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Abstract 

The thermodynamic response of liquid nitrogen has been studied extensively, in part, due to the 

long-standing interest in the high pressure and high temperature dissociation of shocked 

molecular nitrogen.  Previous equation of state (EOS) developments regarding shocked liquid 

nitrogen have focused mainly on the use of intermolecular pair potentials in atomistic 

calculations.  Here, we present EOS developments for liquid nitrogen, incorporating analytical 

models, for use in continuum calculations of the shock compression response.  The analytical 

models, together with available Hugoniot data, were used to extrapolate a low pressure reference 

EOS for molecular nitrogen [Span, et al., J. Phys. Chem. Ref. Data 29, 1361 (2000)] to high 

pressures and high temperatures.  Using the EOS presented here, the calculated pressures and 

temperatures for single shock, double shock, and multiple shock compression of liquid nitrogen 

provide a good match to the measured results over a broad range of P-T space.  These 

calculations provide the first comparison of EOS developments with recently-measured P-T 

states under multiple shock compression.  The present EOS developments are general and are 

expected to be useful for other liquids that have low pressure reference EOS information 

available. 

  



2 
 

I. INTRODUCTION 

 

The response of liquid nitrogen (LN2) at high pressures and high temperatures (HP-HT) 

has long been a subject of considerable scientific interest, due to its importance for 

understanding simple molecular liquids at extreme conditions, for planetary science and for 

chemical explosives technology.  Experimental studies of LN2 have been carried out primarily 

using shock wave compression to achieve HP-HT conditions.  In these studies, pressure-volume 

(P-v) states have been determined for single shock1-5 and double shock4,5 loading; pressure-

temperature (P-T) states for singly and doubly shocked LN2 have been also been determined.5-7  

From previous measurements, it was inferred that LN2 undergoes dissociation to atomic nitrogen 

for single shock loading above ~30 GPa.3,5  For double shock loading, dissociation occurs at 

somewhat higher pressures4-6 and leads to unusual features in the shock compression response.4,5  

Theoretical studies have been undertaken for LN2 to describe and understand the 

experimental findings indicated above.  In particular, thermodynamic states for shocked LN2 

have been calculated using equation of state (EOS) developments for molecular nitrogen8-12 and 

for mixtures of molecular and atomic nitrogen,10-12 and also using density functional theory.13  

Although the EOS developments were all based on atomistic methods using pairwise potentials, 

they differed significantly in the level of agreement that they provided with the shock 

compression measurements1-6 and the results were sensitive to the details of the pairwise 

potentials.12  

To carry out numerical wave propagation simulations or thermochemical calculations, 

analytical EOS descriptions are advantageous.  Previously, Belak and coworkers9 used Monte 

Carlo methods with an intermolecular potential for N2 to provide EOS points over a wide range 

of thermodynamic space.  The calculated points were then fit using smooth functions to provide 

an analytical EOS formulation.  However, because the calculated results were compared with 

experimental data at room temperature only, the quantitative accuracy of the EOS at HP-HT 

conditions is unknown.  Using a somewhat different approach, Fried and Howard12 used 

Chebyshev polynomials to provide an analytical approximation to the thermodynamic response 

arising from atomistic calculations using the exponential-six (exp-6) interatomic potential.  

Different parameterizations of the potential were used to describe N2-N2 interactions and N-N 
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interactions and mixing rules were defined to provide a description of LN2 shocked below and 

above the dissociation threshold.  The exp-6 potential parameters were adjusted to provide a best 

fit to available data from single- and double-shock experiments and static compression 

experiments.12  Although the resulting EOS provided reasonable agreement with measured end 

states for shocked LN2, its analytical expressions were based on a fairly complex system of 

fitting functions having large numbers of fitting parameters.12  For many applications in shock 

wave physics, planetary science, and chemical explosives technology, a relatively simple, robust 

analytical EOS for LN2 at HP-HT conditions is advantageous.  The development of such an EOS 

was the objective of the present work. 

For molecular nitrogen, as for many other fluids, an accurate reference EOS was 

developed previously by fitting a complex analytical function to a wide range of experimental 

data at relatively low pressures (up to ~2 GPa for N2).14  Although the complexity of the fitting 

function renders the EOS unsuitable for use at high pressures, where few experimental data for 

N2 are available, the availability of a reference EOS at low pressures raises the question:  Can an 

accurate low-pressure EOS, combined with data from shock compression experiments, be used 

to develop an analytical EOS that is accurate to high pressures and high temperatures?  Here, we 

present EOS developments and calculations for shocked LN2 that answer this question in the 

affirmative.   

Recently, Raman spectroscopy was used15 to measure temperatures for multiply-shocked 

LN2, thus extending the range of pressure-temperature (P-T) space examined under dynamic 

compression.  Because the measured P-T states for multiply-shocked LN2 are significantly 

different from the Hugoniot curve (defined as the locus of end states attainable by single shock 

compression), they provide a more stringent test of the EOS developments than earlier 

measurements.  Thus, to comprehensively examine the accuracy of our EOS developments, P-T 

states for single shock, double shock, and multiple shock loading were calculated and compared 

with measured values from available experimental studies on shocked LN2.5-7,15  We emphasize 

that our EOS developments are for molecular nitrogen only; dissociation of shocked LN2 into 

atomic nitrogen is not addressed here. 

The EOS developments for LN2, including the incorporation of analytical models, are 

presented in Sec. II.  In Sec. III, the calculated P-T states for LN2 are compared with 
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experimental results from single, double, and multiple shock compression.  A summary and 

conclusions are presented in Sec. IV. 

 

II. EQUATION OF STATE DEVELOPMENT 

 

The overall EOS development approach for LN2 was based on that used previously for 

liquid nitromethane:16  analytical expressions were developed for the specific heat at constant 

volume, vc ; the coefficient of thermal pressure, ( )vP T∂ ∂ ; and the isothermal bulk modulus, 

TB , as functions of temperature T and volume v.  These three coefficients are sufficient to 

determine the Helmholtz potential ( ),F T v  for the system, resulting in a complete EOS.  To 

ensure thermodynamic consistency and to optimally use available data, appropriate 

thermodynamic relationships were employed in the development of the analytical models. 

In addition to the reference EOS developed by Span, et al.14 for LN2 at low pressures (up 

to ~2 GPa), experimental Hugoniot data 1-5 and temperature measurements5-7,15 are available for 

shocked LN2.  Therefore, to provide an EOS accurate to high pressures and high temperatures, 

analytical expressions for the above thermodynamic coefficients were developed using the 

following sequential approach:  1) vc  was determined by fitting to the calculated results from the 

Span, et al. EOS;14 2) ( )vP T∂ ∂ was determined using thermodynamic relationships, Hugoniot 

data,1-5 and temperature measurements for shocked LN2;5,6,15 3) TB  was determined using 

thermodynamic relationships and temperature measurements for shocked LN2.5,6,15  

 

A. Specific heat model 

 

Isochoric and isothermal values for the specific heat vc , determined using the Span, et al. 

EOS,14 are shown as the dashed curves in Figs. 1 and 2, respectively.  These figures show that vc  
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possesses a somewhat complex temperature dependence, together with significant volume 

dependence. 

To describe the dependence of vc  on temperature and volume, we first note that the 

specific heat of LN2 contains contributions from translational, rotational, vibrational, and 

electronic degrees of freedom.  Because contributions from the electronic degrees of freedom are 

significant only at very high temperatures,14 where dissociation of the nitrogen molecule has 

been previously inferred,3-5 the electronic degrees of freedom were neglected in the 

developments presented here for molecular nitrogen.  As in our previous work,16 the vibrational 

contribution was determined using a single Einstein function.  In keeping with our goal of 

developing an analytical EOS that will provide robust extrapolation to high pressures, the 

translational and rotational contributions were described using a constant term plus a second 

term having a linear dependence on the compression parameter 0 1v vµ = −  and a reciprocal 

square root dependence on temperature.  Combining these different contributions leads to the 

following expression: 

( ) ( )

( )
2

2
0 1 3 2

1
,

1

x

v
x

C x ec T v R C C C
T e

µ
 

+ 
= + + 

 − 

 ,     (1) 

where x Tθ= , θ  is the Einstein temperature, C0, C1, C2, and C3 are constants and R is the ideal 

gas constant.  Because θ  is related to the frequency of the LN2 internal vibration, it is volume 

dependent, in principle.  However, the measured Raman frequency of LN2 was previously shown 

to undergo only small changes (2% or less) in response to shock wave compression.15  Parameter 

variation studies, carried out using Eq. (1), showed that calculated pressures and temperatures for 

shocked LN2 are insensitive to 2% changes in θ .  Therefore, θ  was assumed constant in the 

EOS developments presented here. 

Isochoric and isothermal values for vc , determined using Eq. (1), are shown as the solid 

curves in Figs. 1 and 2, respectively.  The parameters C0, C1, C2, C3 and θ  used in these 

calculations are listed in Table I.  The figures show that Eq. (1) provides a good match to the vc  

values from the Span, et al. EOS over a wide range of temperatures and volumes.   
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( ),vc T v  curves along the Hugoniot and along the isentrope, calculated using Eq. (1) 

(solid curve), are shown in Fig. 3.  Also shown are corresponding calculations using the Span, et 

al. EOS (dashed curve).14  The results in Fig. 3 show that ( ),vc T v  calculations using the two 

different EOS developments match reasonably well along the Hugoniot.  However, calculations 

along the isentrope show different trends and diverge considerably at larger compressions.  

Because the accuracy of the Span, et al. EOS at high pressures is uncertain, the divergence of the 

two calculations along the isentrope is not a significant concern. 

 

B. Determination of ( )vP T∂ ∂  

 

The determination of ( )vP T∂ ∂  begins with the thermodynamic identity 

1 v

v

cP
T T T v

∂∂ ∂  = ∂ ∂ ∂ 
 .        (2) 

Substituting Eq. (1) into (2), performing the derivative on the right hand side, and integrating 

with respect to T yields 

0

0
1 2 2

0

1 12
v v T T

vP P RC C
T T T Tv=

 ∂ ∂     = + −       ∂ ∂      
.    (3) 

where ( )
0

v T T
P T

=
∂ ∂  is evaluated along the 77 K isotherm and the constants C1, C2, and R are 

defined in Eq. (1).  ( )
0

v T T
P T

=
∂ ∂  was determined by integrating Eq. (3) with respect to T and 

solving to obtain 

( ) ( ) ( )
0

00 0
1 2 2

0 0 0

2, , 12
HH

H Hv T T

T TP T v P T v vP RC C
T T T T T Tv=

 −−∂     = − −    ∂ − −    
, (4) 
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where ( ),HP T v  and ( )0,P T v  are the pressures on the Hugoniot curve and on the liquid 

isotherm, respectively.   

To evaluate Eq. (4), P-v Hugoniot and isothermal compression curves for LN2 are 

needed.  For the Hugoniot curve, shock compression data1-5 for LN2 were fit using the expression 

proposed by Woolfolk, et al.,17   

1 1 3 0 2
0 0

(1 )exp / ps
p

uU a a a u c a
c c

 = + − − +   ,     (5) 

where sU  is the shock wave velocity, pu  is the particle (mass) velocity, 0c  is the acoustic 

velocity at ambient pressure and temperature (~77 K) for LN2, and 1a , 2a , and 3a  are constants 

determined from the fit.  The fit to the Hugoniot data is shown in Fig. 4, together with the 

Hugoniot curve calculated using the Span, et al. EOS.14  The good agreement between the Span, 

et al. Hugoniot and the measured results is not surprising because Hugoniot data1,3 were used by 

Span, et al. in their EOS development.  The parameter values in Eq. (5), determined from the fit, 

are shown in Table I. 

Because LN2 freezes at very low pressure on the T = 77 K isotherm, measured isothermal 

compression data for the liquid phase are not available at high pressures.  Therefore, to enable 

evaluation of Eq. (4), the Vinet equation18,19  

( ) ( )( )0
2

3 1 3( ) exp 1 1
2

B X
P v B X

X

−  ′= − −  
 ;  

1 3

0

vX
v

 
=  

 
,   (6) 

was used to construct an isothermal compression curve for supercooled LN2.  The bulk modulus 

in the initial state, 0B , was determined using the Span, et al. EOS.14  However, in the absence of 

experimental data to determine the B′ parameter in Eq. (6), B′ was adjusted to provide the best 

match to measured P-T states (see Sec. II D).  

( )
0

v T T
P T

=
∂ ∂  was determined, together with the Hugoniot temperature HT , by a 

simultaneous solution involving Eq. (1) and Eqs. (3) – (6), together with general thermodynamic 
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relationships.  The resulting values for ( )
0

v T T
P T

=
∂ ∂  along the 77 K isotherm are shown in 

Fig. 5 (black dotted curve).  Fitting the ( )
0

v T T
P T

=
∂ ∂  values with a polynomial (black solid 

curve in Fig. 5) and incorporating the polynomial in Eq. (3) provides an analytical expression for 

( )vP T∂ ∂  as a function of temperature and volume.   

Figure 5 shows ( )vP T∂ ∂  along the Hugoniot curve and along the isentrope, as 

calculated using Eq. (3).  As shown in Fig. 5, ( )vP T∂ ∂  along the Hugoniot curve matches 

reasonably well with corresponding calculations using the Span, et al. EOS.14  Figure 5 also 

shows that, at larger compressions, the calculated results for ( )vP T∂ ∂  on the isentrope diverge 

somewhat from the corresponding calculations using the Span, et al. EOS, consistent with the 

divergence observed for vc  in Fig. 3. 

To further examine the behavior of our EOS developments at high pressures and high 

temperatures, Eqs. (1) and (3) were used to determine the Grüneisen parameter Γ along the 

Hugoniot and the isentrope, using the thermodynamic identity 

v v

v P
c T

∂ Γ =  ∂ 
 .         (7) 

The results, presented in Fig. 6, show that Γ  along the Hugoniot is in reasonable agreement with 

corresponding calculations using the Span, et al. EOS.14  However, at larger compressions, the 

calculated results for Γ on the isentrope diverge somewhat from results calculated using the 

Span, et al. EOS, consistent with the divergence observed for vc  in Fig. 3 and for ( )vP T∂ ∂  in 

Fig. 5.   

 

C. Determination of BT 

 

Determination of BT begins with the thermodynamic identity 
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T

v

B Pv
T v T

∂ ∂ ∂ = −  ∂ ∂ ∂ 
 .        (8) 

Substituting Eq. (3) into (8), performing the derivative on the right hand side, and integrating 

with respect to T yields 

( ) ( ) ( )

( ) ( )
0

0 0

00
1 2 02

0

, ,

                                  4 2

=

∂ ∂ = − −  ∂ ∂ 

 − + − −  
    

T T
v T T

PB T v B T v v T T
v T

T TvRC C T T
Tv

.  (9) 

In Eq. (9), ( )0,TB T v  was determined using Eq. (6), ( )
0

v T T
P T

=
∂ ∂  was determined using Eq. 

(4), and C1, C2, and R were defined in Eq. (1). 

 

D. Determination of the B′ parameter 

 

With one exception, the EOS model parameters discussed above were determined 

directly from experimental data or by comparison with the low pressure EOS of Span, et al.14  

The remaining parameter, B′ in Eq. (6), was adjusted to provide the best match between pressure-

temperature (P-T) states calculated using the EOS developments from Sec. II A – C and the 

available measured P-T states for shocked LN2;5,6,15 the resulting B′ value is shown in Table I.  

The calculated P-T states are presented next and are compared to experimental results. 

 

III. PRESSURE-TEMPERATURE STATES FOR SHOCKED LIQUID NITROGEN 

 

Measured pressure-temperature states for single shock,5-7 double shock,6 and multiple 

shock15 compression of LN2 are shown as the open symbols in Fig. 7.  The states shown are 

those for which the peak pressures and temperatures are below the reported dissociation 

thresholds for single shock and double shock loading.5,6  The measured states from Ref. 6 are 
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shown without error bars because quantified experimental uncertainties were not provided; a 

rough estimate of the uncertainty can be inferred from the scatter in the data.  In addition, we 

note that the peak pressures for the double shock states in Ref. 6 were not measured, but instead 

were calculated using an EOS developed previously.8  Also, we note that the measured 

temperatures for single shock states from Ref. 7 (not shown) are systematically lower, compared 

to those from Refs. 5 and 6 (red open squares).  Due to insufficient information regarding the 

experimental methods, the reliability of the results from Ref. 7 is difficult to ascertain.  

Therefore, the results from Ref. 7 are not discussed further. 

As expected for undissociated molecular N2, Fig. 7 shows that the measured temperatures 

for each loading condition increase monotonically with increasing peak pressure.  In addition, 

the peak temperatures for double shock loading and for multiple shock loading are significantly 

lower than for single shock loading, again as expected.  Thus, the measured shocked states span 

a large range of pressures and temperatures.  

P-T states for single shock, double shock, and multiple shock compression of LN2, 

calculated using the EOS developments from Sec. II, are shown as the filled symbols in Fig. 7.  

Overall, the calculated P-T states are in good agreement with the measured states; several of the 

calculated multiple shock states lie slightly outside the error bars of the measured states.   

Also shown in Fig. 7 are Hugoniot and isentropic compression curves, calculated using 

the EOS presented here, together with those calculated using the Span, et al. EOS.14  The 

isentropic compression curves calculated using these two EOS developments are in reasonable 

agreement.  However, although the s pU u−  Hugoniot curves for the EOS presented here and for 

the Span, et al. EOS are a close match (Fig. 4), the P-T states along the Hugoniot curves deviate 

significantly with increasing pressure in Fig. 7.  These results are consistent with previous 

conclusions16,20 that temperature measurements are important in discriminating between different 

EOS developments.  In addition, the P-T states along the Hugoniot calculated using the Span, et 

al. EOS lie well outside the error bars for most of the measured single shock states from Refs. 5 

and 6.  This finding demonstrates the importance of using analytical models that are robust and 

theoretically sound to guide extrapolations of low pressure EOS to HP-HT conditions. 

The large range of pressures and temperatures spanned by the experimental results 

provides a strong test of EOS developments.  In particular, the recently measured multiple shock 
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states15 are far from the Hugoniot curve, which is often used to validate EOS developments.8,10-12  

Therefore, the good overall match of the present calculations to the measured results in Fig. 7 – 

spanning a wide range of P-T states – suggests that our EOS developments provide a good 

description of the response of shocked LN2 at high pressures and high temperatures.  In addition, 

we note that all but one of the parameters in our EOS models were determined by comparison 

with s pU u−  Hugoniot data or with the low pressure EOS of Span, et al.14 The good agreement 

of the calculated results with the measured P-T states in Fig. 7 was obtained by adjusting a single 

free parameter, namely the B′ parameter in Eq. (6).  In contrast, multiple free parameters were 

used in many of the previous EOS developments.10-12  

Although the EOS developments presented here provide a good match to experimental 

data for shocked LN2 over a wide range of pressures and temperatures, we note that Eq. (4) 

establishes the Hugoniot curve as an upper bound on the expected region of validity for the 

present EOS developments.  In addition, because the isothermal compression curve defined by 

Eq. (6) is associated with supercooled fluid N2, the melt curve for N2 provides a lower bound on 

the region of EOS validity.  Extrapolation of our EOS models to P-V-T states beyond these 

bounds should be undertaken with caution. 

 

SUMMARY AND CONCLUSIONS 

 

A relatively simple analytical EOS for shocked liquid nitrogen (LN2) was developed 

based on a theoretical framework used previously for liquid nitromethane.16  Parameters for the 

analytical models were determined by comparison with the low pressure reference EOS of Span, 

et al.14 and with experimental data for shocked LN2.1-6,15  This approach is in contrast to previous 

EOS developments for shocked LN2, which focused on the use of pairwise potentials in atomistic 

calculations.8-12   

Pressure-temperature (P-T) states for single shock, double shock, and multiple shock 

compression of LN2, calculated using the EOS presented here, showed good overall agreement 

with measured states.5,6,15  The good match to the measured P-T states was obtained using only a 

single adjustable parameter, in contrast to the multiple free parameters used in many of the 
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previous EOS developments.10-12  Direct extrapolation of the Span, et al. EOS14 resulted in a P-T 

Hugoniot curve that was well outside the error bars of the measured single shock states, showing 

that extrapolations of low pressure EOS developments to high pressures and high temperatures 

need to be guided by robust, theoretically sound analytical models.  The results presented here 

are consistent with the previous conclusion16,20 that temperature measurements are important in 

discriminating between different EOS developments. 

The calculations presented here provide the first comparison of EOS developments with 

recently-measured multiple shock P-T states for LN2.15  Because the measured multiple shock 

states are far from the single shock Hugoniot curve in the P-T plane, they provide a strong test of 

EOS developments.  Hence, the good overall match between the present calculations and the 

measured P-T states suggests that our EOS developments provide a good description of LN2 at 

high pressures and high temperatures.   

In addition to liquid nitrogen, low pressure reference equations of state are available for a 

variety of different liquids.  Therefore, our approach for using analytical EOS models to 

extrapolate low pressure EOS developments to high pressure-high temperature conditions will 

likely be useful for modeling the response of other shocked liquids, in addition to nitrogen. 
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Table I. Parameters used in Eqs. (1), (5), and (6). 

Parameter Value 

C0 2.84 

C1 6.00 1 2K  

C2 7.50 

C3 0.94 

θ 3364 K 

a1 2.347 

a2 1.287 

a3 0.80 

B0 0.3116 GPa 

B′ 8.1 
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Figure 1. Specific heat vc  versus temperature along several isochores.  The solid and dashed lines are 

calculations using Eq. (1) and the Span, et al. EOS (Ref. 14), respectively.  T0 and P0 are the initial 

temperature and pressure for each isochore. 
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Figure 2. Specific heat vc  versus density compression along several isotherms.  The solid and dashed 

lines are calculations using Eq. (1) and the Span, et al. EOS (Ref. 14), respectively.   
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Figure 3. Specific heat vc  versus density compression for LN2.  The red and green solid curves are vc  

along the Hugoniot and isentrope, respectively, calculated using the present EOS.  The red and green 

dashed curves are vc  along the Hugoniot and isentrope, respectively, calculated using the EOS from Ref. 

14.   
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Figure 4.  Locus of shock compression end states (Hugoniot curve) for liquid nitrogen.  SU  is shock 

velocity, pu  is particle velocity, and 0c  is the sound velocity of LN2 at 77 K.  The solid circles are 

measured results from Refs. 1-3.  The solid red curve is a fit using Eq. (5) and the dashed green curve is a 

calculation using the EOS from Ref. 14.   
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Figure 5. Coefficient of thermal pressure ( )VP T∂ ∂ versus density compression for LN2.  The black 

dotted curve is ( )VP T∂ ∂  along the 77 K isotherm.  The black solid curve is a polynomial fit to 

( )VP T∂ ∂  along the 77 K isotherm.  The red and green solid curves are ( )VP T∂ ∂  along the Hugoniot 

and isentrope, respectively, calculated using the present EOS.  The red and green dashed curves are 

( )VP T∂ ∂  along the Hugoniot and isentrope, respectively, calculated using the EOS from Ref. 14.   
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Figure 6.  Grüneisen parameter Γ versus density compression for LN2.  The red and green solid curves 

are Γ along the Hugoniot and isentrope, respectively, calculated using the present EOS.  The red and 

green dashed curves are Γ along the Hugoniot and isentrope, respectively, calculated using the EOS from 

Ref. 14.   
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Figure 7.  Temperature-pressure states for dynamic compression of LN2.  The open symbols are 

measured peak states for single shock (red squares: Refs. 5, 6), double shock (green triangles: Ref. 6), and 

stepwise loading (black circles: Ref. 15).  The corresponding filled symbols and the solid curves are 

calculations using the EOS presented here.  The dashed curves are calculations using the EOS from Ref. 

14.  Uncertainty bounds were not available for the measured states (single shock and double shock) from 

Ref. 6. 

 


