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I am interested in tomography, the 
characterization of quantum systems.



Characterizing a system means estimating/
inferring something about it.

⇢̂

Tomography is a 
statistical inference 
problem.

Estimator

(Things with hats)(Experiment) (Inference)

Data Estimates

POVM {Ej}



The “best” estimator is very accurate…

Many measures of accuracy:

We seek high accuracy relative to an unknown truth.

Quantum Fidelity Relative Entropy

Trace Distance Hilbert-Schmidt Distance



The “ideal” estimator would be very accurate…
and would not fit noise in the data.

“Ideal” impossible to achieve!



We do not have truth, only data. How do we be 
accurate and fit well? Model selection.

Truth Data



People already use model selection in quantum 
information…but are they justified in doing so?
“Error models in quantum computation:	


an application of model selection” 
(Schwarz/van Enk, 2013)

“Rank-based model selection  
for multiple ions quantum tomography” 
(Guta et. al., 2012)

“When quantum tomography goes wrong: 
drift of quantum sources and other errors”  
(van Enk/Blume-Kohout, 2013)



Model selection techniques 
currently used in quantum 
tomography may have 
problems.

Such as loglikelihood ratio tests, or Akaike’s AIC.



Quantum information makes connections to 
statistical inference in many ways.

Model = parametrized family of probability distributions

Distributions via the Born rule:

Pr(E) = tr(⇢E)

Hypothesis = point in the model
M

H



Given some data, plausibility of models/hypotheses 
is quantified by their likelihood.

What is the probability assigned to the data seen?

L(H) = Pr(Data|H)Hypothesis: Just compute it!

L(M) = max

H2M
Pr(Data|H)Models: Just maximize!

We use likelihoods to  
compare hypotheses/models  
and to make estimates.



Quantum information makes connections to 
statistical inference in many ways.

State discrimination 
is an instance of  
simple hypothesis testing

Which state is it?

⇢

�
Neyman-Pearson lemma tells us 
this is the most powerful test.

�(⇢,�) = �2 log

⇣
L(⇢)
L(�)

⌘

� () � � 0

Choose the higher likelihood!



Quantum information makes connections to 
statistical inference in many ways.

State tomography  
is an instance of  
model fitting

Which parameters are best?

Maximum likelihood estimation

⇢̂

⇢̂ = argmax

⇢
L(⇢)



Quantum information makes connections to 
statistical inference in many ways.

Entanglement verification  
is an instance of  
composite hypothesis testing

Which region is it?

MA

MB

MB () � � 0

�(MA,MB) = �2 log

⇣
L(MA)
L(MB)

⌘ Separable

Entangled

Choose the higher likelihood!



Quantum information makes connections to 
statistical inference in many ways.

Z-diagonal state vs not  
is an instance of  
(nested) model selection

Is the true state on the line  
or not?

MA

MB

� � 0 =) MB ???

LLRS never negative!

�(MA,MB) = �2 log

⇣
L(MA)
L(MB)

⌘Choose the higher likelihood!



How will we investigate model 
selection in state tomography?



I am studying a paradigmatic problem: 
tomography of continuous-variable systems.

Optical modes of light….

…as Wigner functions 
or density matrices.

⇢̂



The models I consider are subspaces of an 
infinite-dimensional Hilbert space.

|0i
|1i
|2i

|d� 1i

Other models are possible (e.g., by rank).

Hd = Span (|0i, |1i, · · · |d� 1i)
Md = {⇢ | ⇢ 2 B(Hd), T r(⇢) = 1, ⇢ � 0}

Models come from low-
energy assumption (and lack 
of structure in Wigner 
function)



The models I consider are nested inside one 
another.

|0i
|1i
|2i

|d� 1i

Md ⇢ Md+1
How can we use likelihoods  
to compare them?

We have to tackle  
nested model selection



We re-think the use of the LLRS for nested 
model selection, based on its expected value.

N

h�i Md

Md0

�(Md,Md0
) = �2 log

⇣
L(Md)
L(Md0 )

⌘



N

h�i Md

Md0

�(Md,Md0
) = �2 log

⇣
L(Md)
L(Md0 )

⌘

We re-think the use of the LLRS for nested 
model selection, based on its expected value.



Asymptotic convergence of the LLRS is a 
consequence of the Wilks Theorem.

1938: Wilks gives distribution of LLRS.
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�(Md,Md0) ⇠ �2
pd0�pd



The Wilks Theorem allows us to do nested 
model selection.

Md

Md0

We compare the LLRS to its expected value

�(Md,Md0
) = �2 log

⇣
L(Md)
L(Md0 )

⌘

Md0 () � � h�i



Another model selection technique  
relies on this result.

Information criteria explicitly trade off between  
fitting data well and having high accuracy

Use of Akaike’s AIC is common

Relies on Wilks to compute bias of a 
particular estimator of KL divergence

My work feeds into creating a 
quantum information criterion



We now have potential tools 
for nested model selection in 
tomography. How do they 
perform?



I performed a Monte Carlo study of the LLRS 
and its behavior.

Studied:

- 17 true states (supported on low-energy subspace)



I performed a Monte Carlo study of the LLRS 
and its behavior.

Studied:

- 17 true states

- 100 random datasets for each state (coherent state POVM)

Data = {↵j | ↵j 2 C, P r(↵j) = h↵j |⇢true|↵ji}



I performed a Monte Carlo study of the LLRS 
and its behavior.

Studied:

- 17 true states

- 100 random datasets for each state

- 10K to 100K samples for each dataset



I performed a Monte Carlo study of the LLRS 
and its behavior.

Studied:

- 17 true states

- 100 random datasets for each state

- 10K to 100K samples for each dataset

- MLE over {2…10}-dimensional Hilbert spaces
{M2,M3, · · · ,M10}

Lots of supercomputer time!



The results were puzzling.



I checked four predictions of the Wilks Theorem 
on the behavior of the LLRS. Only one matched.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Mathematical Statistics.

www.jstor.org
®

Predictions:
Asymptotic convergence

Distribution independent of truth

A particular expected value

Distribution depends on reconstruction dimension



When the truth is in the smaller model, we 
observe asymptotic convergence.

⇢0 = |0ih0|



Monte Carlo averages and expectation values 
do not agree at all.

⇢0 = |0ih0|



Wilks theorem predictions for distribution of 
LLRS do not agree with simulation.

Wilks: Distribution independent of true state



⇢0 = |0ih0|

Wilks theorem predictions for distribution of 
LLRS do not agree with simulation.

Wilks: Distribution depends on reconstruction dimension



Theorems are not “wrong”, only 
“not applicable”.	



Why does the Wilks Theorem 
not apply?



State tomography is on the edge.	



Let’s see why.



The first edge is the positivity constraint. This 
shows up a lot in quantum information.

⇢̂ � 0 ⇢̂  0



The first edge is the positivity constraint. This 
shows up a lot in quantum information.

Positivity “piles up” estimates 
on the boundary	


!

Fluctuations normal 
to boundary are diminished.	


!

Results in bias of the estimator

⇢̂ � 0



The second edge is that the Hilbert spaces I use 
nest on the boundary of one another.

⇢̂ =

0

BBB@

⇢00 ⇢01 ⇢02 · · ·
⇢10 ⇢11 ⇢12 · · ·
⇢20 ⇢21 ⇢22 · · ·
...

...
...

. . .

1

CCCA



When the true state is mixed, you avoid the first 
edge, but still run right into the second.



The Wilks Theorem cannot be applied on 
boundaries - they introduce constraints.

Boundaries change distribution of MLEs,  
causing problems.



A numerical study of a related problem indicates 
closeness to the boundary affects the LLRS.

1-simplex (i.e., a coin)



A numerical study of a related problem indicates 
closeness to the boundary affects the LLRS.

If truth within1 standard deviation of boundary, 
constraints become important.



State tomography is on the edge.	



So must our model selection be.



Proving a “qWilks theorem” would be hard, in 
general.

Distribution of lambda depends on true state

Quantum state space hard to reason about…

Distribution depends on Hilbert space dimension

+ 63



Can we find a replacement for the Wilks 
theorem which respects boundaries?

Quantum states = classical simplexes + unitary DOF

LLRS depends on rank of true state

Does require Monte Carlo for  
simulating effect of simplex boundaries

Why is this the right way to do that part of the calculation?

The other contribution will come from analyzing the classical simplex in d dimensions, where we use
Monte Carlo simulation to numerically evaluate the loglikelihood ratio statistic comparing the null model
to an alternative model. In particular, we use a lookup table to find the expected value of � when the true
probability vector has rank r. We denote this contribution as f(r, d)

From our identity above, this implies our model implies an expected value for �(d, d+ 1) given by
To compare our numerics to this model, we need the function f(r, d). Below we show a table generated

from the Monte Carlo simulation.
It is interesting to note that this model implies that the loglikelihood ratio statistic should be invariant

under unitary transformations of the true state, as such transformations preserve rank.

In [6]: from __future__ import division

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.cm as cm

%matplotlib inline

%load_ext autoreload

%autoreload 2

The autoreload extension is already loaded. To reload it, use:

%reload ext autoreload

In [7]: D = pd.read_csv(’loglikelihoods-dimension_rank.csv’, index_col=0)

D

Out[7]: 1 2 3 4 5 6 7 \
2 0.496443 0.999158 NaN NaN NaN NaN NaN

3 0.822011 1.488624 1.982415 NaN NaN NaN NaN

4 1.070604 1.875747 2.478096 2.976010 NaN NaN NaN

5 1.263654 2.189043 2.883159 3.465806 3.959832 NaN NaN

6 1.442006 2.480977 3.266152 3.926972 4.485939 4.985161 NaN

7 1.599560 2.728116 3.589044 4.313688 4.933024 5.488181 6.015546

8 1.731031 2.937367 3.865390 4.648795 5.319806 5.921281 6.495801

9 1.846602 3.127363 4.116697 4.955233 5.675212 6.321233 6.941733

10 1.962161 3.317975 4.365928 5.258693 6.024682 6.715674 7.377164

11 2.076795 3.502036 4.610776 5.554809 6.365295 7.098042 7.802414

12 2.171777 3.666289 4.831894 5.828708 6.685554 7.458987 8.202148

13 2.267425 3.824232 5.040518 6.082431 6.979092 7.791417 8.572147

14 2.352867 3.968315 5.234037 6.318861 7.255093 8.103768 8.919196

15 2.425814 4.090384 5.397157 6.520410 7.490128 8.371264 9.219001

8 9 10 11 12 13 \
2 NaN NaN NaN NaN NaN NaN

3 NaN NaN NaN NaN NaN NaN

4 NaN NaN NaN NaN NaN NaN

5 NaN NaN NaN NaN NaN NaN

6 NaN NaN NaN NaN NaN NaN

7 NaN NaN NaN NaN NaN NaN

8 6.987146 NaN NaN NaN NaN NaN

9 7.471882 7.996617 NaN NaN NaN NaN

10 7.945067 8.507296 8.975549 NaN NaN NaN

11 8.407521 9.002740 9.501307 9.969426 NaN NaN

2

h�i = 2 rank(⇢true) + f(d+ 1, r)� f(d, r)



How well does this replacement work?

In [98]: fig = plt.figure(figsize=(10, 5))

ax = fig.add_axes([0, 0, 1, 1])

for r in np.unique(df.ix[:, ’rank’].values):

x = df[df[’rank’] == r].ix[:, ’empirical’].values.tolist()

y = df[df[’rank’] == r].ix[:, ’model’].values.tolist()

ax.plot(x, y, marker=’o’, ls=’’, clip_on=False, label=str(int(r)))

x = range(0, 10)

y = x

ax.plot(x, y, color=’black’, label=’Equality’)

ax.set_xlabel(’Empirical Values’)

ax.set_ylabel(’Model Values’)

ax.set_title(’Grouping by Rank of True State’)

ax.set_ylim([0, max(ax.get_ylim()) + 1])

ax.set_xlim([0, max(ax.get_xlim()) + 1])

ax.legend(loc=’center right’)

ax.set_frame_on(False)

In [99]: fig = plt.figure(figsize=(10, 5))

ax = fig.add_axes([0, 0, 1, 1])

sids = list(np.unique(df.ix[:, ’stateID’].values))

colors = cm.RdBu(np.linspace(0, .75, len(sids)))

for sid in sids:

x = df[df[’stateID’] == sid].ix[:, ’empirical’].values.tolist()

y = df[df[’stateID’] == sid].ix[:, ’model’].values.tolist()

ax.plot(x, y, color = colors[sids.index(sid)], marker=’o’, ls=’’, clip_on=False, label=sid)

5

Not as accurate as we expected…what is going on?



When in doubt, do a Taylor series expansion of 
something!

How does LLRS change  
when truth and estimates are close?

Expand LLRS as function of  
true state to second order

�(Md,Md0) = �(⇢true,Md0)� �(⇢true,Md)Helpful trick:



Curvature Error

Addresses the question “If estimate close to truth, 
what does the LLRS do?”

h�(⇢true,Md)i ⇡ �tr

✓⌧
@2L
@⇢2

���
⇢̂
|⇢true � ⇢̂iihh⇢true � ⇢̂|

�◆

The Taylor series allows us to calculate an 
approximate expected value.
�(⇢true,Md) = �(⇢true, ⇢̂)

⇡ 0 +
@�

@⇢

����
⇢̂

(⇢true � ⇢̂) +
1

2

@2�

@⇢2

����
⇢̂

(⇢true � ⇢̂)2



This estimator outperforms the Wilks Theorem 
in predicting the Monte Carlo averages.



It also performs reasonably well on an instance-
by-instance basis.



In the absence of any boundaries, 
the prediction reduces to that of Wilks.

\h�(⇢0, ⇢̂)i ⇡ tr

⇣
Î(⇢̂)Cov(⇢̂)

⌘
⇡ d

2 � 1

No boundaries = no bias in MLE

Does not predict distribution, however

h�(⇢0, ⇢̂)i ⇡ �tr

✓⌧
@2L
@⇢2

���
⇢̂
|⇢0 � ⇢̂iihh⇢0 � ⇢̂|

�◆



What was the point of  
all that math?



We are going to have a way to do nested model 
selection in quantum tomography!

�(Md,Md+1)

Cannot use Wilks TheoremSimplex-Based Method



What is next?



There are many ways forward.

Use this result to create estimator of expected value

Make a quantum information criterion

A model selection rule for displaced/squeezed states

Apply active subspace methods to speed up optimization

What’s with compressed sensing and model selection?



A year ago, I thought 
model selection using the LLRS 
was easy… 
Today, I am certain it is 
vastly harder than I (and 
others!) thought.



Model selection in  
quantum state tomography 
is hard because we  
have to deal with boundaries.



There are some problems, though:

too high!



There are some problems, though:

even worse!



Let’s try to isolate these problem instances.



Let’s try to isolate these problem instances.



Let’s try to isolate these problem instances.



Conclusions:
Little dependence on random number seed 
(rules out systematic issue).

Strong dependence on stateID and dimRec

[('d2s0', 49729),	


 ('d2s2', 99856),	


 ('d2s3', 74529),	


 ('d3s0', 99856),	


 ('d3s1', 10000),	


 ('d3s2', 10000),	


 ('d4s1', 10000),	


 ('d4s2', 10000),	


 ('d4s3', 10000),	


 ('d5s0', 24964),	


 ('d5s2', 49729)]

Look at 
maximum sample size:

Small sample size=  
inaccurate estimation, 
particularly in high 
dimensions



Similar results for outliers (predictions > 5 away from numerics).



Similar results for outliers (predictions > 5 away from numerics).



Similar results for outliers (predictions > 5 away from numerics).


