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ABSTRACT

     This thesis summarizes our study on the crystal structures prediction of Fe-V-Si system 

using genetic algorithm and cluster expansion. Our goal is to explore and look for new stable 

compounds. We started from the current ten known experimental phases, and calculated 

formation energies of those compounds using density functional theory (DFT) package, 

namely, VASP. The convex hull was generated based on the DFT calculations of the 

experimental known phases. Then we did random search on some metal rich (Fe and V) 

compositions and found that the lowest energy structures were body centered cube (bcc) 

underlying lattice, under which we did our computational systematic searches using genetic 

algorithm and cluster expansion. 

     Among hundreds of the searched compositions, thirteen were selected and DFT formation 

energies were obtained by VASP. The stability checking of those thirteen compounds was 

done in reference to the experimental convex hull.

     We found that the composition, 24-8-16, i.e., Fe3VSi2 is a new stable phase and it can be 

very inspiring to the future experiments.
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CHAPTER 1.  INTRODUCTION 

     It is the materials which define the technologies accessible in a given era for human 

beings to utilize, from stone, bronze and iron in the far past, till semiconductors and 

nanomaterials today. The search and design for new materials have been continuously 

shaping the era and changing human lives. Thanks to the increasing scientific knowledge and 

tools, especially the dramatic increase of computational power for the past decades, the 

search and design of new materials in computer become possible, which helps create new 

materials much more efficiently and effectively than the traditional trial and error approach.  

The atomic structures of materials are the keys in understanding their physical and chemical 

properties. Given the composition of the elements and the arrangement of atoms, 

theoretically any property can be determined.  

     Chapter 1 gives a short description of the basics of atomic structure and crystal structure 

prediction.

     Chapter 2 focuses on the Fe-V-Si system. We first looked into the current experimental 

data and then we did some random search on the sample compositions and made assumption 

of bcc underlying lattice for metal (Fe and V) rich compounds. 

     In chapter 3, we described our scheme in the computational search. And genetic 

algorithm, cluster expansion and convex hull analysis were briefly explained.

     Chapter 4 shows our computational results, followed by some discussions. 

     The last chapter is the tentative conclusion and future work.
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1.1 Atomic structure of materials

     Study on structures of materials could be investigated on small scale as atomic, say, 

angstroms, to macro scale, say, meters. Structures on different scales explain different 

properties. 

     In this thesis, we are studying the structures at atomic scale, where the electrical, magnetic 

and chemical properties can be understood.    Solid materials may be classified into two 

classes based on the arrangement of atoms: crystalline and non-crystalline, as illustrated in 

Figure 1.1. 

     The atoms in crystalline are highly ordered while non-crystalline lack any repetitive 

pattern of a crystalline. Our study focuses on atomic structures of crystal solids.

 Figure 1.1 Crystalline (left) and non-crystalline (right)

     A crystal structure is a certain arrangement of atoms or molecules in a crystalline solid and 

those particles are surrounded by like neighbors and exhibit repetitive geometry pattern. It 

describes a highly ordered structure, occurring due to the intrinsic nature of its constituents to 

form symmetric pattern. Systematic and detailed description on the crystallography may be 

found in a variety of textbooks [Ashcroft and Mermin, 1976; Kittel, 2005]. 

     Only a few key concepts are briefly explained.
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     Symmetry is the periodic repetition of crystal structures. There are two general types of 

symmetry, translational and point symmetry.  Translational symmetry describes the periodic 

repetition across all three spatial directions. While point symmetry explains the periodic 

repetition around one point, and the operators include reflection, rotation, inversion and 

improper rotation.

     Both proper and improper rotation axes, reflection planes and centers of symmetry are 

called symmetry elements.

     Point groups: It makes 32 possible crystal classes (point groups) by combining the point 

symmetry operations in different ways.

     Space groups: Besides the point group operators, the space group also includes the 

translational symmetry operators, and there are 230 distinct space groups.

     Bravais lattices: Lattice is an array of points periodically repetitive through the distance. 

By combining crystal classes with the various possible lattice centering, Bravais lattice 

describes the geometric arrangement of the lattice points, and thus the translational symmetry 

of crystals.

     Unit cell: Unit cell is a small box containing one or more atoms arranged in three 

dimensions, as illustrated in Figure 1.2. The stacked unit cells in three dimensional spaces 

describe the bulk arrangement of atoms of the crystal. The unit cell itself can be represented 

in terms of its parameters, which are lengths of cell edges (a,b and c) and the three angles 

between (see Figure 1.2), while the positions of the atoms inside the cell can be described by 

sets of atomic positions (x,y and z).  
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                                            Figure 1.2 Unit cell (in solid line) and its parameters.

1.2 Crystal structure predictions

     To predict the crystal structure solely based on the chemical composition is one of the 

most fundamental challenges condensed matter science [Woodley,2008]. The two main 

determinants of the crystal structure are its constituent chemical elements and the way it has 

been formed, governed by the laws of quantum mechanics, thermodynamics. The lower the 

energy structure are generally favored and viewed as more stable, which suggests that crystal 

structure prediction is searching for minimum energy among different arrangements of 

atoms. Two things are needed for solving the problem, an accurate method to calculate the 

energy and an efficient searching algorithm to reach the minimum energy quickly.

Based on quantum mechanics, theoretically, structure energy can be calculated by solving 

Schrodinger equation. While the equation for many-atom system is so complicated that it is 

analytically not feasible to solve. The problem was solved by density functional theory 

(DFT), which was developed in 1964 by Kohn et al [Hohenberg and Kohn, 1964; Kohn and 

Sham, 1965], along with various empirical potentials, as instruments to calculate the 

structure energies.

     For search algorithms, several well-known candidates were invented and utilized to 

predicted the crystal structures, such as simulated annealing [Doll et al, 2007], genetic 
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algorithm [Deaven and Ho, 1995; Wu et al., 2014] and ab initio random search [Pickard and 

Needs, 2011].

     Each of the above algorithms has been successfully applied to the structure prediction for 

the formation of new compounds. Our study of Fe-V-Si system will be based on genetic 

algorithm to search for the lowest energy structures, and this algorithm will be shortly 

introduced in chapter 2.

1.2.1 Free energy

     Generally, the Gibbs free energy of a structure was defined as:

TSPVEG                      (Equation 1.1)

Where E is internal energy, P is pressure, V is volume, T is temperature and S is entropy.  

1.2.2 Density functional theory 

     Stationary electronic states of an N-electron system can be described by many body 

time-independent Schrodinger equation with wave function  : 
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1.2)

Where T̂  is the kinetic energy , V̂ electron-ion Coulomb attraction and Û is electron-electron 

Coulomb repulsion.

     Density functional theory (DFT) is a computational quantum mechanical modelling 

widely used in physics, chemistry and materials science to investigate the electronic  

structure (principally the ground state) of many-body systems, in particular atoms, molecules, 

and the condensed phases. Using this theory, the properties of a many-electron system can be 

determined by using functionals, i.e. functions of another function, which in this case is the 

https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Functional_(mathematics)
https://en.wikipedia.org/wiki/Condensed_phase
https://en.wikipedia.org/wiki/Many-body_problem
https://en.wikipedia.org/wiki/Ground_state
https://en.wikipedia.org/wiki/Electronic_structure
https://en.wikipedia.org/wiki/Electronic_structure
https://en.wikipedia.org/wiki/Materials_science
https://en.wikipedia.org/wiki/Chemistry
https://en.wikipedia.org/wiki/Physics
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spatially dependent electron density. It is among the most popular and versatile methods 

available in condensed-matter physics, computational physics, and computational chemistry 

for calculations in solid-state physics since the 1970s. In many cases the results of DFT 

calculations for solid-state systems agreed quite satisfactorily with experimental data. 

The Vienna Ab initio Simulation Package (VASP) is a computer program for atomic scale 

materials modelling, e.g. electronic structure calculations and quantum-mechanical molecular 

dynamics, from first principles. It computes an approximate solution to the many-body 

Schrödinger equation, either within density functional theory (DFT), solving the Kohn-Sham 

equations, or within the Hartree-Fock (HF) approximation, solving the Roothaan equations. 

Hybrid functionals that mix the Hartree-Fock approach with density functional theory are 

implemented as well. To determine the electronic ground state, VASP makes use of efficient 

iterative matrix diagonalisation techniques, like the residual minimization method with direct 

inversion of the iterative subspace (RMM-DIIS) or blocked Davidson algorithms. 

1.2.3 Empirical potentials

     Despite DFT give accurate calculation of the energy of many body problem (at T = 0K), it 

becomes computationally more expensive as the system size grows, say, up to 100 atoms.

Besides the energy evaluation for larger system which takes longer, the exponentially 

increasing configuration spaces for larger system is the main reason. Empirical potentials 

have been developed as alternative ways for faster energy calculations for larger systems.

Empirical potentials can be considered as pair potentials between pairs of atoms or many 

body potentials, including the interactions between three or more particles. Lennard-Jones 

potential is a simple example to calculate the van der Waals forces [Lennard-Jones, 1924]
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https://en.wikipedia.org/wiki/Solid-state_physics
https://en.wikipedia.org/wiki/Computational_chemistry
https://en.wikipedia.org/wiki/Computational_physics
https://en.wikipedia.org/wiki/Electronic_density
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     Among the various empirical potentials, cluster expansion is one of the most widely used 

one and will be briefly described in the methodology part, chapter 3.

  1.2.4 Optimization algorithm

     As mentioned in 1.2.1, two things are needed to perform crystal structure prediction.

One is an accurate method to evaluate the energy and it is usually different types of empirical 

potentials and the other one is an efficient search algorithm to get the optimal structure fast. 

Among a variety of algorithms developed in predicting crystal structures, genetic algorithm 

is applied in our study due to its accuracy of energy calculation and efficiency in structure 

exploration. It will be briefly discussed in chapter 3.
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CHAPTER 2.  Fe-V-SI

     Fe-V-Si system had been studied due to its interesting magnetic and electronic properties 

[Endo,1995;Alam 2006;Watanabe,2005]. Report told that Fe3VSi might be ferromagnetic, yet 

the structures was not known, though the structures of Fe2VSi and FeVSi are experimentally 

known [Mochai,1967]. Experimentalists at Ames Lab are interested knowing the crystal 

structure of Fe3VSi and hunting for other stable phases.

2.1 Experimental background and research interest

     The first investigation of Fe-V-Si was performed back in 1940s [Vogel, R, et al 1940] and 

Vogel et al examined the liquid’s surface in the region of Fe-FeSi-VSi2-V by thermal 

analysis, and a limited metallographic observation of the solid alloys system. Since then, 

Some 80 ternary alloys were examined, the compositions of which lay on composition lines 

from the silicon corner to the compositions 10, 20, 30, 40, 50 and 60 mass% V on the Fe-V 

axis [H.Xu et al 2008]. 

     The current experimental findings was briefly summarized in Figure 2.1. and the known 

compounds were tabulated in table 2.1.

Figure 2.1 Experimental ternary plot on Fe-V-Si system [Raynor, et al, 1988]
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     Including pure Fe, V and Si, those experimentally known compounds works as reference 

to the computational predictions of new compositions. See table 2.1

Table 2.1 Crystallographic Data of Solid Phases 

Phase/
Temperature
Range (°C)

Pearson Symbol/
Space Group/
Prototype

Lattice
Parameters
(pm)

Comments/References

(V)
<1910

cI2
Im-3m
W

a = 302.4 pure V at 25°C

(αFe)
< 912

cI2
Im-3m
W a = 286.65 pure Fe at 25°C

(αSi)
< 1414

cF8
Fm-3m
C (diamond) a = 543.06 T = 25°C

α1, Fe3Si
< 1235

cF16
Fm-3m
BiF3 a = 565.0

D03

11.0 to 30.0 at.% Si

α2, Fe-Si

< 1280

cP2
Pm-3m
CsCl

a = 281 B2

10.0 to 22.0 at.% Si

β, Fe2Si

1212 - 1040

hP6
P-3m1
Fe2Si

a = 405.2 ± 0.2

c = 508.55 ± 0.03 19.93 to 21.31 at.% Si

η, Fe5Si3

1060 - 825

hP16
P63/mmc
Mn5Si3

a = 675.9 ± 0.5

c = 472.0 ± 0.5
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Table 2.1 Continued

ε, FeSi

< 1410

cP8
P213
FeSi

a = 451.7 ± 0.5 49.6 to 50.8 at.% Si

ζα, FeSi2(h)

1220 - 937

tP3
P4/mmm
FeSi2

a = 269.01

c = 513.4

69.5 to 73.5 at.% Si

σ, FeV

< 1252

tP30
P42/mnm
σCrFe

a = 896.5

c = 463.3

39.9 to 70.4 at.% Fe

V3Si

< 1925

cP8
Pm-3n
Cr3Si

a = 472.72 19 to 25.5 at.% Si

V5Si3

< 2010

tI32
I4/mcm
Si3W5

a = 943

c = 471

VSi2

< 1677

hP9
P6222
CrSi2

a = 457.5

c = 638.5

* τ1, Fe4V5Si4 tP56
P41212
Mn5Si2

a = 888
c = 867

30 to 40 at.% Fe 

* τ2, Fe2V2Si hR53
R-3
Co5Cr2Mo3

a = 1079.9
c = 1924.3

45.5 to 52 at.% Fe

Table 2.1 Continued
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* τ3, Fe5V3Si2 cI58
I-43m
αMn

a = 884.3 32 to 44 at.% Fe

* τ4, Fe2VSi cF16
Fm-3m
AlCu2Mn

a = 567.4 L21 Heusler 
structure
phase
at 300 K

                         

2.2 Theoretical assumption: bcc underlying lattice

     Cluster expansion method was applied as the empirical potentials to calculate the structure 

energies, and it requires the search on a given lattice, say, face centered cubic (fcc) or body 

centered cubic (bcc). Some initial random searches were done for three Fe-rich (or 

metal-rich, Fe and V) compounds, Fe3VSi, Fe2V2Si and Fe4VSi, with 2 and 4 formula units.  

We found that all the lowest energy structures of those compounds were bcc underlying 

lattice. Pure Fe and V are both bcc lattice. Therefore, structures searches using genetic 

algorithm and cluster expansion were based on the assumption of bcc underlying lattice for 

metal-rich compounds. 

The two lowest energy structures from random searches were attached in Figure 2.2.
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Figure 2.2 Lowest energy structures from random search are bcc underlying lattice.
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CHAPTER 3. COMPUTATIONAL METHODS

3.1 Genetic algorithm

     Genetic algorithm (GA), is a search heuristic that mimics the process of natural selection. 

It belongs to the larger class of evolutionary algorithms, which generate solutions to 

optimization problems using techniques inspired by natural evolution, such 

as inheritance, mutation, selection, and crossover. It was first developed to optimize atomic 

structures by Deaven and Ho, where the fullerene cluster structures up to C60  were efficiently 

found from random searches. Since then, it has been applied to various clusters [Ho et al., 

1998], bulk crystal [Oganov et al., 2009] and interfaces and grain boundaries[Zhang et al., 

2009, Zhao et al., 2014b]. 

     The evolution usually starts from a population of randomly generated individuals (crystal 

structures, for instance), and is an iterative process, with the population in each iteration 

called a generation. In each generation, the fitness (structure energy) of every individual in 

the population is evaluated. 

     The more fit individuals (lower energy structures) are stochastically selected from the 

current population, and each individual is modified (recombined and possibly randomly 

mutated) to form a new generation. The new generation of candidate solutions is then used in 

the next iteration of the algorithm. The algorithm terminates when either a maximum number 

of generations has been produced, or a satisfactory fitness level has been reached for the 

population.

See Figure 3.1 for illustration.

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Stochastics
https://en.wikipedia.org/wiki/Fitness_(biology)
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
https://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
https://en.wikipedia.org/wiki/Heredity
https://en.wikipedia.org/wiki/Evolutionary_algorithm
https://en.wikipedia.org/wiki/Natural_selection
https://en.wikipedia.org/wiki/Heuristic_(computer_science)
https://en.wikipedia.org/wiki/Search_algorithm
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Figure 3.1 Flow Chart of Genetic Algorithm

3.2 Cluster expansion method

     A classic example of a multiscale model is the cluster expansion method. In many 

materials, particularly (but not only) many metal alloys, there are distinct phases that differ 

only by the arrangement of individual elements on a lattice, but the underlying spatial lattice 

(bcc, fcc, etc.) remains in principle the same for several of these phases. If the underlying 

lattice is known, we know the actual positions ( 1R , . . . , MR ) in principle, we just don’t know 

which kind of atom sits on each site and we don’t know the configuration. E becomes a 

simple function of the occupation of these sites by the different elements (the configuration). 

One can always map the configurational energies ( )E  of all possible configurations , if 

the model includes all types of cluster f that can be found among the lattice sites: all 

inequivalent pairs, triplets, quadruplets, etc., up to the N-body interactions. 

By denoting ( )E  the energy of a given configuration per lattice site, the equation of a 

cluster expansion on a lattice was given:
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( ) ( ) ( )CE
f f

f

E E J                            (Equation 3.1)

Where fJ is the cluster expansion coefficients that denote effective interaction strength 

associated with a particular combination of lattice sites, f . 

 ( )f  is the spin-products averaged over the entire lattice and detailed description may be 

found in [IPAM, 2014].

In our study on the Fe-V-Si system under bcc underlying lattices, all the coefficients were 

obtained via the fitting of DFT calculations.

3.3 Convex hull analysis

     The enthalpy of formation for any compound AxByCz can be defined as:

( ) ( ) ( ) ( ) ( )x y z x y zH A B C H A B C xH A yH B zH C                 (Equation 3.3)

Where H is the total energy of the corresponding configuration and nature favors those 

compounds with a negative formation energy, which can be interpreted as being stable.  In 

order to construct convex hull, the lowest energy of given compositions (or combinations of 

compositions that gives such composition). Simply put, the convex hull can be generated by 

linking the lowest energy structures. The linked line versus the composition curve, called 

convex hull, illustrated in Figure 3.2 for binary alloy AxBy.
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Figure 3.2 Convex hull of binary alloy AxBy, each red sphere denote a configuration
And the two lying at the corners are pure A and B, respectively.

     In the analysis, the vertical (energy) gap between the any configuration and the convex 

hull were calculated. For any configuration with the formation energy above the convex hull, 

the corresponding energy gap is great than zero, which suggests this configuration is not a 

new stable phase. 

Compositions with formation energy below he convex hull may be perceived as stable since 

the energy gap is negative. When the new configuration lies on the hull, the energy gap is 

zero, and it may be stable.

3.4 The scheme and computational details

3.4.1 The scheme

     On the theory side, our study on Fe-V-Si system started with random search of sample 

compositions as previously mentioned in chapter 2 and we found that all the three metal rich 

(Fe and V) compounds are bcc underlying lattice. Under bcc underlying lattice, we explored 

much broader configurational space across different system sizes, from 24 atoms up to 120 
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atoms with different supercells. Totally, we explored 1195 compositions across different 

system sizes and supercells.  On the experimental side, we calculated the lowest DFT 

energies for those experimental known compounds, based on which we constructed the 

convex hull and it worked as the reference frame for stability prediction of new 

compositions.   Our methodology can be clearly seen in Figure 3.4 and  

Figure 3.3 Computational procedure in predicting new compounds of Fe-V-Si 

3.4.2 Computational details

     The Fe-V-Si system we have explored are from 24, 30, 40, 48, 54, 60, and up to 120 

atoms. After a careful comparisons among those searched energies, the 48 atoms system was 

adopted for a systematic searches with 720 compositions, which was illustrated in Figure 3.4. 

About the genetic algorithm, the pool size set as 800 and generation as 3000 for GA structure 

optimization. All GA searches converged at no more than  400 generations.
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Figure 3.4 Ternary plot of systematic search for 48 atoms Fe-V-Si. 720 compositions (dots on 
the plot) are illustrated. The green area are those with lower formation energy. 
  

     DFT calculation (VASP) for both experimental compounds and new compositions were 

performed under the following setting, k-points 25, with spin polarization and the structures 

were fully relaxed.
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CHAPTER 4     RESULTS 

     Our results will be briefly reported in two parts. 

First, the experimental known phase, Fe2VSi, under bcc lattice, was confirmed by our 

computational search by GA and Cluster expansion.

More importantly, one new stable compound, Fe3VSi2 was discovered.

4..1 Confirmation of experimental phase Fe2VSi 

Our GA search first confirmed the experimental bcc phases, Fe2VSi. See Figure 4.1.

Figure 4.1 Lowest energy structure of Fe2VSi from GA search.
Fe in grey, V in brown, and Si in green

     This confirmation of experimental bcc phase suggests our search under bcc underlying 

lattice assumption is reliable and effective in its predictive power.
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4.2 Discovery of new stable compound, Fe3VSi2

      Among those 720 compositions from 48 atoms, one dozen were selected to be analyzed at 

first. The selection of those one dozen are based on lower formation energies.

See Figure 4.1 for details.

Figure 4.2 The ternary plot of 720 compositions from 48 atoms systematic search, 
4 remarkable compositions were identified, as marked in the plot. The color tells the energy 
gap from convex hull constructed on the cluster expansion formation energies and it indicate 
the relative stability of each composition on the plot. Besides those four, 8 more were 
selected from the lowest energy among all.

      One last compound the experimentalists were interested are 3:1:1, and the searches were 

done for different system size, 30, 40, 50 and 60 atoms, and the lowest formation energy (per 

atom) was from the 40 atoms system, i.e. 24-8-8, which was added to our pool of stability 

prediction and it makes 13 compositions, see Table 4.1. 
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     DFT calculation was done for those compositions and formation energies obtained, and 

then put in the reference of experimental convex hull to check the possible stability. 

Interestingly, among those 13 compounds, the only one that lies below the experimental 

convex hull is 24-8-16, i.e. Fe3VSi2.

Table 4.1 Selected 13 compositions for stability prediction under convex hull. One new 
composition, 24-08-16, was found to be below convex hull. All energies in eV/atom. 
The ternary plot of the stability prediction can be seen in Figure 4.2.

           Fe-V-Si        DFT energy     Energy gap (meV/atom)            Remarks

24-8-8  -506.82 32.83                                            3:1:1  

24-8-16 -626.61 -5.9                                                3:1:2

24-16-8 -602.42 17.13                                              

32-08-8 -400.75 48.96                                              

18-12-18 -399.03 362.94                                            

20-10-18 -491.74 213.59

21-9-18 -531.47 145.54

22-9-17 -550.1  112.34

23-6-19 -542.69 63.93

23-8-17 -579.89 54.23

24-5-19 -576.51 5.35

24-7-17 -542.69 63.11

32-4-12 -375.56 19.13        

                                      

     The ternary plot of stability prediction on the new compounds can be clearly seen in 

Figure 4.3, where energy gap from experimental convex hull were classified as negative and 

positive and denoted by different colors. 
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Figure 4.3 Ternary plot of stability prediction of 13 new compositions. The blue makers 
denote the ten experimental known phases. The energy gap of new compositions from 
experimental convex hull were classified as positive (above) and negative (below). Only one 
negative energy gap (6meV/atom below) were found, which is 24-8-16, i.e. Fe3VSi2, and can 
be seen as stable phase. While Fe3VSi, denoted by a red arrow, is not stable since it lies 
above the convex hull by 33 meV/atom.

     About the compound, Fe3VSi, upon which the interest on Fe-V-Si was raised by the 

experimentalists, our study shows it is not stable due to the relatively high DFT energy. 

It is very interesting that we found new stable composition, 24-8-16, i.e., Fe3VSi2 
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     The crystal structures, including its symmetric properties and magnetic moment of it’s  

lowest energy structures can be found in Figure 4.4. And this is a B2 structures without any 

2nd nearest neighbor of V-V.

Figure 4.4. Crystal structures for the lowest energy composition, Fe3VSi2, the symmetry and 
lattice parameters were attach. Magnetic moment from each atom were listed on the right .
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CHAPTER 5. CONCLUSION

     Crystal structure prediction on Fe-V-Si was studied using genetic and cluster expansion. 

Hundreds of possible configurations were explored and 13 of them were selected for the 

stability prediction in reference to experimental convex hull, which was constructed based on 

the DFT energies of those 10 experimental phases.  

     Our finding suggests that Fe3VSi2 is a new stable compound and this sheds light on the 

future experiments. 

     While Fe3VSi, as the experimentalists were interested, is not stable based on our study.

About future work, more compositions from search are to be studied for stability prediction.

     Other properties, like, magnetic and chemical property of compounds in Fe-V-Si system 

might be interesting for further study.
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