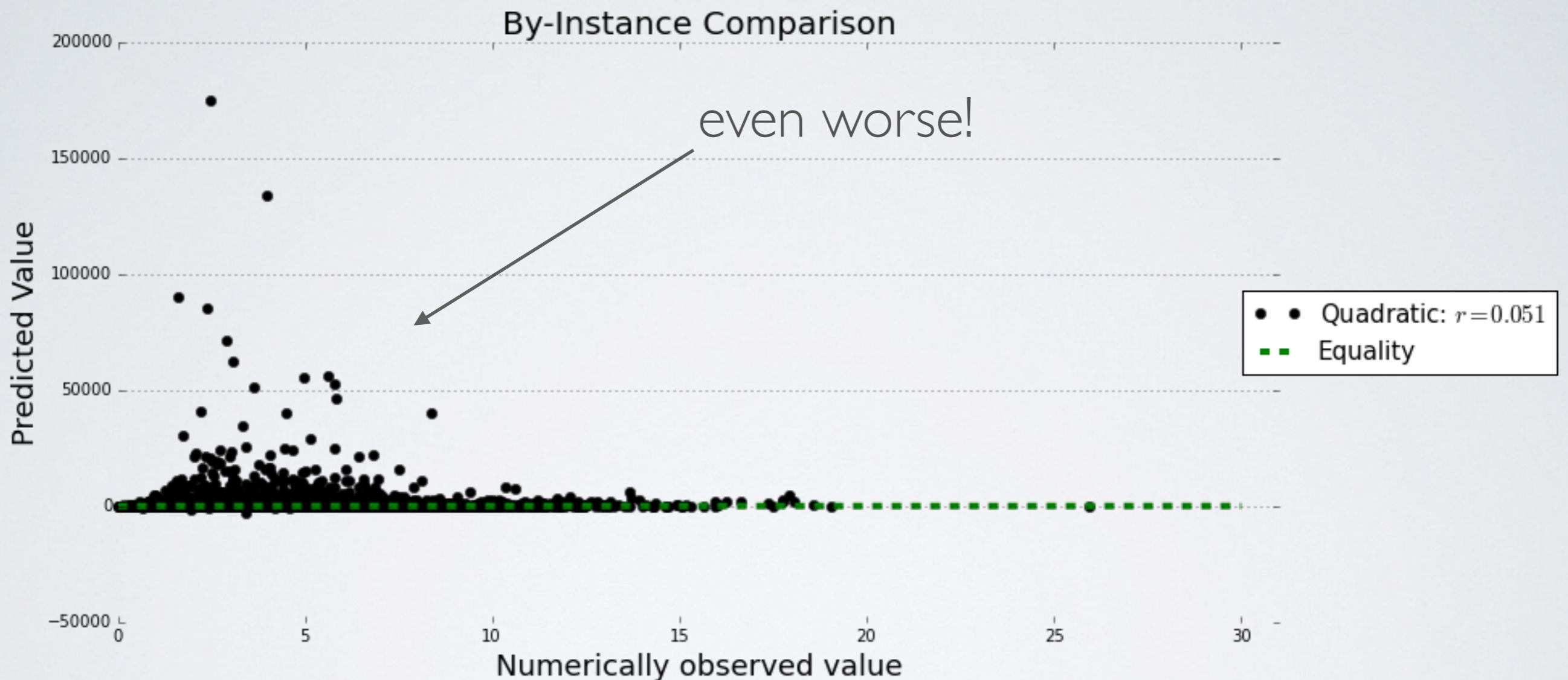
Today, I am certain it is
vastly harder than I (and
others!) thought.

Model selection in
quantum state tomography
is hard because we
have to deal with **boundaries**.

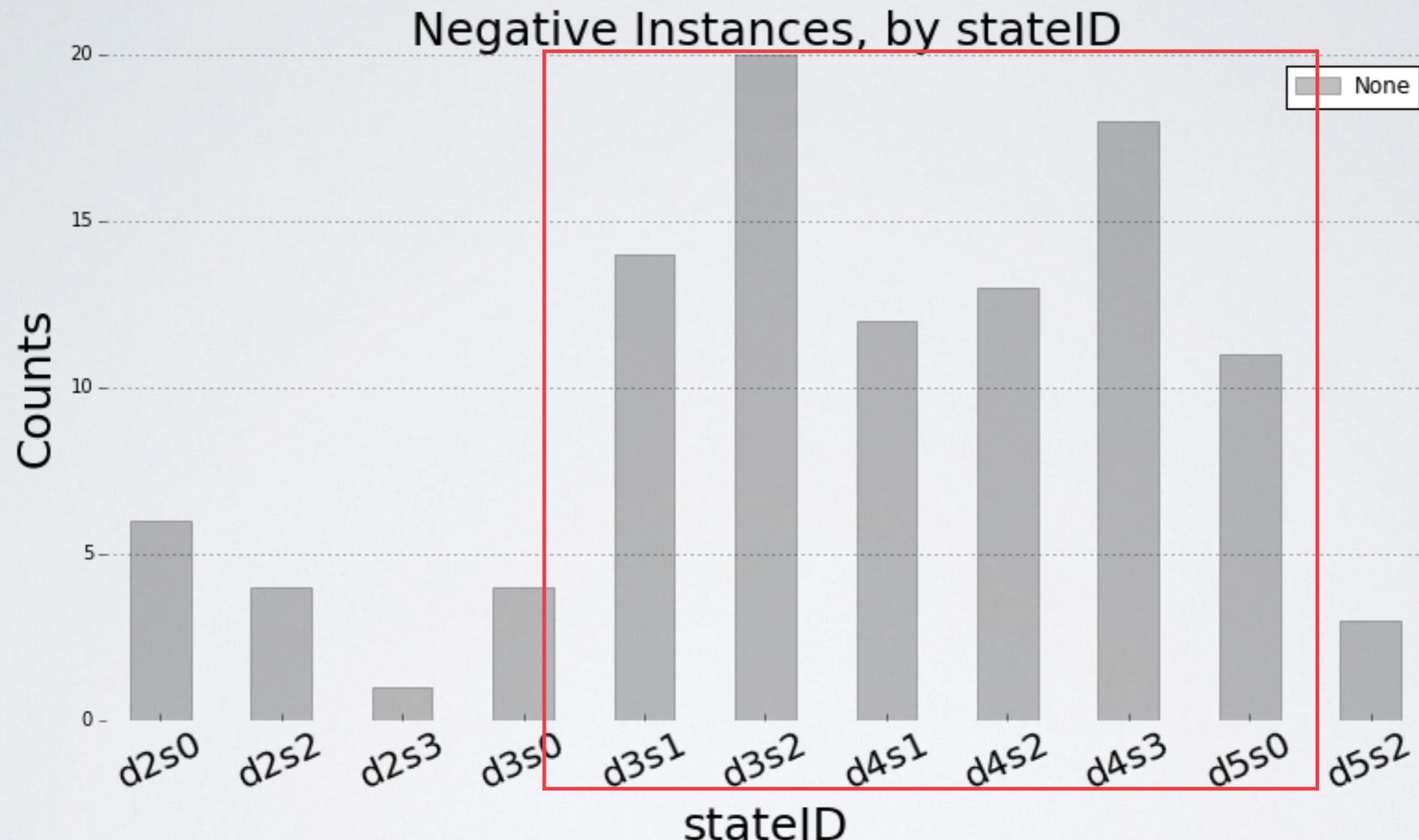
There are some problems, though:



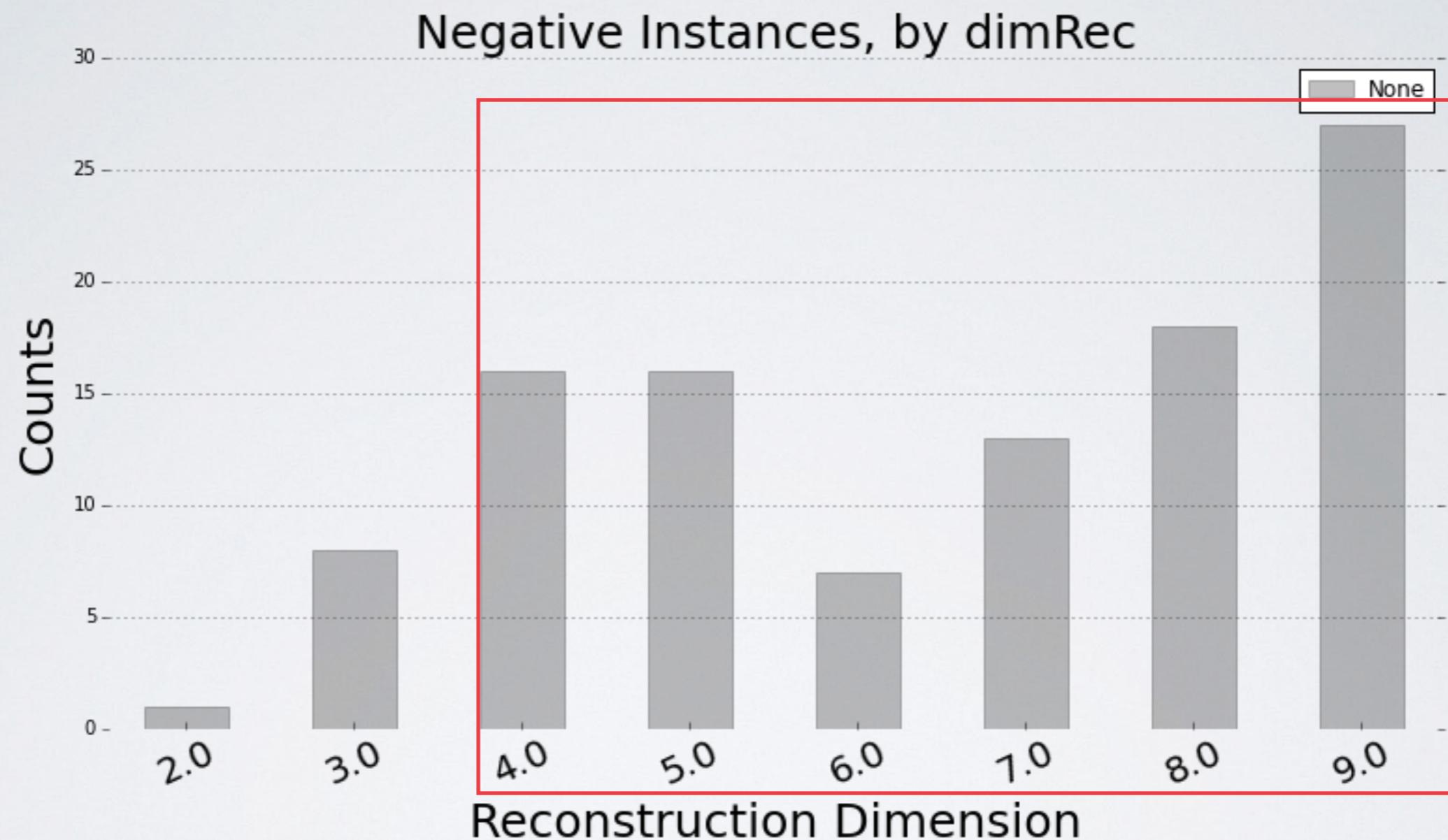
There are some problems, though:



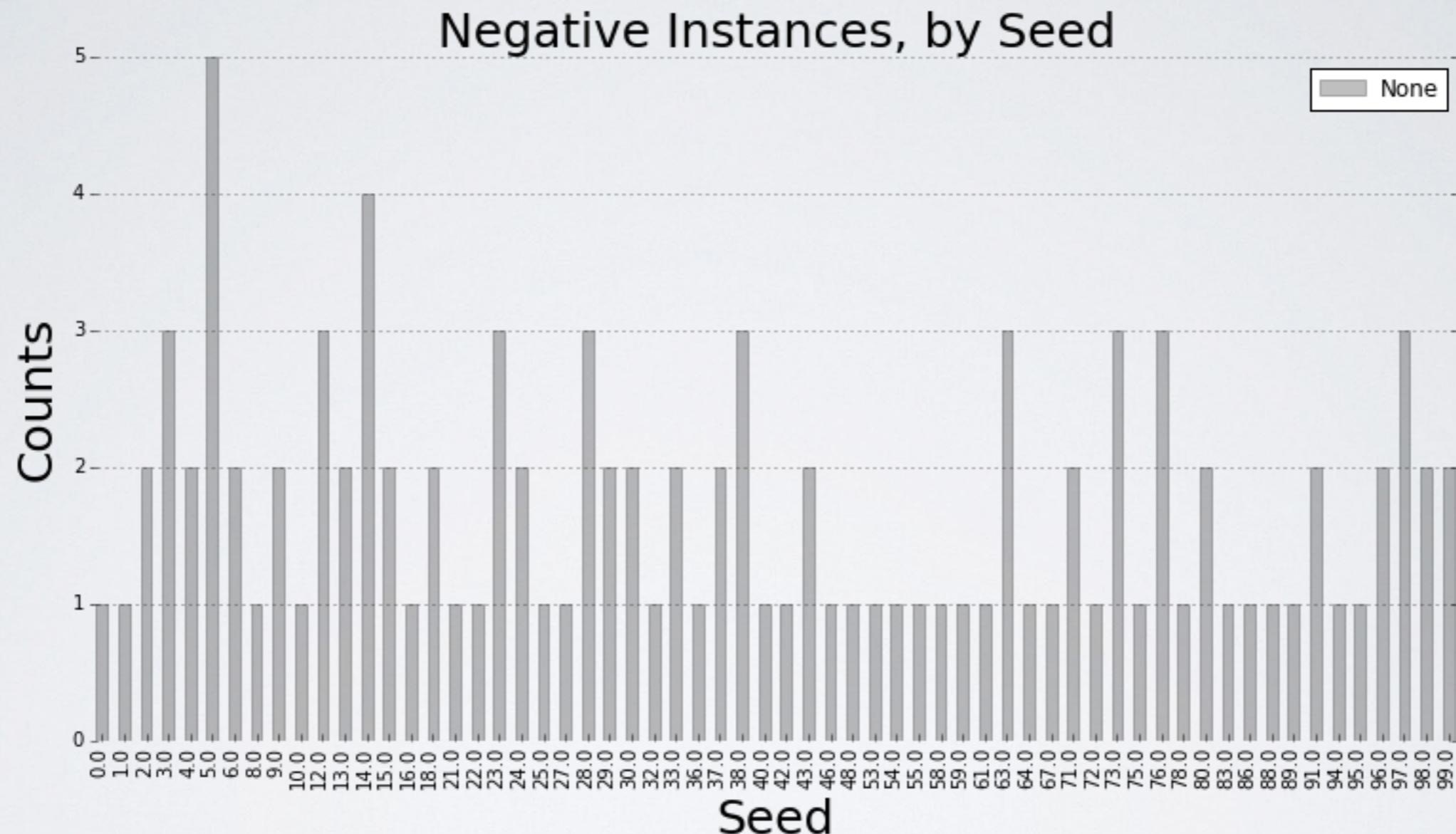
Let's try to isolate these problem instances.



Let's try to isolate these problem instances.



Let's try to isolate these problem instances.



Conclusions:

Little dependence on random number seed
(rules out systematic issue).

Strong dependence on stateID and dimRec

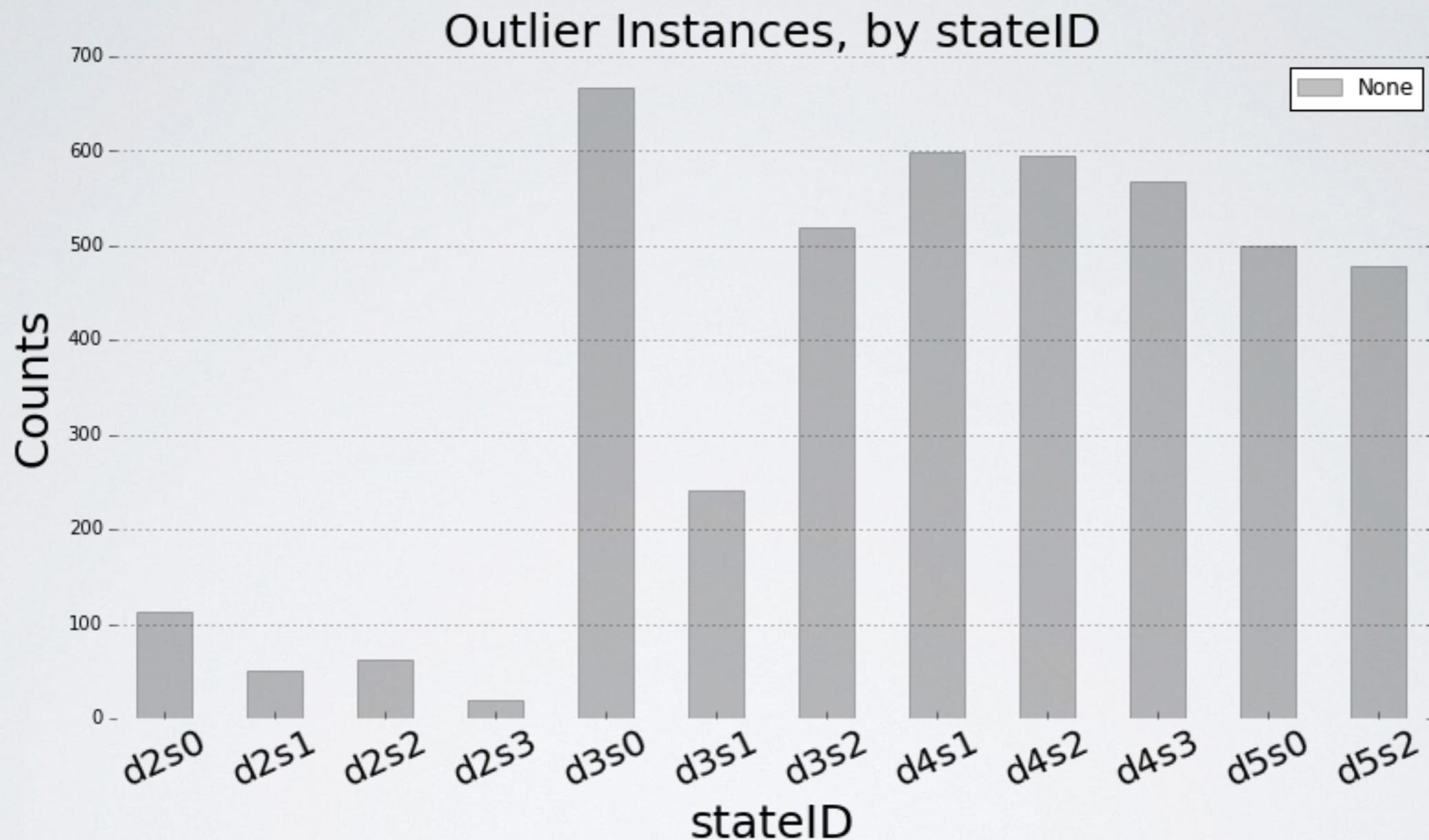
```
[('d2s0', 49729),  
 ('d2s2', 99856),  
 ('d2s3', 74529),  
 ('d3s0', 99856),  
 ('d3s1', 10000),  
 ('d3s2', 10000),  
 ('d4s1', 10000),  
 ('d4s2', 10000),  
 ('d4s3', 10000),  
 ('d5s0', 24964),  
 ('d5s2', 49729)]
```

Look at

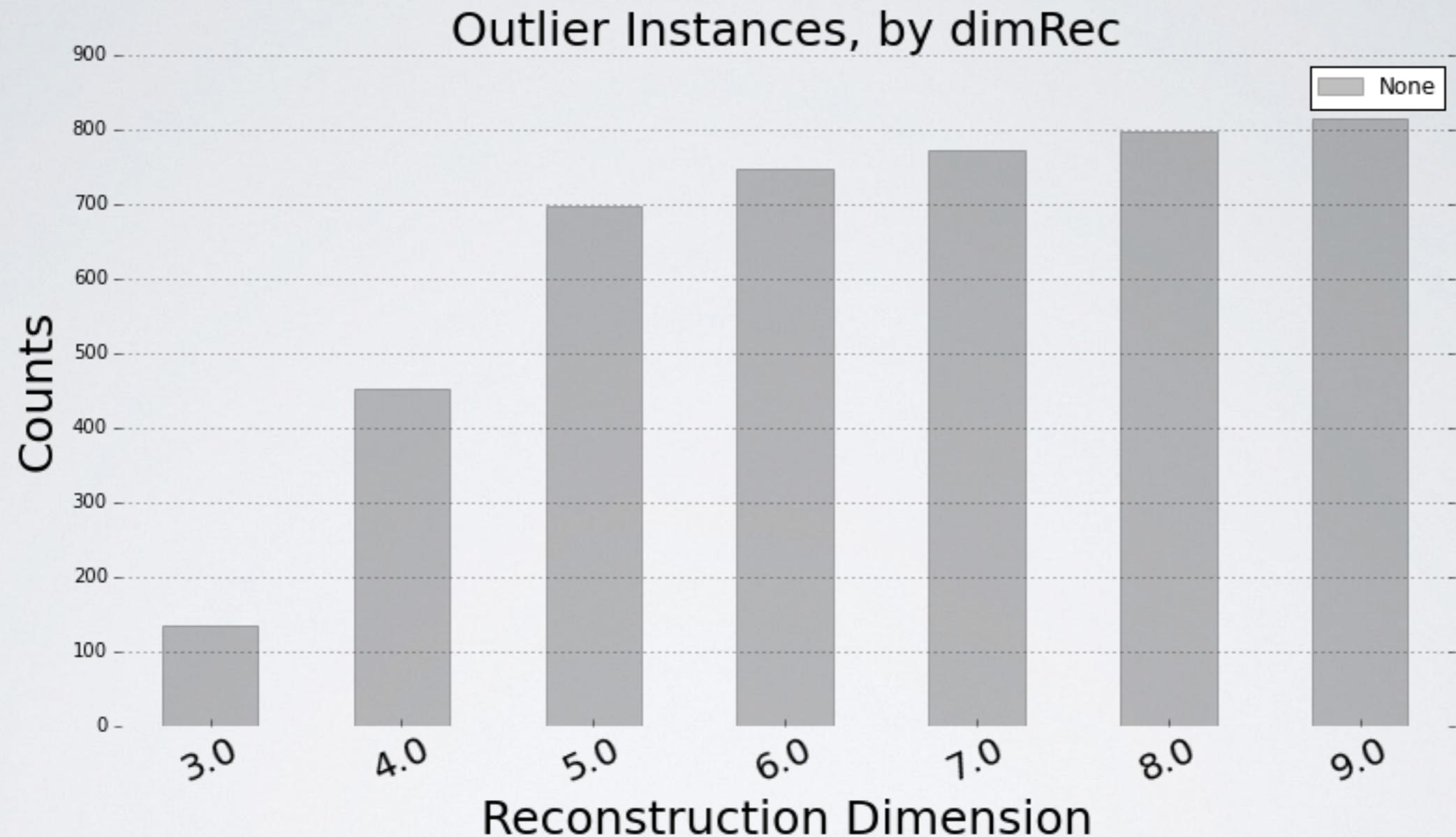
maximum sample size:

Small sample size=
inaccurate estimation,
particularly in high
dimensions

Similar results for outliers (predictions > 5 away from numerics).



Similar results for outliers (predictions > 5 away from numerics).



Similar results for outliers (predictions > 5 away from numerics).

