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| am Interested In tomography, the
characterization of gquantum systems.
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Characterizing a system means estimating/
inferring something about It.

omography Is a
statistical inference
problem.

Data —-S’ Estimator —-!’ Estimates

(Experiment) (Inference) (Things with hats)

POVM {E;} 5




The "best” estimator Is very accurate...

Many measures of accuracy:

Quantum Fidelity  Relative Entropy

Trace Distance Hilbert-Schmidt Distance

We seek high accuracy relative to an unknown truth.



The "ideal” estimator would be very accurate...
and would not fit noise In the data.

“ldeal” impossible to achieve!




VWe do not have truth, only data. How do we be

accurate and fit well! Model selection.
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ble already use model selection in quantum

-0
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rmation...but are they justified in doing so!

~ models In quantum computation:
blication of model selection”

(Schwarz/van Enk; 2013)

"Rank-based model selection
for multiple 1ons gquantum tomography”

(Guta et. al, 2012)

“When quantum tomography goes wrong:
drift of guantum sources and other errors”

(van Enk/Blume-Kohout, 201 3)




Model selection technigues
currently used In guantum

tomography may have

problems.

Such as loglikelihood ratio tests, or Akaike's AlC.,



Quantum information makes connections to
statistical inference In many ways.

Model = parametrized family of probability distributions
M

Hypothesis = point In the model
H

Distributions via the Born rule:

Pr(FE) =tr(pF)



Given some data, plausibility of models/hypotheses
s quantified by their likelihood.

What Is the probability assigned to the data seen!

Hypothesis: Just compute Tt! L(H) = Pr(Data|H)

Models: Just maximizel L(M) = max Pr(Data|H )
HeM

We use likelihoods to
compare hypotheses/models

ahd to make estimates.



Quantum information makes connections to
statistical inference In many ways.

State discrimination

S an Instance of

simple hypothesis testing
Which state Is 1t?

Choose the higher likelihood!
A(p,0) = —2log (f§”§)
== W

Neyman-Pearson lemma tells us

this Is the most powerful test.



Quantum information makes connections to
statistical inference In many ways.

State tomography
IS an Instance of

model fitting

Which parameters are best?

Maximum likelihood estimation

A

p = argmax L(p)
o



Quantum information makes connections to
statistical inference In many ways.

Entanglement verification

€ an Instan i
S a stance o Y

composite hypothesis testing

Which region is It/

Choose the higher |||<e||ho%>j\c/1(' )
AM(Ma, Mp) = —2log (E(Mg))

i — ) >0

Mp



Quantum information makes connections to
statistical inference In many ways.

Z-diagonal state vs not
IS an Instance of

(nested) model selection

s the true state on the line
or not!

~-Cheesetho-hrohorhkehhoadl-
A(Ma, Mp) = —2log (55543 )

LLRS never negative!

Mp




How will we investigate mode
selection In state tomography!
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The models | consider are subspaces of an
infinite-dimensional Hilbert space.

Haq = Span (|0),[1),---|d — 1))
Ma=A{p|peB(Ha), Tr(p)=1, p>0}

Jd— 1)
=gy Models come from low-
A Qy \ energy assumption (and lack
1y \ )} of structure in Wigner

function)

Other models are possible (e.g., by rank).



B odels | consider are nested Inside'oReE

another,
M g O M i1
5

—ow can we use likelihoods

to compare them!?

We have to tackle
nested model selection



We re-think the use of the LLRS for nested
model selection, based on Its expected value.

A Mg, Mg ) = —2log (g((j\j\//ll;/)))




We re-think the use of the LLRS for nested
model selection, based on Its expected value.

A Mg, Mg ) = —2log (g((j\j\//ll;/)))




Asymptotic convergence of the LLRS Is a
consequence of the Wilks Theorem.

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO
FOR TESTING COMPOSITE HYPOTHESES'

By S. S. WiLks

| 938: Wilks gives distribution of LLRS.

)\(Md; Md’) B Xl%d’ — Dy



The Wilks Theorem allows us to do nestead
model selection.

We compare the LLRS to its expected value

MM, Mg) = —2log ( f(%j;}))




Another model selection technique
relies on this result.

Information criteria explicitly trade off between

fitting data well and having high accuracy

Use of Akaike’s AIC Is common

Relies on Wilks to compute bias of a
particular estimator of KL divergence

My work feeds into creating a

quantum information criterion



VWe now have potential tools
for nested model selection In
tomography. How do they
perform/



| performed a Monte Carlo study of the
and Its behavior.

Studied:

- | / true states  (supported on low-energy subspace)

RS



| performed a Monte Carlo study of the LLRS
and Its behavior:

Studied:

- | / true states

- 100 random datasets for each state (coherent state POVM)

Dzt = s Feie @G = (0|00 ) |



| performed a Monte Carlo study of the
and Its behavior.

Studied:

- | / true states
- |00 random datasets for each state

- |OK to 00K samples for each dataset

RS



| performed a Monte Carlo study of the LLRS

and I1ts behavior,

Studied:

- | / true states
- |00 random datasets for each state
- |OK to 00K samples for each dataset

- MLE over {2...10}-dimensional Hilbert spaces
{M27 M37 B 7M10}

Lots of supercomputer time!



[ he results were puzzling



| checked four predictions of the Wilks Theorem
on the behavior of the LLRS. Only one matched.

THE LARGE-SAMPLE DISTRIBUTION OF THE LIKELIHOOD RATIO
FOR TESTING COMPOSITE HYPOTHESES!

By S. S. WiLks

Predictions:

Asymptotic convergence A particular expected value

Distribution independent of truth

Distribution depends on reconstruction dimension




VWhen the truth is in the smaller model, we

observe asymptotic convergence.

Observing Convergence pg = |0){0| 35
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Monte Carlo averages and expectation values

do not agree at all.
30 Dramatically Lower Expected Values
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Wilks theorem predictions for distribution of

LLRS do not agree with simulation.

30

Wilks:

Varying Distribution for fixed d

4 6

3 10 12
A(2,3)

Distribution independent of true state

14

16



Wilks theorem predictions for distribution of

LLRS do not agree with simulation.
30 Varying Distribution for fixed True State o, = |0)(0

0 1 e -
0 2 4 6 3 10 12 14 16

Loglikelihood Ratio Statistic Value

Wilks: Distribution depends on reconstruction dimension



[ heorems are not “wrong ', only
‘not applicable’™.

VWhy does the Wilks [ heorem
not apply!



State tomography Is on the edge.

LS see why.



The first edge Is the positivity constraint. This
shows up a lot In quantum information.




The first edge Is the positivity constraint. This
shows up a lot in guantum information.

Positivity “piles up’” estimates
on the boundary

-luctuations normal
to boundary are diminished.

Results in bias of the estimator




Ihe second edge Is that the Hilbert spaces | use
nest on the boundary of one another.




VWhen the true state 1s mixed, you avoid the first

edge, but still run right into the second.




1he Wilks [ heorem cannot be applied on
boundaries - they introduce constraints.

Boundaries change distribution of MLEs,
causing problem:s.



A numerical study of a related problem indicates

closeness to the boundary affects the LLRS.

O *0—0*&99 |-simplex (1.e., a coin)



A numerical study of a related problem indicates

closeness to the boundary affects the LLRS.
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It truth within| standard deviation of boundary,
constraints become important.



State tomography Is on the edge.

So must our model selection be.



Proving a "gWilks theorem’ would be harq, In
oeneral.

Distribution of lambda depends on true state

Distribution depends on Hilbert space dimension

Quantum state space hard to reason about...

@ i



Can we find a replacement for the Wilks

boundaries?
exes + UnitayF B

theorem which respects

Quantum states = classical simp

L LRS depends on rank of true state

Does require Monte Carlo for

simulating effect of simplex boundaries

(A) = 2 rank(psrue) + f(d+1,7) — f(d,7)

© 00 NO O b W N

1
0.496443
0.822011
1.070604
1.263654
1.442006
1.599560
1.731031
1.846602

10 1.962161
11 2.076795
12 2.171777

2
0.999158
1.488624
1.875747
2.189043
2.480977
2.728116
2.937367
3.127363
3.317975
3.502036
3.666289

3

NaN
1.982415
2.478096
2.883159
3.266152
3.589044
3.865390
4.116697
4.365928
4.610776
4.83189%4

4

NaN

NaN
2.976010
3.465806
3.926972
4.313688
4.648795
4.955233
5.258693
5.554809
5.828708

5

NaN

NaN

NaN
3.959832
4.485939
4.933024
5.319806
5.675212
6.024682
6.365295
6.685554

6

NaN

NaN

NaN

NaN
4.985161
5.488181
5.921281
6.321233
6.715674
7.098042
T7.458987
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How well does this replacement work?

Grouping by Rank of True State

L I I |
e 8
e & 3
@ @ 4
e ® 5

— Equality

Model Values

Not as accurate as we expected...what Is going on?



When In doubt, do a laylor series expansion of

something!

Helpful trick: A Mg, Ma) = Mptrue, Mar) — A perue, Ma)

How does LLRS change
when truth and estimates are close’

Expand LLRS as function of
true state to second order




I he laylor series allows us to calculate an
approximate expected value.

A(ptruea Md) = A(ptruea la)

o e :

%OI rue | e :

N piraes M) = ~tr ( { 52| 11mue = ) Gpirae = 1) )

4 4

CURVEnUiE Error

Addresses the question “If estimate close to truth,
what does the LLRS do?”




This estimator outperforms the Wilks Theorem

in predicting the Monte Carlo averages.

Expected Value Comparison
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t also performs reasonably well on an instance-

DYy-INstance basis.

By-Instance Comparison
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In the absence of any boundaries,

RERO@liRdaries = no bias In MLE

the prediction reduces to that of Wilks.
Npu, ) = —tr ({ 2| loo = Dt —31))

(X(po, p)) ~ tr (1(p)Cov(p) ) ~ d — 1

Does not predict distribution, however



What was the point of
all that math!?



VWe are going to have a way to do nested model
selection In gquantum tomography!

A Mg, Mgs1)
Simplex-Based Method Cannot use Wilks Theorem
* 3.0 Dramatically Lower Expected Values
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VWhat Is next!



There are many ways forward.

Use this result to create estimator of expected value
Make a quantum information criterion
What's with compressed sensing and model selection?

A model selection rule for displaced/squeezed states

Apply active subspace methods to speed up optimization



A year ago, | thought

model selection using the LLRS
was easy...

Today, | am certain It Is

vastly harder than | (and
others!) thought.



Model selection in
quantum state tomography

iIs hard because we

have to deal with boundaries.



There are some problems, though:

Predicted Expected Value
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There are some problems, though:

By-Instance Comparison
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Let’s try to isolate these problem instances.

$ 3T s> gt gps° g0
statelD




Let’s try to isolate these problem instances.

60 19 20

Reconstruction Dimension



Let’s try to isolate these problem instances.
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Conclusions:

Little dependence on random number seed
(rules out systematic issue).

Strong dependence on statelD and dimRec

[('d2s0',49729),
('d2s2',99856),

o (T
. Y d3s0, ,
maximum sample size: (d3sI" 10000)
Small sample size= Glalsisn HOI0ICI0)
Inaccurate estimation, ers s 800N,
particularly in high EakisZs | 000
dimensions Cekiso i000Es
(Fa5 S0 aiom]

('d5s2',49729)]



Similar results for outliers (predictions > 5 away from numerics).
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Similar results for outliers (predictions > 5 away from numerics).
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Similar results for outliers (predictions > 5 away from numerics).




